fish-shell/src/tinyexpr.cpp
Fabian Homborg a84d57b02b math: Actually report closing paren error
This was typically overridden by "too many/few arguments", but it's
actually incorrect:

    sin(55

has the correct number of arguments to `sin`, but it's lacking
the closing `)`.
2020-10-26 18:13:43 +01:00

612 lines
21 KiB
C++

/*
* TINYEXPR - Tiny recursive descent parser and evaluation engine in C
*
* Copyright (c) 2015, 2016 Lewis Van Winkle
*
* http://CodePlea.com
*
* This software is provided 'as-is', without any express or implied
* warranty. In no event will the authors be held liable for any damages
* arising from the use of this software.
*
* Permission is granted to anyone to use this software for any purpose,
* including commercial applications, and to alter it and redistribute it
* freely, subject to the following restrictions:
*
* 1. The origin of this software must not be misrepresented; you must not
* claim that you wrote the original software. If you use this software
* in a product, an acknowledgement in the product documentation would be
* appreciated but is not required.
* 2. Altered source versions must be plainly marked as such, and must not be
* misrepresented as being the original software.
* 3. This notice may not be removed or altered from any source distribution.
*/
// This version has been altered and ported to C++ for inclusion in fish.
#include "tinyexpr.h"
#include <ctype.h>
#include <limits.h>
#include <math.h>
#include <stdio.h>
#include <stdlib.h>
#include <algorithm>
#include <cstring>
#include <iterator>
#include <utility>
// TODO: It would be nice not to rely on a typedef for this, especially one that can only do
// functions with two args.
using te_fun2 = double (*)(double, double);
using te_fun1 = double (*)(double);
using te_fun0 = double (*)();
enum {
TE_CONSTANT = 0,
TE_FUNCTION0,
TE_FUNCTION1,
TE_FUNCTION2,
TE_FUNCTION3,
TOK_NULL,
TOK_ERROR,
TOK_END,
TOK_SEP,
TOK_OPEN,
TOK_CLOSE,
TOK_NUMBER,
TOK_INFIX
};
static int get_arity(const int type) {
if (type == TE_FUNCTION3) return 3;
if (type == TE_FUNCTION2) return 2;
if (type == TE_FUNCTION1) return 1;
return 0;
}
typedef struct te_expr {
int type;
union {
double value;
const void *function;
};
te_expr *parameters[];
} te_expr;
using te_builtin = struct {
const char *name;
const void *address;
int type;
};
using state = struct {
union {
double value;
const void *function;
};
const char *start;
const char *next;
int type;
te_error_type_t error;
};
/* Parses the input expression. */
/* Returns NULL on error. */
te_expr *te_compile(const char *expression, te_error_t *error);
/* Evaluates the expression. */
double te_eval(const te_expr *n);
/* Frees the expression. */
/* This is safe to call on NULL pointers. */
void te_free(te_expr *n);
// TODO: That move there? Ouch. Replace with a proper class with a constructor.
#define NEW_EXPR(type, ...) new_expr((type), std::move((const te_expr *[]){__VA_ARGS__}))
static te_expr *new_expr(const int type, const te_expr *parameters[]) {
const int arity = get_arity(type);
const int psize = sizeof(te_expr *) * arity;
const int size = sizeof(te_expr) + psize;
auto ret = static_cast<te_expr *>(malloc(size));
// This sets float to 0, which depends on the implementation.
// We rely on IEEE-754 floats anyway, so it's okay.
std::memset(ret, 0, size);
if (arity && parameters) {
std::memcpy(ret->parameters, parameters, psize);
}
ret->type = type;
return ret;
}
static void te_free_parameters(te_expr *n) {
if (!n) return;
int arity = get_arity(n->type);
// Free all parameters from the back to the front.
while (arity > 0) {
te_free(n->parameters[arity - 1]);
arity--;
}
}
void te_free(te_expr *n) {
if (!n) return;
te_free_parameters(n);
free(n);
}
static constexpr double pi() { return M_PI; }
static constexpr double tau() { return 2 * M_PI; }
static constexpr double e() { return M_E; }
static double fac(double a) { /* simplest version of fac */
if (a < 0.0) return NAN;
if (a > UINT_MAX) return INFINITY;
auto ua = static_cast<unsigned int>(a);
unsigned long int result = 1, i;
for (i = 1; i <= ua; i++) {
if (i > ULONG_MAX / result) return INFINITY;
result *= i;
}
return static_cast<double>(result);
}
static double ncr(double n, double r) {
if (n < 0.0 || r < 0.0 || n < r) return NAN;
if (n > UINT_MAX || r > UINT_MAX) return INFINITY;
unsigned long int un = static_cast<unsigned int>(n), ur = static_cast<unsigned int>(r), i;
unsigned long int result = 1;
if (ur > un / 2) ur = un - ur;
for (i = 1; i <= ur; i++) {
if (result > ULONG_MAX / (un - ur + i)) return INFINITY;
result *= un - ur + i;
result /= i;
}
return result;
}
static double npr(double n, double r) { return ncr(n, r) * fac(r); }
static constexpr double bit_and(double a, double b) {
return static_cast<double>(static_cast<long long>(a) & static_cast<long long>(b));
}
static constexpr double bit_or(double a, double b) {
return static_cast<double>(static_cast<long long>(a) | static_cast<long long>(b));
}
static constexpr double bit_xor(double a, double b) {
return static_cast<double>(static_cast<long long>(a) ^ static_cast<long long>(b));
}
static const te_builtin functions[] = {
/* must be in alphabetical order */
{"abs", reinterpret_cast<const void *>(static_cast<te_fun1>(fabs)), TE_FUNCTION1},
{"acos", reinterpret_cast<const void *>(static_cast<te_fun1>(acos)), TE_FUNCTION1},
{"asin", reinterpret_cast<const void *>(static_cast<te_fun1>(asin)), TE_FUNCTION1},
{"atan", reinterpret_cast<const void *>(static_cast<te_fun1>(atan)), TE_FUNCTION1},
{"atan2", reinterpret_cast<const void *>(static_cast<te_fun2>(atan2)), TE_FUNCTION2},
{"bitand", reinterpret_cast<const void *>(static_cast<te_fun2>(bit_and)), TE_FUNCTION2},
{"bitor", reinterpret_cast<const void *>(static_cast<te_fun2>(bit_or)), TE_FUNCTION2},
{"bitxor", reinterpret_cast<const void *>(static_cast<te_fun2>(bit_xor)), TE_FUNCTION2},
{"ceil", reinterpret_cast<const void *>(static_cast<te_fun1>(ceil)), TE_FUNCTION1},
{"cos", reinterpret_cast<const void *>(static_cast<te_fun1>(cos)), TE_FUNCTION1},
{"cosh", reinterpret_cast<const void *>(static_cast<te_fun1>(cosh)), TE_FUNCTION1},
{"e", reinterpret_cast<const void *>(static_cast<te_fun0>(e)), TE_FUNCTION0},
{"exp", reinterpret_cast<const void *>(static_cast<te_fun1>(exp)), TE_FUNCTION1},
{"fac", reinterpret_cast<const void *>(static_cast<te_fun1>(fac)), TE_FUNCTION1},
{"floor", reinterpret_cast<const void *>(static_cast<te_fun1>(floor)), TE_FUNCTION1},
{"ln", reinterpret_cast<const void *>(static_cast<te_fun1>(log)), TE_FUNCTION1},
{"log", reinterpret_cast<const void *>(static_cast<te_fun1>(log10)), TE_FUNCTION1},
{"log10", reinterpret_cast<const void *>(static_cast<te_fun1>(log10)), TE_FUNCTION1},
{"ncr", reinterpret_cast<const void *>(static_cast<te_fun2>(ncr)), TE_FUNCTION2},
{"npr", reinterpret_cast<const void *>(static_cast<te_fun2>(npr)), TE_FUNCTION2},
{"pi", reinterpret_cast<const void *>(static_cast<te_fun0>(pi)), TE_FUNCTION0},
{"pow", reinterpret_cast<const void *>(static_cast<te_fun2>(pow)), TE_FUNCTION2},
{"round", reinterpret_cast<const void *>(static_cast<te_fun1>(round)), TE_FUNCTION1},
{"sin", reinterpret_cast<const void *>(static_cast<te_fun1>(sin)), TE_FUNCTION1},
{"sinh", reinterpret_cast<const void *>(static_cast<te_fun1>(sinh)), TE_FUNCTION1},
{"sqrt", reinterpret_cast<const void *>(static_cast<te_fun1>(sqrt)), TE_FUNCTION1},
{"tan", reinterpret_cast<const void *>(static_cast<te_fun1>(tan)), TE_FUNCTION1},
{"tanh", reinterpret_cast<const void *>(static_cast<te_fun1>(tanh)), TE_FUNCTION1},
{"tau", reinterpret_cast<const void *>(static_cast<te_fun0>(tau)), TE_FUNCTION0},
};
static const te_builtin *find_builtin(const char *name, int len) {
const auto end = std::end(functions);
const te_builtin *found = std::lower_bound(std::begin(functions), end, name,
[len](const te_builtin &lhs, const char *rhs) {
// The length is important because that's where
// the parens start
return std::strncmp(lhs.name, rhs, len) < 0;
});
// We need to compare again because we might have gotten the first "larger" element.
if (found != end && std::strncmp(found->name, name, len) == 0) return found;
return nullptr;
}
static constexpr double add(double a, double b) { return a + b; }
static constexpr double sub(double a, double b) { return a - b; }
static constexpr double mul(double a, double b) { return a * b; }
static constexpr double divide(double a, double b) {
// If b isn't zero, divide.
// If a isn't zero, return signed INFINITY.
// Else, return NAN.
return b ? a / b : a ? copysign(1, a) * copysign(1, b) * INFINITY : NAN;
}
static constexpr double negate(double a) { return -a; }
static void next_token(state *s) {
s->type = TOK_NULL;
do {
if (!*s->next) {
s->type = TOK_END;
return;
}
/* Try reading a number. */
if ((s->next[0] >= '0' && s->next[0] <= '9') || s->next[0] == '.') {
s->value = strtod(s->next, const_cast<char **>(&s->next));
s->type = TOK_NUMBER;
} else {
/* Look for a function call. */
// But not when it's an "x" followed by whitespace
// - that's the alternative multiplication operator.
if (s->next[0] >= 'a' && s->next[0] <= 'z' &&
!(s->next[0] == 'x' && isspace(s->next[1]))) {
const char *start;
start = s->next;
while ((s->next[0] >= 'a' && s->next[0] <= 'z') ||
(s->next[0] >= '0' && s->next[0] <= '9') || (s->next[0] == '_'))
s->next++;
const te_builtin *var = find_builtin(start, s->next - start);
if (var) {
switch (var->type) {
case TE_FUNCTION0:
case TE_FUNCTION1:
case TE_FUNCTION2:
case TE_FUNCTION3:
s->type = var->type;
s->function = var->address;
break;
}
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
// Our error is more specific, so it takes precedence.
s->type = TOK_ERROR;
s->error = TE_ERROR_UNKNOWN_FUNCTION;
}
} else {
/* Look for an operator or special character. */
switch (s->next++[0]) {
// The "te_fun2" casts are necessary to pick the right overload.
case '+':
s->type = TOK_INFIX;
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(add));
break;
case '-':
s->type = TOK_INFIX;
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(sub));
break;
case 'x':
case '*':
// We've already checked for whitespace above.
s->type = TOK_INFIX;
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(mul));
break;
case '/':
s->type = TOK_INFIX;
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(divide));
break;
case '^':
s->type = TOK_INFIX;
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(pow));
break;
case '%':
s->type = TOK_INFIX;
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(fmod));
break;
case '(':
s->type = TOK_OPEN;
break;
case ')':
s->type = TOK_CLOSE;
break;
case ',':
s->type = TOK_SEP;
break;
case ' ':
case '\t':
case '\n':
case '\r':
break;
case '=':
case '>':
case '<':
case '&':
case '|':
case '!':
s->type = TOK_ERROR;
s->error = TE_ERROR_LOGICAL_OPERATOR;
break;
default:
s->type = TOK_ERROR;
s->error = TE_ERROR_MISSING_OPERATOR;
break;
}
}
}
} while (s->type == TOK_NULL);
}
static te_expr *expr(state *s);
static te_expr *power(state *s);
static te_expr *base(state *s) {
/* <base> = <constant> | <function-0> {"(" ")"} | <function-1> <power> |
* <function-X> "(" <expr> {"," <expr>} ")" | "(" <list> ")" */
te_expr *ret;
int arity;
switch (s->type) {
case TOK_NUMBER:
ret = new_expr(TE_CONSTANT, nullptr);
ret->value = s->value;
next_token(s);
break;
case TE_FUNCTION0:
ret = new_expr(s->type, nullptr);
ret->function = s->function;
next_token(s);
if (s->type == TOK_OPEN) {
next_token(s);
if (s->type == TOK_CLOSE) {
next_token(s);
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
s->type = TOK_ERROR;
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
}
}
break;
case TE_FUNCTION1:
case TE_FUNCTION2:
case TE_FUNCTION3:
arity = get_arity(s->type);
ret = new_expr(s->type, nullptr);
ret->function = s->function;
next_token(s);
if (s->type == TOK_OPEN) {
int i;
for (i = 0; i < arity; i++) {
next_token(s);
ret->parameters[i] = expr(s);
if (s->type != TOK_SEP) {
break;
}
}
if (s->type == TOK_CLOSE && i == arity - 1) {
next_token(s);
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNEXPECTED_TOKEN) {
// If we had the right number of arguments, we're missing a closing paren.
if (i == arity - 1 && s->type != TOK_ERROR) {
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
} else {
// Otherwise we complain about the number of arguments *first*,
// a closing parenthesis should be more obvious.
s->error = i < arity ? TE_ERROR_TOO_FEW_ARGS : TE_ERROR_TOO_MANY_ARGS;
}
s->type = TOK_ERROR;
}
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
s->type = TOK_ERROR;
s->error = TE_ERROR_MISSING_OPENING_PAREN;
}
break;
case TOK_OPEN:
next_token(s);
ret = expr(s);
if (s->type == TOK_CLOSE) {
next_token(s);
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
s->type = TOK_ERROR;
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
}
break;
case TOK_END:
// The expression ended before we expected it.
// e.g. `2 - `.
// This means we have too few things.
// Instead of introducing another error, just call it
// "too few args".
ret = new_expr(0, nullptr);
s->type = TOK_ERROR;
s->error = TE_ERROR_TOO_FEW_ARGS;
ret->value = NAN;
break;
default:
ret = new_expr(0, nullptr);
s->type = TOK_ERROR;
s->error = TE_ERROR_UNEXPECTED_TOKEN;
ret->value = NAN;
break;
}
return ret;
}
static te_expr *power(state *s) {
/* <power> = {("-" | "+")} <base> */
int sign = 1;
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
if (s->function == sub) sign = -sign;
next_token(s);
}
te_expr *ret;
if (sign == 1) {
ret = base(s);
} else {
ret = NEW_EXPR(TE_FUNCTION1, base(s));
ret->function = reinterpret_cast<const void *>(negate);
}
return ret;
}
static te_expr *factor(state *s) {
/* <factor> = <power> {"^" <power>} */
te_expr *ret = power(s);
te_expr *insertion = nullptr;
while (s->type == TOK_INFIX &&
(s->function == reinterpret_cast<const void *>(static_cast<te_fun2>(pow)))) {
auto t = reinterpret_cast<te_fun2>(const_cast<void *>(s->function));
next_token(s);
if (insertion) {
/* Make exponentiation go right-to-left. */
te_expr *insert = NEW_EXPR(TE_FUNCTION2, insertion->parameters[1], power(s));
insert->function = reinterpret_cast<const void *>(t);
insertion->parameters[1] = insert;
insertion = insert;
} else {
ret = NEW_EXPR(TE_FUNCTION2, ret, power(s));
ret->function = reinterpret_cast<const void *>(t);
insertion = ret;
}
}
return ret;
}
static te_expr *term(state *s) {
/* <term> = <factor> {("*" | "/" | "%") <factor>} */
te_expr *ret = factor(s);
while (s->type == TOK_INFIX &&
(s->function == reinterpret_cast<const void *>(static_cast<te_fun2>(mul)) ||
s->function == reinterpret_cast<const void *>(static_cast<te_fun2>(divide)) ||
s->function == reinterpret_cast<const void *>(static_cast<te_fun2>(fmod)))) {
auto t = reinterpret_cast<te_fun2>(const_cast<void *>(s->function));
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2, ret, factor(s));
ret->function = reinterpret_cast<const void *>(t);
}
return ret;
}
static te_expr *expr(state *s) {
/* <expr> = <term> {("+" | "-") <term>} */
te_expr *ret = term(s);
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
auto t = reinterpret_cast<te_fun2>(const_cast<void *>(s->function));
next_token(s);
ret = NEW_EXPR(TE_FUNCTION2, ret, term(s));
ret->function = reinterpret_cast<const void *>(t);
}
return ret;
}
#define TE_FUN(...) ((double (*)(__VA_ARGS__))n->function)
#define M(e) te_eval(n->parameters[e])
double te_eval(const te_expr *n) {
if (!n) return NAN;
switch (n->type) {
case TE_CONSTANT:
return n->value;
case TE_FUNCTION0:
return TE_FUN(void)();
case TE_FUNCTION1:
return TE_FUN(double)(M(0));
case TE_FUNCTION2:
return TE_FUN(double, double)(M(0), M(1));
case TE_FUNCTION3:
return TE_FUN(double, double, double)(M(0), M(1), M(2));
default:
return NAN;
}
}
#undef TE_FUN
#undef M
static void optimize(te_expr *n) {
/* Evaluates as much as possible. */
if (n->type == TE_CONSTANT) return;
const int arity = get_arity(n->type);
bool known = true;
for (int i = 0; i < arity; ++i) {
optimize(n->parameters[i]);
if ((n->parameters[i])->type != TE_CONSTANT) {
known = false;
}
}
if (known) {
const double value = te_eval(n);
te_free_parameters(n);
n->type = TE_CONSTANT;
n->value = value;
}
}
te_expr *te_compile(const char *expression, te_error_t *error) {
state s;
s.start = s.next = expression;
s.error = TE_ERROR_NONE;
next_token(&s);
te_expr *root = expr(&s);
if (s.type != TOK_END) {
te_free(root);
if (error) {
error->position = (s.next - s.start) + 1;
if (s.error != TE_ERROR_NONE) {
error->type = s.error;
} else {
// If we're not at the end but there's no error, then that means we have a
// superfluous token that we have no idea what to do with. This occurs in e.g. `2 +
// 2 4` - the "4" is just not part of the expression. We can report either "too many
// arguments" or "expected operator", but the operator should be reported between
// the "2" and the "4". So we report TOO_MANY_ARGS on the "4".
error->type = TE_ERROR_TOO_MANY_ARGS;
}
}
return nullptr;
} else {
optimize(root);
if (error) error->position = 0;
return root;
}
}
double te_interp(const char *expression, te_error_t *error) {
te_expr *n = te_compile(expression, error);
double ret;
if (n) {
ret = te_eval(n);
te_free(n);
} else {
ret = NAN;
}
return ret;
}