mirror of
https://github.com/fish-shell/fish-shell
synced 2025-01-14 05:53:59 +00:00
9018 lines
290 KiB
C
9018 lines
290 KiB
C
/*************************************************
|
|
* Perl-Compatible Regular Expressions *
|
|
*************************************************/
|
|
|
|
/* PCRE is a library of functions to support regular expressions whose syntax
|
|
and semantics are as close as possible to those of the Perl 5 language.
|
|
|
|
Written by Philip Hazel
|
|
Original API code Copyright (c) 1997-2012 University of Cambridge
|
|
New API code Copyright (c) 2016 University of Cambridge
|
|
|
|
-----------------------------------------------------------------------------
|
|
Redistribution and use in source and binary forms, with or without
|
|
modification, are permitted provided that the following conditions are met:
|
|
|
|
* Redistributions of source code must retain the above copyright notice,
|
|
this list of conditions and the following disclaimer.
|
|
|
|
* Redistributions in binary form must reproduce the above copyright
|
|
notice, this list of conditions and the following disclaimer in the
|
|
documentation and/or other materials provided with the distribution.
|
|
|
|
* Neither the name of the University of Cambridge nor the names of its
|
|
contributors may be used to endorse or promote products derived from
|
|
this software without specific prior written permission.
|
|
|
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
|
|
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
|
|
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
|
|
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
|
|
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
|
|
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
|
|
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
|
|
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
|
|
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
|
|
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
|
|
POSSIBILITY OF SUCH DAMAGE.
|
|
-----------------------------------------------------------------------------
|
|
*/
|
|
|
|
|
|
#ifdef HAVE_CONFIG_H
|
|
#include "config.h"
|
|
#endif
|
|
|
|
#define NLBLOCK cb /* Block containing newline information */
|
|
#define PSSTART start_pattern /* Field containing processed string start */
|
|
#define PSEND end_pattern /* Field containing processed string end */
|
|
|
|
#include "pcre2_internal.h"
|
|
|
|
/* In rare error cases debugging might require calling pcre2_printint(). */
|
|
|
|
#if 0
|
|
#ifdef EBCDIC
|
|
#define PRINTABLE(c) ((c) >= 64 && (c) < 255)
|
|
#else
|
|
#define PRINTABLE(c) ((c) >= 32 && (c) < 127)
|
|
#endif
|
|
#include "pcre2_printint.c"
|
|
#define CALL_PRINTINT
|
|
#endif
|
|
|
|
/* There are a few things that vary with different code unit sizes. Handle them
|
|
by defining macros in order to minimize #if usage. */
|
|
|
|
#if PCRE2_CODE_UNIT_WIDTH == 8
|
|
#define STRING_UTFn_RIGHTPAR STRING_UTF8_RIGHTPAR, 5
|
|
#define XDIGIT(c) xdigitab[c]
|
|
|
|
#else /* Either 16-bit or 32-bit */
|
|
#define XDIGIT(c) (MAX_255(c)? xdigitab[c] : 0xff)
|
|
|
|
#if PCRE2_CODE_UNIT_WIDTH == 16
|
|
#define STRING_UTFn_RIGHTPAR STRING_UTF16_RIGHTPAR, 6
|
|
|
|
#else /* 32-bit */
|
|
#define STRING_UTFn_RIGHTPAR STRING_UTF32_RIGHTPAR, 6
|
|
#endif
|
|
#endif
|
|
|
|
/* Function definitions to allow mutual recursion */
|
|
|
|
static int
|
|
add_list_to_class(uint8_t *, PCRE2_UCHAR **, uint32_t, compile_block *,
|
|
const uint32_t *, unsigned int);
|
|
|
|
static BOOL
|
|
compile_regex(uint32_t, PCRE2_UCHAR **, PCRE2_SPTR *, int *, BOOL, BOOL,
|
|
uint32_t, int, uint32_t *, int32_t *, uint32_t *, int32_t *,
|
|
branch_chain *, compile_block *, size_t *);
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Code parameters and static tables *
|
|
*************************************************/
|
|
|
|
/* This value specifies the size of stack workspace, which is used in different
|
|
ways in the different pattern scans. The group-identifying pre-scan uses it to
|
|
handle nesting, and needs it to be 16-bit aligned.
|
|
|
|
During the first compiling phase, when determining how much memory is required,
|
|
the regex is partly compiled into this space, but the compiled parts are
|
|
discarded as soon as they can be, so that hopefully there will never be an
|
|
overrun. The code does, however, check for an overrun, which can occur for
|
|
pathological patterns. The size of the workspace depends on LINK_SIZE because
|
|
the length of compiled items varies with this.
|
|
|
|
In the real compile phase, the workspace is used for remembering data about
|
|
numbered groups, provided there are not too many of them (if there are, extra
|
|
memory is acquired). For this phase the memory must be 32-bit aligned. Having
|
|
defined the size in code units, we set up C32_WORK_SIZE as the number of
|
|
elements in the 32-bit vector. */
|
|
|
|
#define COMPILE_WORK_SIZE (2048*LINK_SIZE) /* Size in code units */
|
|
|
|
#define C32_WORK_SIZE \
|
|
((COMPILE_WORK_SIZE * sizeof(PCRE2_UCHAR))/sizeof(uint32_t))
|
|
|
|
/* The overrun tests check for a slightly smaller size so that they detect the
|
|
overrun before it actually does run off the end of the data block. */
|
|
|
|
#define WORK_SIZE_SAFETY_MARGIN (100)
|
|
|
|
/* This value determines the size of the initial vector that is used for
|
|
remembering named groups during the pre-compile. It is allocated on the stack,
|
|
but if it is too small, it is expanded, in a similar way to the workspace. The
|
|
value is the number of slots in the list. */
|
|
|
|
#define NAMED_GROUP_LIST_SIZE 20
|
|
|
|
/* The original PCRE required patterns to be zero-terminated, and it simplifies
|
|
the compiling code if it is guaranteed that there is a zero code unit at the
|
|
end of the pattern, because this means that tests for coding sequences such as
|
|
(*SKIP) or even just (?<= can check a sequence of code units without having to
|
|
keep checking for the end of the pattern. The new PCRE2 API allows zero code
|
|
units within patterns if a positive length is given, but in order to keep most
|
|
of the compiling code as it was, we copy such patterns and add a zero on the
|
|
end. This value determines the size of space on the stack that is used if the
|
|
pattern fits; if not, heap memory is used. */
|
|
|
|
#define COPIED_PATTERN_SIZE 1024
|
|
|
|
/* Maximum length value to check against when making sure that the variable
|
|
that holds the compiled pattern length does not overflow. We make it a bit less
|
|
than INT_MAX to allow for adding in group terminating bytes, so that we don't
|
|
have to check them every time. */
|
|
|
|
#define OFLOW_MAX (INT_MAX - 20)
|
|
|
|
/* Macro for setting individual bits in class bitmaps. */
|
|
|
|
#define SETBIT(a,b) a[(b)/8] |= (1 << ((b)&7))
|
|
|
|
/* Private flags added to firstcu and reqcu. */
|
|
|
|
#define REQ_CASELESS (1 << 0) /* Indicates caselessness */
|
|
#define REQ_VARY (1 << 1) /* reqcu followed non-literal item */
|
|
/* Negative values for the firstcu and reqcu flags */
|
|
#define REQ_UNSET (-2) /* Not yet found anything */
|
|
#define REQ_NONE (-1) /* Found not fixed char */
|
|
|
|
/* These flags are used in the groupinfo vector. */
|
|
|
|
#define GI_SET_COULD_BE_EMPTY 0x80000000u
|
|
#define GI_COULD_BE_EMPTY 0x40000000u
|
|
#define GI_NOT_FIXED_LENGTH 0x20000000u
|
|
#define GI_SET_FIXED_LENGTH 0x10000000u
|
|
#define GI_FIXED_LENGTH_MASK 0x0000ffffu
|
|
|
|
/* This bit (which is greater than any UTF value) is used to indicate that a
|
|
variable contains a number of code units instead of an actual code point. */
|
|
|
|
#define UTF_LENGTH 0x10000000l
|
|
|
|
/* This simple test for a decimal digit works for both ASCII/Unicode and EBCDIC
|
|
and is fast (a good compiler can turn it into a subtraction and unsigned
|
|
comparison). */
|
|
|
|
#define IS_DIGIT(x) ((x) >= CHAR_0 && (x) <= CHAR_9)
|
|
|
|
/* Table to identify hex digits. The tables in chartables are dependent on the
|
|
locale, and may mark arbitrary characters as digits. We want to recognize only
|
|
0-9, a-z, and A-Z as hex digits, which is why we have a private table here. It
|
|
costs 256 bytes, but it is a lot faster than doing character value tests (at
|
|
least in some simple cases I timed), and in some applications one wants PCRE to
|
|
compile efficiently as well as match efficiently. The value in the table is
|
|
the binary hex digit value, or 0xff for non-hex digits. */
|
|
|
|
/* This is the "normal" case, for ASCII systems, and EBCDIC systems running in
|
|
UTF-8 mode. */
|
|
|
|
#ifndef EBCDIC
|
|
static const uint8_t xdigitab[] =
|
|
{
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 0- 7 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 8- 15 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 16- 23 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 24- 31 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* - ' */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* ( - / */
|
|
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, /* 0 - 7 */
|
|
0x08,0x09,0xff,0xff,0xff,0xff,0xff,0xff, /* 8 - ? */
|
|
0xff,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0xff, /* @ - G */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* H - O */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* P - W */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* X - _ */
|
|
0xff,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0xff, /* ` - g */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* h - o */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* p - w */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* x -127 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 128-135 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 136-143 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 144-151 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 152-159 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 160-167 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 168-175 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 176-183 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 184-191 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 192-199 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 2ff-207 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 208-215 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 216-223 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 224-231 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 232-239 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 240-247 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff};/* 248-255 */
|
|
|
|
#else
|
|
|
|
/* This is the "abnormal" case, for EBCDIC systems not running in UTF-8 mode. */
|
|
|
|
static const uint8_t xdigitab[] =
|
|
{
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 0- 7 0 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 8- 15 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 16- 23 10 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 24- 31 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 32- 39 20 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 40- 47 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 48- 55 30 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 56- 63 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* - 71 40 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 72- | */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* & - 87 50 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 88- 95 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* - -103 60 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 104- ? */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 112-119 70 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 120- " */
|
|
0xff,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0xff, /* 128- g 80 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* h -143 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 144- p 90 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* q -159 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 160- x A0 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* y -175 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* ^ -183 B0 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* 184-191 */
|
|
0xff,0x0a,0x0b,0x0c,0x0d,0x0e,0x0f,0xff, /* { - G C0 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* H -207 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* } - P D0 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* Q -223 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* \ - X E0 */
|
|
0xff,0xff,0xff,0xff,0xff,0xff,0xff,0xff, /* Y -239 */
|
|
0x00,0x01,0x02,0x03,0x04,0x05,0x06,0x07, /* 0 - 7 F0 */
|
|
0x08,0x09,0xff,0xff,0xff,0xff,0xff,0xff};/* 8 -255 */
|
|
#endif /* EBCDIC */
|
|
|
|
|
|
/* Table for handling alphanumeric escaped characters. Positive returns are
|
|
simple data values; negative values are for special things like \d and so on.
|
|
Zero means further processing is needed (for things like \x), or the escape is
|
|
invalid. */
|
|
|
|
/* This is the "normal" table for ASCII systems or for EBCDIC systems running
|
|
in UTF-8 mode. It runs from '0' to 'z'. */
|
|
|
|
#ifndef EBCDIC
|
|
#define ESCAPES_FIRST CHAR_0
|
|
#define ESCAPES_LAST CHAR_z
|
|
#define UPPER_CASE(c) (c-32)
|
|
|
|
static const short int escapes[] = {
|
|
0, 0,
|
|
0, 0,
|
|
0, 0,
|
|
0, 0,
|
|
0, 0,
|
|
CHAR_COLON, CHAR_SEMICOLON,
|
|
CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN,
|
|
CHAR_GREATER_THAN_SIGN, CHAR_QUESTION_MARK,
|
|
CHAR_COMMERCIAL_AT, -ESC_A,
|
|
-ESC_B, -ESC_C,
|
|
-ESC_D, -ESC_E,
|
|
0, -ESC_G,
|
|
-ESC_H, 0,
|
|
0, -ESC_K,
|
|
0, 0,
|
|
-ESC_N, 0,
|
|
-ESC_P, -ESC_Q,
|
|
-ESC_R, -ESC_S,
|
|
0, 0,
|
|
-ESC_V, -ESC_W,
|
|
-ESC_X, 0,
|
|
-ESC_Z, CHAR_LEFT_SQUARE_BRACKET,
|
|
CHAR_BACKSLASH, CHAR_RIGHT_SQUARE_BRACKET,
|
|
CHAR_CIRCUMFLEX_ACCENT, CHAR_UNDERSCORE,
|
|
CHAR_GRAVE_ACCENT, ESC_a,
|
|
-ESC_b, 0,
|
|
-ESC_d, ESC_e,
|
|
ESC_f, 0,
|
|
-ESC_h, 0,
|
|
0, -ESC_k,
|
|
0, 0,
|
|
ESC_n, 0,
|
|
-ESC_p, 0,
|
|
ESC_r, -ESC_s,
|
|
ESC_tee, 0,
|
|
-ESC_v, -ESC_w,
|
|
0, 0,
|
|
-ESC_z
|
|
};
|
|
|
|
#else
|
|
|
|
/* This is the "abnormal" table for EBCDIC systems without UTF-8 support.
|
|
It runs from 'a' to '9'. For some minimal testing of EBCDIC features, the code
|
|
is sometimes compiled on an ASCII system. In this case, we must not use CHAR_a
|
|
because it is defined as 'a', which of course picks up the ASCII value. */
|
|
|
|
#if 'a' == 0x81 /* Check for a real EBCDIC environment */
|
|
#define ESCAPES_FIRST CHAR_a
|
|
#define ESCAPES_LAST CHAR_9
|
|
#define UPPER_CASE(c) (c+64)
|
|
#else /* Testing in an ASCII environment */
|
|
#define ESCAPES_FIRST ((unsigned char)'\x81') /* EBCDIC 'a' */
|
|
#define ESCAPES_LAST ((unsigned char)'\xf9') /* EBCDIC '9' */
|
|
#define UPPER_CASE(c) (c-32)
|
|
#endif
|
|
|
|
static const short int escapes[] = {
|
|
/* 80 */ ESC_a, -ESC_b, 0, -ESC_d, ESC_e, ESC_f, 0,
|
|
/* 88 */-ESC_h, 0, 0, '{', 0, 0, 0, 0,
|
|
/* 90 */ 0, 0, -ESC_k, 0, 0, ESC_n, 0, -ESC_p,
|
|
/* 98 */ 0, ESC_r, 0, '}', 0, 0, 0, 0,
|
|
/* A0 */ 0, '~', -ESC_s, ESC_tee, 0,-ESC_v, -ESC_w, 0,
|
|
/* A8 */ 0,-ESC_z, 0, 0, 0, '[', 0, 0,
|
|
/* B0 */ 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* B8 */ 0, 0, 0, 0, 0, ']', '=', '-',
|
|
/* C0 */ '{',-ESC_A, -ESC_B, -ESC_C, -ESC_D,-ESC_E, 0, -ESC_G,
|
|
/* C8 */-ESC_H, 0, 0, 0, 0, 0, 0, 0,
|
|
/* D0 */ '}', 0, -ESC_K, 0, 0,-ESC_N, 0, -ESC_P,
|
|
/* D8 */-ESC_Q,-ESC_R, 0, 0, 0, 0, 0, 0,
|
|
/* E0 */ '\\', 0, -ESC_S, 0, 0,-ESC_V, -ESC_W, -ESC_X,
|
|
/* E8 */ 0,-ESC_Z, 0, 0, 0, 0, 0, 0,
|
|
/* F0 */ 0, 0, 0, 0, 0, 0, 0, 0,
|
|
/* F8 */ 0, 0
|
|
};
|
|
|
|
/* We also need a table of characters that may follow \c in an EBCDIC
|
|
environment for characters 0-31. */
|
|
|
|
static unsigned char ebcdic_escape_c[] = "@ABCDEFGHIJKLMNOPQRSTUVWXYZ[\\]^_";
|
|
|
|
#endif /* EBCDIC */
|
|
|
|
|
|
/* Table of special "verbs" like (*PRUNE). This is a short table, so it is
|
|
searched linearly. Put all the names into a single string, in order to reduce
|
|
the number of relocations when a shared library is dynamically linked. The
|
|
string is built from string macros so that it works in UTF-8 mode on EBCDIC
|
|
platforms. */
|
|
|
|
typedef struct verbitem {
|
|
int len; /* Length of verb name */
|
|
int op; /* Op when no arg, or -1 if arg mandatory */
|
|
int op_arg; /* Op when arg present, or -1 if not allowed */
|
|
} verbitem;
|
|
|
|
static const char verbnames[] =
|
|
"\0" /* Empty name is a shorthand for MARK */
|
|
STRING_MARK0
|
|
STRING_ACCEPT0
|
|
STRING_COMMIT0
|
|
STRING_F0
|
|
STRING_FAIL0
|
|
STRING_PRUNE0
|
|
STRING_SKIP0
|
|
STRING_THEN;
|
|
|
|
static const verbitem verbs[] = {
|
|
{ 0, -1, OP_MARK },
|
|
{ 4, -1, OP_MARK },
|
|
{ 6, OP_ACCEPT, -1 },
|
|
{ 6, OP_COMMIT, -1 },
|
|
{ 1, OP_FAIL, -1 },
|
|
{ 4, OP_FAIL, -1 },
|
|
{ 5, OP_PRUNE, OP_PRUNE_ARG },
|
|
{ 4, OP_SKIP, OP_SKIP_ARG },
|
|
{ 4, OP_THEN, OP_THEN_ARG }
|
|
};
|
|
|
|
static const int verbcount = sizeof(verbs)/sizeof(verbitem);
|
|
|
|
|
|
/* Substitutes for [[:<:]] and [[:>:]], which mean start and end of word in
|
|
another regex library. */
|
|
|
|
static const PCRE2_UCHAR sub_start_of_word[] = {
|
|
CHAR_BACKSLASH, CHAR_b, CHAR_LEFT_PARENTHESIS, CHAR_QUESTION_MARK,
|
|
CHAR_EQUALS_SIGN, CHAR_BACKSLASH, CHAR_w, CHAR_RIGHT_PARENTHESIS, '\0' };
|
|
|
|
static const PCRE2_UCHAR sub_end_of_word[] = {
|
|
CHAR_BACKSLASH, CHAR_b, CHAR_LEFT_PARENTHESIS, CHAR_QUESTION_MARK,
|
|
CHAR_LESS_THAN_SIGN, CHAR_EQUALS_SIGN, CHAR_BACKSLASH, CHAR_w,
|
|
CHAR_RIGHT_PARENTHESIS, '\0' };
|
|
|
|
|
|
/* Tables of names of POSIX character classes and their lengths. The names are
|
|
now all in a single string, to reduce the number of relocations when a shared
|
|
library is dynamically loaded. The list of lengths is terminated by a zero
|
|
length entry. The first three must be alpha, lower, upper, as this is assumed
|
|
for handling case independence. The indices for graph, print, and punct are
|
|
needed, so identify them. */
|
|
|
|
static const char posix_names[] =
|
|
STRING_alpha0 STRING_lower0 STRING_upper0 STRING_alnum0
|
|
STRING_ascii0 STRING_blank0 STRING_cntrl0 STRING_digit0
|
|
STRING_graph0 STRING_print0 STRING_punct0 STRING_space0
|
|
STRING_word0 STRING_xdigit;
|
|
|
|
static const uint8_t posix_name_lengths[] = {
|
|
5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 4, 6, 0 };
|
|
|
|
#define PC_GRAPH 8
|
|
#define PC_PRINT 9
|
|
#define PC_PUNCT 10
|
|
|
|
|
|
/* Table of class bit maps for each POSIX class. Each class is formed from a
|
|
base map, with an optional addition or removal of another map. Then, for some
|
|
classes, there is some additional tweaking: for [:blank:] the vertical space
|
|
characters are removed, and for [:alpha:] and [:alnum:] the underscore
|
|
character is removed. The triples in the table consist of the base map offset,
|
|
second map offset or -1 if no second map, and a non-negative value for map
|
|
addition or a negative value for map subtraction (if there are two maps). The
|
|
absolute value of the third field has these meanings: 0 => no tweaking, 1 =>
|
|
remove vertical space characters, 2 => remove underscore. */
|
|
|
|
static const int posix_class_maps[] = {
|
|
cbit_word, cbit_digit, -2, /* alpha */
|
|
cbit_lower, -1, 0, /* lower */
|
|
cbit_upper, -1, 0, /* upper */
|
|
cbit_word, -1, 2, /* alnum - word without underscore */
|
|
cbit_print, cbit_cntrl, 0, /* ascii */
|
|
cbit_space, -1, 1, /* blank - a GNU extension */
|
|
cbit_cntrl, -1, 0, /* cntrl */
|
|
cbit_digit, -1, 0, /* digit */
|
|
cbit_graph, -1, 0, /* graph */
|
|
cbit_print, -1, 0, /* print */
|
|
cbit_punct, -1, 0, /* punct */
|
|
cbit_space, -1, 0, /* space */
|
|
cbit_word, -1, 0, /* word - a Perl extension */
|
|
cbit_xdigit,-1, 0 /* xdigit */
|
|
};
|
|
|
|
/* Table of substitutes for \d etc when PCRE2_UCP is set. They are replaced by
|
|
Unicode property escapes. */
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
static const PCRE2_UCHAR string_PNd[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_pNd[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_N, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_PXsp[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_pXsp[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_s, CHAR_p, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_PXwd[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_pXwd[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_w, CHAR_d, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
|
|
static PCRE2_SPTR substitutes[] = {
|
|
string_PNd, /* \D */
|
|
string_pNd, /* \d */
|
|
string_PXsp, /* \S */ /* Xsp is Perl space, but from 8.34, Perl */
|
|
string_pXsp, /* \s */ /* space and POSIX space are the same. */
|
|
string_PXwd, /* \W */
|
|
string_pXwd /* \w */
|
|
};
|
|
|
|
/* The POSIX class substitutes must be in the order of the POSIX class names,
|
|
defined above, and there are both positive and negative cases. NULL means no
|
|
general substitute of a Unicode property escape (\p or \P). However, for some
|
|
POSIX classes (e.g. graph, print, punct) a special property code is compiled
|
|
directly. */
|
|
|
|
static const PCRE2_UCHAR string_pCc[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_C, CHAR_c, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_pL[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_pLl[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_pLu[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_pXan[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_h[] = {
|
|
CHAR_BACKSLASH, CHAR_h, '\0' };
|
|
static const PCRE2_UCHAR string_pXps[] = {
|
|
CHAR_BACKSLASH, CHAR_p, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_PCc[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_C, CHAR_c, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_PL[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_PLl[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_l, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_PLu[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_L, CHAR_u, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_PXan[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_a, CHAR_n, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
static const PCRE2_UCHAR string_H[] = {
|
|
CHAR_BACKSLASH, CHAR_H, '\0' };
|
|
static const PCRE2_UCHAR string_PXps[] = {
|
|
CHAR_BACKSLASH, CHAR_P, CHAR_LEFT_CURLY_BRACKET,
|
|
CHAR_X, CHAR_p, CHAR_s, CHAR_RIGHT_CURLY_BRACKET, '\0' };
|
|
|
|
static PCRE2_SPTR posix_substitutes[] = {
|
|
string_pL, /* alpha */
|
|
string_pLl, /* lower */
|
|
string_pLu, /* upper */
|
|
string_pXan, /* alnum */
|
|
NULL, /* ascii */
|
|
string_h, /* blank */
|
|
string_pCc, /* cntrl */
|
|
string_pNd, /* digit */
|
|
NULL, /* graph */
|
|
NULL, /* print */
|
|
NULL, /* punct */
|
|
string_pXps, /* space */ /* Xps is POSIX space, but from 8.34 */
|
|
string_pXwd, /* word */ /* Perl and POSIX space are the same */
|
|
NULL, /* xdigit */
|
|
/* Negated cases */
|
|
string_PL, /* ^alpha */
|
|
string_PLl, /* ^lower */
|
|
string_PLu, /* ^upper */
|
|
string_PXan, /* ^alnum */
|
|
NULL, /* ^ascii */
|
|
string_H, /* ^blank */
|
|
string_PCc, /* ^cntrl */
|
|
string_PNd, /* ^digit */
|
|
NULL, /* ^graph */
|
|
NULL, /* ^print */
|
|
NULL, /* ^punct */
|
|
string_PXps, /* ^space */ /* Xps is POSIX space, but from 8.34 */
|
|
string_PXwd, /* ^word */ /* Perl and POSIX space are the same */
|
|
NULL /* ^xdigit */
|
|
};
|
|
#define POSIX_SUBSIZE (sizeof(posix_substitutes) / sizeof(PCRE2_UCHAR *))
|
|
#endif /* SUPPORT_UNICODE */
|
|
|
|
/* Masks for checking option settings. */
|
|
|
|
#define PUBLIC_COMPILE_OPTIONS \
|
|
(PCRE2_ANCHORED|PCRE2_ALLOW_EMPTY_CLASS|PCRE2_ALT_BSUX|PCRE2_ALT_CIRCUMFLEX| \
|
|
PCRE2_ALT_VERBNAMES|PCRE2_AUTO_CALLOUT|PCRE2_CASELESS|PCRE2_DOLLAR_ENDONLY| \
|
|
PCRE2_DOTALL|PCRE2_DUPNAMES|PCRE2_EXTENDED|PCRE2_FIRSTLINE| \
|
|
PCRE2_MATCH_UNSET_BACKREF|PCRE2_MULTILINE|PCRE2_NEVER_BACKSLASH_C| \
|
|
PCRE2_NEVER_UCP|PCRE2_NEVER_UTF|PCRE2_NO_AUTO_CAPTURE| \
|
|
PCRE2_NO_AUTO_POSSESS|PCRE2_NO_DOTSTAR_ANCHOR|PCRE2_NO_START_OPTIMIZE| \
|
|
PCRE2_NO_UTF_CHECK|PCRE2_UCP|PCRE2_UNGREEDY|PCRE2_USE_OFFSET_LIMIT| \
|
|
PCRE2_UTF)
|
|
|
|
/* Compile time error code numbers. They are given names so that they can more
|
|
easily be tracked. When a new number is added, the tables called eint1 and
|
|
eint2 in pcre2posix.c may need to be updated, and a new error text must be
|
|
added to compile_error_texts in pcre2_error.c. */
|
|
|
|
enum { ERR0 = COMPILE_ERROR_BASE,
|
|
ERR1, ERR2, ERR3, ERR4, ERR5, ERR6, ERR7, ERR8, ERR9, ERR10,
|
|
ERR11, ERR12, ERR13, ERR14, ERR15, ERR16, ERR17, ERR18, ERR19, ERR20,
|
|
ERR21, ERR22, ERR23, ERR24, ERR25, ERR26, ERR27, ERR28, ERR29, ERR30,
|
|
ERR31, ERR32, ERR33, ERR34, ERR35, ERR36, ERR37, ERR38, ERR39, ERR40,
|
|
ERR41, ERR42, ERR43, ERR44, ERR45, ERR46, ERR47, ERR48, ERR49, ERR50,
|
|
ERR51, ERR52, ERR53, ERR54, ERR55, ERR56, ERR57, ERR58, ERR59, ERR60,
|
|
ERR61, ERR62, ERR63, ERR64, ERR65, ERR66, ERR67, ERR68, ERR69, ERR70,
|
|
ERR71, ERR72, ERR73, ERR74, ERR75, ERR76, ERR77, ERR78, ERR79, ERR80,
|
|
ERR81, ERR82, ERR83, ERR84, ERR85, ERR86, ERR87, ERR88 };
|
|
|
|
/* Error codes that correspond to negative error codes returned by
|
|
find_fixedlength(). */
|
|
|
|
static int fixed_length_errors[] =
|
|
{
|
|
ERR0, /* Not an error */
|
|
ERR0, /* Not an error; -1 is used for "process later" */
|
|
ERR25, /* Lookbehind is not fixed length */
|
|
ERR36, /* \C in lookbehind is not allowed */
|
|
ERR87, /* Lookbehind is too long */
|
|
ERR86, /* Pattern too complicated */
|
|
ERR70 /* Internal error: unknown opcode encountered */
|
|
};
|
|
|
|
/* This is a table of start-of-pattern options such as (*UTF) and settings such
|
|
as (*LIMIT_MATCH=nnnn) and (*CRLF). For completeness and backward
|
|
compatibility, (*UTFn) is supported in the relevant libraries, but (*UTF) is
|
|
generic and always supported. */
|
|
|
|
enum { PSO_OPT, /* Value is an option bit */
|
|
PSO_FLG, /* Value is a flag bit */
|
|
PSO_NL, /* Value is a newline type */
|
|
PSO_BSR, /* Value is a \R type */
|
|
PSO_LIMM, /* Read integer value for match limit */
|
|
PSO_LIMR }; /* Read integer value for recursion limit */
|
|
|
|
typedef struct pso {
|
|
const uint8_t *name;
|
|
uint16_t length;
|
|
uint16_t type;
|
|
uint32_t value;
|
|
} pso;
|
|
|
|
/* NB: STRING_UTFn_RIGHTPAR contains the length as well */
|
|
|
|
static pso pso_list[] = {
|
|
{ (uint8_t *)STRING_UTFn_RIGHTPAR, PSO_OPT, PCRE2_UTF },
|
|
{ (uint8_t *)STRING_UTF_RIGHTPAR, 4, PSO_OPT, PCRE2_UTF },
|
|
{ (uint8_t *)STRING_UCP_RIGHTPAR, 4, PSO_OPT, PCRE2_UCP },
|
|
{ (uint8_t *)STRING_NOTEMPTY_RIGHTPAR, 9, PSO_FLG, PCRE2_NOTEMPTY_SET },
|
|
{ (uint8_t *)STRING_NOTEMPTY_ATSTART_RIGHTPAR, 17, PSO_FLG, PCRE2_NE_ATST_SET },
|
|
{ (uint8_t *)STRING_NO_AUTO_POSSESS_RIGHTPAR, 16, PSO_OPT, PCRE2_NO_AUTO_POSSESS },
|
|
{ (uint8_t *)STRING_NO_DOTSTAR_ANCHOR_RIGHTPAR, 18, PSO_OPT, PCRE2_NO_DOTSTAR_ANCHOR },
|
|
{ (uint8_t *)STRING_NO_JIT_RIGHTPAR, 7, PSO_FLG, PCRE2_NOJIT },
|
|
{ (uint8_t *)STRING_NO_START_OPT_RIGHTPAR, 13, PSO_OPT, PCRE2_NO_START_OPTIMIZE },
|
|
{ (uint8_t *)STRING_LIMIT_MATCH_EQ, 12, PSO_LIMM, 0 },
|
|
{ (uint8_t *)STRING_LIMIT_RECURSION_EQ, 16, PSO_LIMR, 0 },
|
|
{ (uint8_t *)STRING_CR_RIGHTPAR, 3, PSO_NL, PCRE2_NEWLINE_CR },
|
|
{ (uint8_t *)STRING_LF_RIGHTPAR, 3, PSO_NL, PCRE2_NEWLINE_LF },
|
|
{ (uint8_t *)STRING_CRLF_RIGHTPAR, 5, PSO_NL, PCRE2_NEWLINE_CRLF },
|
|
{ (uint8_t *)STRING_ANY_RIGHTPAR, 4, PSO_NL, PCRE2_NEWLINE_ANY },
|
|
{ (uint8_t *)STRING_ANYCRLF_RIGHTPAR, 8, PSO_NL, PCRE2_NEWLINE_ANYCRLF },
|
|
{ (uint8_t *)STRING_BSR_ANYCRLF_RIGHTPAR, 12, PSO_BSR, PCRE2_BSR_ANYCRLF },
|
|
{ (uint8_t *)STRING_BSR_UNICODE_RIGHTPAR, 12, PSO_BSR, PCRE2_BSR_UNICODE }
|
|
};
|
|
|
|
/* This table is used when converting repeating opcodes into possessified
|
|
versions as a result of an explicit possessive quantifier such as ++. A zero
|
|
value means there is no possessified version - in those cases the item in
|
|
question must be wrapped in ONCE brackets. The table is truncated at OP_CALLOUT
|
|
because all relevant opcodes are less than that. */
|
|
|
|
static const uint8_t opcode_possessify[] = {
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 0 - 15 */
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, /* 16 - 31 */
|
|
|
|
0, /* NOTI */
|
|
OP_POSSTAR, 0, /* STAR, MINSTAR */
|
|
OP_POSPLUS, 0, /* PLUS, MINPLUS */
|
|
OP_POSQUERY, 0, /* QUERY, MINQUERY */
|
|
OP_POSUPTO, 0, /* UPTO, MINUPTO */
|
|
0, /* EXACT */
|
|
0, 0, 0, 0, /* POS{STAR,PLUS,QUERY,UPTO} */
|
|
|
|
OP_POSSTARI, 0, /* STARI, MINSTARI */
|
|
OP_POSPLUSI, 0, /* PLUSI, MINPLUSI */
|
|
OP_POSQUERYI, 0, /* QUERYI, MINQUERYI */
|
|
OP_POSUPTOI, 0, /* UPTOI, MINUPTOI */
|
|
0, /* EXACTI */
|
|
0, 0, 0, 0, /* POS{STARI,PLUSI,QUERYI,UPTOI} */
|
|
|
|
OP_NOTPOSSTAR, 0, /* NOTSTAR, NOTMINSTAR */
|
|
OP_NOTPOSPLUS, 0, /* NOTPLUS, NOTMINPLUS */
|
|
OP_NOTPOSQUERY, 0, /* NOTQUERY, NOTMINQUERY */
|
|
OP_NOTPOSUPTO, 0, /* NOTUPTO, NOTMINUPTO */
|
|
0, /* NOTEXACT */
|
|
0, 0, 0, 0, /* NOTPOS{STAR,PLUS,QUERY,UPTO} */
|
|
|
|
OP_NOTPOSSTARI, 0, /* NOTSTARI, NOTMINSTARI */
|
|
OP_NOTPOSPLUSI, 0, /* NOTPLUSI, NOTMINPLUSI */
|
|
OP_NOTPOSQUERYI, 0, /* NOTQUERYI, NOTMINQUERYI */
|
|
OP_NOTPOSUPTOI, 0, /* NOTUPTOI, NOTMINUPTOI */
|
|
0, /* NOTEXACTI */
|
|
0, 0, 0, 0, /* NOTPOS{STARI,PLUSI,QUERYI,UPTOI} */
|
|
|
|
OP_TYPEPOSSTAR, 0, /* TYPESTAR, TYPEMINSTAR */
|
|
OP_TYPEPOSPLUS, 0, /* TYPEPLUS, TYPEMINPLUS */
|
|
OP_TYPEPOSQUERY, 0, /* TYPEQUERY, TYPEMINQUERY */
|
|
OP_TYPEPOSUPTO, 0, /* TYPEUPTO, TYPEMINUPTO */
|
|
0, /* TYPEEXACT */
|
|
0, 0, 0, 0, /* TYPEPOS{STAR,PLUS,QUERY,UPTO} */
|
|
|
|
OP_CRPOSSTAR, 0, /* CRSTAR, CRMINSTAR */
|
|
OP_CRPOSPLUS, 0, /* CRPLUS, CRMINPLUS */
|
|
OP_CRPOSQUERY, 0, /* CRQUERY, CRMINQUERY */
|
|
OP_CRPOSRANGE, 0, /* CRRANGE, CRMINRANGE */
|
|
0, 0, 0, 0, /* CRPOS{STAR,PLUS,QUERY,RANGE} */
|
|
|
|
0, 0, 0, /* CLASS, NCLASS, XCLASS */
|
|
0, 0, /* REF, REFI */
|
|
0, 0, /* DNREF, DNREFI */
|
|
0, 0 /* RECURSE, CALLOUT */
|
|
};
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Free compiled code *
|
|
*************************************************/
|
|
|
|
PCRE2_EXP_DEFN void PCRE2_CALL_CONVENTION
|
|
pcre2_code_free(pcre2_code *code)
|
|
{
|
|
PCRE2_SIZE* ref_count;
|
|
|
|
if (code != NULL)
|
|
{
|
|
if (code->executable_jit != NULL)
|
|
PRIV(jit_free)(code->executable_jit, &code->memctl);
|
|
|
|
if ((code->flags & PCRE2_DEREF_TABLES) != 0)
|
|
{
|
|
/* Decoded tables belong to the codes after deserialization, and they must
|
|
be freed when there are no more reference to them. The *ref_count should
|
|
always be > 0. */
|
|
|
|
ref_count = (PCRE2_SIZE *)(code->tables + tables_length);
|
|
if (*ref_count > 0)
|
|
{
|
|
(*ref_count)--;
|
|
if (*ref_count == 0)
|
|
code->memctl.free((void *)code->tables, code->memctl.memory_data);
|
|
}
|
|
}
|
|
|
|
code->memctl.free(code, code->memctl.memory_data);
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Insert an automatic callout point *
|
|
*************************************************/
|
|
|
|
/* This function is called when the PCRE2_AUTO_CALLOUT option is set, to insert
|
|
callout points before each pattern item.
|
|
|
|
Arguments:
|
|
code current code pointer
|
|
ptr current pattern pointer
|
|
cb general compile-time data
|
|
|
|
Returns: new code pointer
|
|
*/
|
|
|
|
static PCRE2_UCHAR *
|
|
auto_callout(PCRE2_UCHAR *code, PCRE2_SPTR ptr, compile_block *cb)
|
|
{
|
|
code[0] = OP_CALLOUT;
|
|
PUT(code, 1, ptr - cb->start_pattern); /* Pattern offset */
|
|
PUT(code, 1 + LINK_SIZE, 0); /* Default length */
|
|
code[1 + 2*LINK_SIZE] = 255;
|
|
return code + PRIV(OP_lengths)[OP_CALLOUT];
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Complete a callout item *
|
|
*************************************************/
|
|
|
|
/* A callout item contains the length of the next item in the pattern, which
|
|
we can't fill in till after we have reached the relevant point. This is used
|
|
for both automatic and manual callouts.
|
|
|
|
Arguments:
|
|
previous_callout points to previous callout item
|
|
ptr current pattern pointer
|
|
cb general compile-time data
|
|
|
|
Returns: nothing
|
|
*/
|
|
|
|
static void
|
|
complete_callout(PCRE2_UCHAR *previous_callout, PCRE2_SPTR ptr,
|
|
compile_block *cb)
|
|
{
|
|
size_t length = ptr - cb->start_pattern - GET(previous_callout, 1);
|
|
PUT(previous_callout, 1 + LINK_SIZE, length);
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Find the fixed length of a branch *
|
|
*************************************************/
|
|
|
|
/* Scan a branch and compute the fixed length of subject that will match it, if
|
|
the length is fixed. This is needed for dealing with lookbehind assertions. In
|
|
UTF mode, the result is in code units rather than bytes. The branch is
|
|
temporarily terminated with OP_END when this function is called.
|
|
|
|
This function is called when a lookbehind assertion is encountered, so that if
|
|
it fails, the error message can point to the correct place in the pattern.
|
|
However, we cannot do this when the assertion contains subroutine calls,
|
|
because they can be forward references. We solve this by remembering this case
|
|
and doing the check at the end; a flag specifies which mode we are running in.
|
|
|
|
Lookbehind lengths are held in 16-bit fields and the maximum value is defined
|
|
as LOOKBEHIND_MAX.
|
|
|
|
Arguments:
|
|
code points to the start of the pattern (the bracket)
|
|
utf TRUE in UTF mode
|
|
atend TRUE if called when the pattern is complete
|
|
cb the "compile data" structure
|
|
recurses chain of recurse_check to catch mutual recursion
|
|
countptr pointer to counter, to catch over-complexity
|
|
|
|
Returns: if non-negative, the fixed length,
|
|
or -1 if an OP_RECURSE item was encountered and atend is FALSE
|
|
or -2 if there is no fixed length,
|
|
or -3 if \C was encountered (in UTF-8 mode only)
|
|
or -4 length is too long
|
|
or -5 if an unknown opcode was encountered (internal error)
|
|
*/
|
|
|
|
#define FFL_LATER (-1)
|
|
#define FFL_NOTFIXED (-2)
|
|
#define FFL_BACKSLASHC (-3)
|
|
#define FFL_TOOLONG (-4)
|
|
#define FFL_TOOCOMPLICATED (-5)
|
|
#define FFL_UNKNOWNOP (-6)
|
|
|
|
static int
|
|
find_fixedlength(PCRE2_UCHAR *code, BOOL utf, BOOL atend, compile_block *cb,
|
|
recurse_check *recurses, int *countptr)
|
|
{
|
|
int length = -1;
|
|
uint32_t group = 0;
|
|
uint32_t groupinfo = 0;
|
|
recurse_check this_recurse;
|
|
register int branchlength = 0;
|
|
register PCRE2_UCHAR *cc = code + 1 + LINK_SIZE;
|
|
|
|
/* If this is a capturing group, we may have the answer cached, but we can only
|
|
use this information if there are no (?| groups in the pattern, because
|
|
otherwise group numbers are not unique. */
|
|
|
|
if (*code == OP_CBRA || *code == OP_CBRAPOS || *code == OP_SCBRA ||
|
|
*code == OP_SCBRAPOS)
|
|
{
|
|
group = GET2(cc, 0);
|
|
cc += IMM2_SIZE;
|
|
groupinfo = cb->groupinfo[group];
|
|
if ((cb->external_flags & PCRE2_DUPCAPUSED) == 0)
|
|
{
|
|
if ((groupinfo & GI_NOT_FIXED_LENGTH) != 0) return FFL_NOTFIXED;
|
|
if ((groupinfo & GI_SET_FIXED_LENGTH) != 0)
|
|
return groupinfo & GI_FIXED_LENGTH_MASK;
|
|
}
|
|
}
|
|
|
|
/* A large and/or complex regex can take too long to process. This can happen
|
|
more often when (?| groups are present in the pattern. */
|
|
|
|
if ((*countptr)++ > 2000) return FFL_TOOCOMPLICATED;
|
|
|
|
/* Scan along the opcodes for this branch. If we get to the end of the
|
|
branch, check the length against that of the other branches. */
|
|
|
|
for (;;)
|
|
{
|
|
int d;
|
|
PCRE2_UCHAR *ce, *cs;
|
|
register PCRE2_UCHAR op = *cc;
|
|
|
|
if (branchlength > LOOKBEHIND_MAX) return FFL_TOOLONG;
|
|
|
|
switch (op)
|
|
{
|
|
/* We only need to continue for OP_CBRA (normal capturing bracket) and
|
|
OP_BRA (normal non-capturing bracket) because the other variants of these
|
|
opcodes are all concerned with unlimited repeated groups, which of course
|
|
are not of fixed length. */
|
|
|
|
case OP_CBRA:
|
|
case OP_BRA:
|
|
case OP_ONCE:
|
|
case OP_ONCE_NC:
|
|
case OP_COND:
|
|
d = find_fixedlength(cc, utf, atend, cb, recurses, countptr);
|
|
if (d < 0) return d;
|
|
branchlength += d;
|
|
do cc += GET(cc, 1); while (*cc == OP_ALT);
|
|
cc += 1 + LINK_SIZE;
|
|
break;
|
|
|
|
/* Reached end of a branch; if it's a ket it is the end of a nested call.
|
|
If it's ALT it is an alternation in a nested call. An ACCEPT is effectively
|
|
an ALT. If it is END it's the end of the outer call. All can be handled by
|
|
the same code. Note that we must not include the OP_KETRxxx opcodes here,
|
|
because they all imply an unlimited repeat. */
|
|
|
|
case OP_ALT:
|
|
case OP_KET:
|
|
case OP_END:
|
|
case OP_ACCEPT:
|
|
case OP_ASSERT_ACCEPT:
|
|
if (length < 0) length = branchlength;
|
|
else if (length != branchlength) goto ISNOTFIXED;
|
|
if (*cc != OP_ALT)
|
|
{
|
|
if (group > 0)
|
|
{
|
|
groupinfo |= (GI_SET_FIXED_LENGTH | length);
|
|
cb->groupinfo[group] = groupinfo;
|
|
}
|
|
return length;
|
|
}
|
|
cc += 1 + LINK_SIZE;
|
|
branchlength = 0;
|
|
break;
|
|
|
|
/* A true recursion implies not fixed length, but a subroutine call may
|
|
be OK. If the subroutine is a forward reference, we can't deal with
|
|
it until the end of the pattern, so return FFL_LATER. */
|
|
|
|
case OP_RECURSE:
|
|
if (!atend) return FFL_LATER;
|
|
cs = ce = (PCRE2_UCHAR *)cb->start_code + GET(cc, 1); /* Start subpattern */
|
|
do ce += GET(ce, 1); while (*ce == OP_ALT); /* End subpattern */
|
|
if (cc > cs && cc < ce) goto ISNOTFIXED; /* Recursion */
|
|
else /* Check for mutual recursion */
|
|
{
|
|
recurse_check *r = recurses;
|
|
for (r = recurses; r != NULL; r = r->prev) if (r->group == cs) break;
|
|
if (r != NULL) goto ISNOTFIXED; /* Mutual recursion */
|
|
}
|
|
this_recurse.prev = recurses;
|
|
this_recurse.group = cs;
|
|
d = find_fixedlength(cs, utf, atend, cb, &this_recurse, countptr);
|
|
if (d < 0) return d;
|
|
branchlength += d;
|
|
cc += 1 + LINK_SIZE;
|
|
break;
|
|
|
|
/* Skip over assertive subpatterns. Note that we must increment cc by
|
|
1 + LINK_SIZE at the end, not by OP_length[*cc] because in a recursive
|
|
situation this assertion may be the one that is ultimately being checked
|
|
for having a fixed length, in which case its terminating OP_KET will have
|
|
been temporarily replaced by OP_END. */
|
|
|
|
case OP_ASSERT:
|
|
case OP_ASSERT_NOT:
|
|
case OP_ASSERTBACK:
|
|
case OP_ASSERTBACK_NOT:
|
|
do cc += GET(cc, 1); while (*cc == OP_ALT);
|
|
cc += 1 + LINK_SIZE;
|
|
break;
|
|
|
|
/* Skip over things that don't match chars */
|
|
|
|
case OP_MARK:
|
|
case OP_PRUNE_ARG:
|
|
case OP_SKIP_ARG:
|
|
case OP_THEN_ARG:
|
|
cc += cc[1] + PRIV(OP_lengths)[*cc];
|
|
break;
|
|
|
|
case OP_CALLOUT:
|
|
case OP_CIRC:
|
|
case OP_CIRCM:
|
|
case OP_CLOSE:
|
|
case OP_COMMIT:
|
|
case OP_CREF:
|
|
case OP_FALSE:
|
|
case OP_TRUE:
|
|
case OP_DNCREF:
|
|
case OP_DNRREF:
|
|
case OP_DOLL:
|
|
case OP_DOLLM:
|
|
case OP_EOD:
|
|
case OP_EODN:
|
|
case OP_FAIL:
|
|
case OP_NOT_WORD_BOUNDARY:
|
|
case OP_PRUNE:
|
|
case OP_REVERSE:
|
|
case OP_RREF:
|
|
case OP_SET_SOM:
|
|
case OP_SKIP:
|
|
case OP_SOD:
|
|
case OP_SOM:
|
|
case OP_THEN:
|
|
case OP_WORD_BOUNDARY:
|
|
cc += PRIV(OP_lengths)[*cc];
|
|
break;
|
|
|
|
case OP_CALLOUT_STR:
|
|
cc += GET(cc, 1 + 2*LINK_SIZE);
|
|
break;
|
|
|
|
/* Handle literal characters */
|
|
|
|
case OP_CHAR:
|
|
case OP_CHARI:
|
|
case OP_NOT:
|
|
case OP_NOTI:
|
|
branchlength++;
|
|
cc += 2;
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
|
|
#endif
|
|
break;
|
|
|
|
/* Handle exact repetitions. The count is already in characters, but we
|
|
need to skip over a multibyte character in UTF8 mode. */
|
|
|
|
case OP_EXACT:
|
|
case OP_EXACTI:
|
|
case OP_NOTEXACT:
|
|
case OP_NOTEXACTI:
|
|
branchlength += (int)GET2(cc,1);
|
|
cc += 2 + IMM2_SIZE;
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf && HAS_EXTRALEN(cc[-1])) cc += GET_EXTRALEN(cc[-1]);
|
|
#endif
|
|
break;
|
|
|
|
case OP_TYPEEXACT:
|
|
branchlength += GET2(cc,1);
|
|
if (cc[1 + IMM2_SIZE] == OP_PROP || cc[1 + IMM2_SIZE] == OP_NOTPROP)
|
|
cc += 2;
|
|
cc += 1 + IMM2_SIZE + 1;
|
|
break;
|
|
|
|
/* Handle single-char matchers */
|
|
|
|
case OP_PROP:
|
|
case OP_NOTPROP:
|
|
cc += 2;
|
|
/* Fall through */
|
|
|
|
case OP_HSPACE:
|
|
case OP_VSPACE:
|
|
case OP_NOT_HSPACE:
|
|
case OP_NOT_VSPACE:
|
|
case OP_NOT_DIGIT:
|
|
case OP_DIGIT:
|
|
case OP_NOT_WHITESPACE:
|
|
case OP_WHITESPACE:
|
|
case OP_NOT_WORDCHAR:
|
|
case OP_WORDCHAR:
|
|
case OP_ANY:
|
|
case OP_ALLANY:
|
|
branchlength++;
|
|
cc++;
|
|
break;
|
|
|
|
/* The single-byte matcher isn't allowed. This only happens in UTF-8 mode;
|
|
otherwise \C is coded as OP_ALLANY. */
|
|
|
|
case OP_ANYBYTE:
|
|
return FFL_BACKSLASHC;
|
|
|
|
/* Check a class for variable quantification */
|
|
|
|
case OP_CLASS:
|
|
case OP_NCLASS:
|
|
#ifdef SUPPORT_WIDE_CHARS
|
|
case OP_XCLASS:
|
|
/* The original code caused an unsigned overflow in 64 bit systems,
|
|
so now we use a conditional statement. */
|
|
if (op == OP_XCLASS)
|
|
cc += GET(cc, 1);
|
|
else
|
|
cc += PRIV(OP_lengths)[OP_CLASS];
|
|
#else
|
|
cc += PRIV(OP_lengths)[OP_CLASS];
|
|
#endif
|
|
|
|
switch (*cc)
|
|
{
|
|
case OP_CRSTAR:
|
|
case OP_CRMINSTAR:
|
|
case OP_CRPLUS:
|
|
case OP_CRMINPLUS:
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
case OP_CRPOSSTAR:
|
|
case OP_CRPOSPLUS:
|
|
case OP_CRPOSQUERY:
|
|
goto ISNOTFIXED;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
case OP_CRPOSRANGE:
|
|
if (GET2(cc,1) != GET2(cc,1+IMM2_SIZE)) goto ISNOTFIXED;
|
|
branchlength += (int)GET2(cc,1);
|
|
cc += 1 + 2 * IMM2_SIZE;
|
|
break;
|
|
|
|
default:
|
|
branchlength++;
|
|
}
|
|
break;
|
|
|
|
/* Anything else is variable length */
|
|
|
|
case OP_ANYNL:
|
|
case OP_BRAMINZERO:
|
|
case OP_BRAPOS:
|
|
case OP_BRAPOSZERO:
|
|
case OP_BRAZERO:
|
|
case OP_CBRAPOS:
|
|
case OP_EXTUNI:
|
|
case OP_KETRMAX:
|
|
case OP_KETRMIN:
|
|
case OP_KETRPOS:
|
|
case OP_MINPLUS:
|
|
case OP_MINPLUSI:
|
|
case OP_MINQUERY:
|
|
case OP_MINQUERYI:
|
|
case OP_MINSTAR:
|
|
case OP_MINSTARI:
|
|
case OP_MINUPTO:
|
|
case OP_MINUPTOI:
|
|
case OP_NOTMINPLUS:
|
|
case OP_NOTMINPLUSI:
|
|
case OP_NOTMINQUERY:
|
|
case OP_NOTMINQUERYI:
|
|
case OP_NOTMINSTAR:
|
|
case OP_NOTMINSTARI:
|
|
case OP_NOTMINUPTO:
|
|
case OP_NOTMINUPTOI:
|
|
case OP_NOTPLUS:
|
|
case OP_NOTPLUSI:
|
|
case OP_NOTPOSPLUS:
|
|
case OP_NOTPOSPLUSI:
|
|
case OP_NOTPOSQUERY:
|
|
case OP_NOTPOSQUERYI:
|
|
case OP_NOTPOSSTAR:
|
|
case OP_NOTPOSSTARI:
|
|
case OP_NOTPOSUPTO:
|
|
case OP_NOTPOSUPTOI:
|
|
case OP_NOTQUERY:
|
|
case OP_NOTQUERYI:
|
|
case OP_NOTSTAR:
|
|
case OP_NOTSTARI:
|
|
case OP_NOTUPTO:
|
|
case OP_NOTUPTOI:
|
|
case OP_PLUS:
|
|
case OP_PLUSI:
|
|
case OP_POSPLUS:
|
|
case OP_POSPLUSI:
|
|
case OP_POSQUERY:
|
|
case OP_POSQUERYI:
|
|
case OP_POSSTAR:
|
|
case OP_POSSTARI:
|
|
case OP_POSUPTO:
|
|
case OP_POSUPTOI:
|
|
case OP_QUERY:
|
|
case OP_QUERYI:
|
|
case OP_REF:
|
|
case OP_REFI:
|
|
case OP_DNREF:
|
|
case OP_DNREFI:
|
|
case OP_SBRA:
|
|
case OP_SBRAPOS:
|
|
case OP_SCBRA:
|
|
case OP_SCBRAPOS:
|
|
case OP_SCOND:
|
|
case OP_SKIPZERO:
|
|
case OP_STAR:
|
|
case OP_STARI:
|
|
case OP_TYPEMINPLUS:
|
|
case OP_TYPEMINQUERY:
|
|
case OP_TYPEMINSTAR:
|
|
case OP_TYPEMINUPTO:
|
|
case OP_TYPEPLUS:
|
|
case OP_TYPEPOSPLUS:
|
|
case OP_TYPEPOSQUERY:
|
|
case OP_TYPEPOSSTAR:
|
|
case OP_TYPEPOSUPTO:
|
|
case OP_TYPEQUERY:
|
|
case OP_TYPESTAR:
|
|
case OP_TYPEUPTO:
|
|
case OP_UPTO:
|
|
case OP_UPTOI:
|
|
goto ISNOTFIXED;
|
|
|
|
/* Catch unrecognized opcodes so that when new ones are added they
|
|
are not forgotten, as has happened in the past. */
|
|
|
|
default:
|
|
return FFL_UNKNOWNOP;
|
|
}
|
|
}
|
|
/* Control never gets here except by goto. */
|
|
|
|
ISNOTFIXED:
|
|
if (group > 0)
|
|
{
|
|
groupinfo |= GI_NOT_FIXED_LENGTH;
|
|
cb->groupinfo[group] = groupinfo;
|
|
}
|
|
return FFL_NOTFIXED;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Find first significant op code *
|
|
*************************************************/
|
|
|
|
/* This is called by several functions that scan a compiled expression looking
|
|
for a fixed first character, or an anchoring op code etc. It skips over things
|
|
that do not influence this. For some calls, it makes sense to skip negative
|
|
forward and all backward assertions, and also the \b assertion; for others it
|
|
does not.
|
|
|
|
Arguments:
|
|
code pointer to the start of the group
|
|
skipassert TRUE if certain assertions are to be skipped
|
|
|
|
Returns: pointer to the first significant opcode
|
|
*/
|
|
|
|
static const PCRE2_UCHAR*
|
|
first_significant_code(PCRE2_SPTR code, BOOL skipassert)
|
|
{
|
|
for (;;)
|
|
{
|
|
switch ((int)*code)
|
|
{
|
|
case OP_ASSERT_NOT:
|
|
case OP_ASSERTBACK:
|
|
case OP_ASSERTBACK_NOT:
|
|
if (!skipassert) return code;
|
|
do code += GET(code, 1); while (*code == OP_ALT);
|
|
code += PRIV(OP_lengths)[*code];
|
|
break;
|
|
|
|
case OP_WORD_BOUNDARY:
|
|
case OP_NOT_WORD_BOUNDARY:
|
|
if (!skipassert) return code;
|
|
/* Fall through */
|
|
|
|
case OP_CALLOUT:
|
|
case OP_CREF:
|
|
case OP_DNCREF:
|
|
case OP_RREF:
|
|
case OP_DNRREF:
|
|
case OP_FALSE:
|
|
case OP_TRUE:
|
|
code += PRIV(OP_lengths)[*code];
|
|
break;
|
|
|
|
case OP_CALLOUT_STR:
|
|
code += GET(code, 1 + 2*LINK_SIZE);
|
|
break;
|
|
|
|
default:
|
|
return code;
|
|
}
|
|
}
|
|
/* Control never reaches here */
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan compiled branch for non-emptiness *
|
|
*************************************************/
|
|
|
|
/* This function scans through a branch of a compiled pattern to see whether it
|
|
can match the empty string. It is called at the end of compiling to check the
|
|
entire pattern, and from compile_branch() when checking for an unlimited repeat
|
|
of a group that can match nothing. In the latter case it is called only when
|
|
doing the real compile, not during the pre-compile that measures the size of
|
|
the compiled pattern.
|
|
|
|
Note that first_significant_code() skips over backward and negative forward
|
|
assertions when its final argument is TRUE. If we hit an unclosed bracket, we
|
|
return "empty" - this means we've struck an inner bracket whose current branch
|
|
will already have been scanned.
|
|
|
|
Arguments:
|
|
code points to start of search
|
|
endcode points to where to stop
|
|
utf TRUE if in UTF mode
|
|
cb compile data
|
|
atend TRUE if being called to check an entire pattern
|
|
recurses chain of recurse_check to catch mutual recursion
|
|
countptr pointer to count to catch over-complicated pattern
|
|
|
|
Returns: 0 if what is matched cannot be empty
|
|
1 if what is matched could be empty
|
|
-1 if the pattern is too complicated
|
|
*/
|
|
|
|
#define CBE_NOTEMPTY 0
|
|
#define CBE_EMPTY 1
|
|
#define CBE_TOOCOMPLICATED (-1)
|
|
|
|
|
|
static int
|
|
could_be_empty_branch(PCRE2_SPTR code, PCRE2_SPTR endcode, BOOL utf,
|
|
compile_block *cb, BOOL atend, recurse_check *recurses, int *countptr)
|
|
{
|
|
uint32_t group = 0;
|
|
uint32_t groupinfo = 0;
|
|
register PCRE2_UCHAR c;
|
|
recurse_check this_recurse;
|
|
|
|
/* If what we are checking has already been set as "could be empty", we know
|
|
the answer. */
|
|
|
|
if (*code >= OP_SBRA && *code <= OP_SCOND) return CBE_EMPTY;
|
|
|
|
/* If this is a capturing group, we may have the answer cached, but we can only
|
|
use this information if there are no (?| groups in the pattern, because
|
|
otherwise group numbers are not unique. */
|
|
|
|
if ((cb->external_flags & PCRE2_DUPCAPUSED) == 0 &&
|
|
(*code == OP_CBRA || *code == OP_CBRAPOS))
|
|
{
|
|
group = GET2(code, 1 + LINK_SIZE);
|
|
groupinfo = cb->groupinfo[group];
|
|
if ((groupinfo & GI_SET_COULD_BE_EMPTY) != 0)
|
|
return ((groupinfo & GI_COULD_BE_EMPTY) != 0)? CBE_EMPTY : CBE_NOTEMPTY;
|
|
}
|
|
|
|
/* A large and/or complex regex can take too long to process. We have to assume
|
|
it can match an empty string. This can happen more often when (?| groups are
|
|
present in the pattern and the caching is disabled. Setting the cap at 1100
|
|
allows the test for more than 1023 capturing patterns to work. */
|
|
|
|
if ((*countptr)++ > 1100) return CBE_TOOCOMPLICATED;
|
|
|
|
/* Scan the opcodes for this branch. */
|
|
|
|
for (code = first_significant_code(code + PRIV(OP_lengths)[*code], TRUE);
|
|
code < endcode;
|
|
code = first_significant_code(code + PRIV(OP_lengths)[c], TRUE))
|
|
{
|
|
PCRE2_SPTR ccode;
|
|
|
|
c = *code;
|
|
|
|
/* Skip over forward assertions; the other assertions are skipped by
|
|
first_significant_code() with a TRUE final argument. */
|
|
|
|
if (c == OP_ASSERT)
|
|
{
|
|
do code += GET(code, 1); while (*code == OP_ALT);
|
|
c = *code;
|
|
continue;
|
|
}
|
|
|
|
/* For a recursion/subroutine call we can scan the recursion when this
|
|
function is called at the end, to check a complete pattern. Before then,
|
|
recursions just have the group number as their argument and in any case may
|
|
be forward references. In that situation, we return CBE_EMPTY, just in case.
|
|
It means that unlimited repeats of groups that contain recursions are always
|
|
treated as "could be empty" - which just adds a bit more processing time
|
|
because of the runtime check. */
|
|
|
|
if (c == OP_RECURSE)
|
|
{
|
|
PCRE2_SPTR scode, endgroup;
|
|
BOOL empty_branch;
|
|
|
|
if (!atend) goto ISTRUE;
|
|
scode = cb->start_code + GET(code, 1);
|
|
endgroup = scode;
|
|
|
|
/* We need to detect whether this is a recursive call, as otherwise there
|
|
will be an infinite loop. If it is a recursion, just skip over it. Simple
|
|
recursions are easily detected. For mutual recursions we keep a chain on
|
|
the stack. */
|
|
|
|
do endgroup += GET(endgroup, 1); while (*endgroup == OP_ALT);
|
|
if (code >= scode && code <= endgroup) continue; /* Simple recursion */
|
|
else
|
|
{
|
|
recurse_check *r = recurses;
|
|
for (r = recurses; r != NULL; r = r->prev)
|
|
if (r->group == scode) break;
|
|
if (r != NULL) continue; /* Mutual recursion */
|
|
}
|
|
|
|
/* Scan the referenced group, remembering it on the stack chain to detect
|
|
mutual recursions. */
|
|
|
|
empty_branch = FALSE;
|
|
this_recurse.prev = recurses;
|
|
this_recurse.group = scode;
|
|
|
|
do
|
|
{
|
|
int rc = could_be_empty_branch(scode, endcode, utf, cb, atend,
|
|
&this_recurse, countptr);
|
|
if (rc < 0) return rc;
|
|
if (rc > 0)
|
|
{
|
|
empty_branch = TRUE;
|
|
break;
|
|
}
|
|
scode += GET(scode, 1);
|
|
}
|
|
while (*scode == OP_ALT);
|
|
|
|
if (!empty_branch) goto ISFALSE; /* All branches are non-empty */
|
|
continue;
|
|
}
|
|
|
|
/* Groups with zero repeats can of course be empty; skip them. */
|
|
|
|
if (c == OP_BRAZERO || c == OP_BRAMINZERO || c == OP_SKIPZERO ||
|
|
c == OP_BRAPOSZERO)
|
|
{
|
|
code += PRIV(OP_lengths)[c];
|
|
do code += GET(code, 1); while (*code == OP_ALT);
|
|
c = *code;
|
|
continue;
|
|
}
|
|
|
|
/* A nested group that is already marked as "could be empty" can just be
|
|
skipped. */
|
|
|
|
if (c == OP_SBRA || c == OP_SBRAPOS ||
|
|
c == OP_SCBRA || c == OP_SCBRAPOS)
|
|
{
|
|
do code += GET(code, 1); while (*code == OP_ALT);
|
|
c = *code;
|
|
continue;
|
|
}
|
|
|
|
/* For other groups, scan the branches. */
|
|
|
|
if (c == OP_BRA || c == OP_BRAPOS ||
|
|
c == OP_CBRA || c == OP_CBRAPOS ||
|
|
c == OP_ONCE || c == OP_ONCE_NC ||
|
|
c == OP_COND || c == OP_SCOND)
|
|
{
|
|
BOOL empty_branch;
|
|
if (GET(code, 1) == 0) goto ISTRUE; /* Hit unclosed bracket */
|
|
|
|
/* If a conditional group has only one branch, there is a second, implied,
|
|
empty branch, so just skip over the conditional, because it could be empty.
|
|
Otherwise, scan the individual branches of the group. */
|
|
|
|
if (c == OP_COND && code[GET(code, 1)] != OP_ALT)
|
|
code += GET(code, 1);
|
|
else
|
|
{
|
|
empty_branch = FALSE;
|
|
do
|
|
{
|
|
if (!empty_branch)
|
|
{
|
|
int rc = could_be_empty_branch(code, endcode, utf, cb, atend,
|
|
recurses, countptr);
|
|
if (rc < 0) return rc;
|
|
if (rc > 0) empty_branch = TRUE;
|
|
}
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT);
|
|
if (!empty_branch) goto ISFALSE; /* All branches are non-empty */
|
|
}
|
|
|
|
c = *code;
|
|
continue;
|
|
}
|
|
|
|
/* Handle the other opcodes */
|
|
|
|
switch (c)
|
|
{
|
|
/* Check for quantifiers after a class. XCLASS is used for classes that
|
|
cannot be represented just by a bit map. This includes negated single
|
|
high-valued characters. The length in PRIV(OP_lengths)[] is zero; the
|
|
actual length is stored in the compiled code, so we must update "code"
|
|
here. */
|
|
|
|
#if defined SUPPORT_UNICODE || PCRE2_CODE_UNIT_WIDTH != 8
|
|
case OP_XCLASS:
|
|
ccode = code += GET(code, 1);
|
|
goto CHECK_CLASS_REPEAT;
|
|
#endif
|
|
|
|
case OP_CLASS:
|
|
case OP_NCLASS:
|
|
ccode = code + PRIV(OP_lengths)[OP_CLASS];
|
|
|
|
#if defined SUPPORT_UNICODE || PCRE2_CODE_UNIT_WIDTH != 8
|
|
CHECK_CLASS_REPEAT:
|
|
#endif
|
|
|
|
switch (*ccode)
|
|
{
|
|
case OP_CRSTAR: /* These could be empty; continue */
|
|
case OP_CRMINSTAR:
|
|
case OP_CRQUERY:
|
|
case OP_CRMINQUERY:
|
|
case OP_CRPOSSTAR:
|
|
case OP_CRPOSQUERY:
|
|
break;
|
|
|
|
default: /* Non-repeat => class must match */
|
|
case OP_CRPLUS: /* These repeats aren't empty */
|
|
case OP_CRMINPLUS:
|
|
case OP_CRPOSPLUS:
|
|
goto ISFALSE;
|
|
|
|
case OP_CRRANGE:
|
|
case OP_CRMINRANGE:
|
|
case OP_CRPOSRANGE:
|
|
if (GET2(ccode, 1) > 0) goto ISFALSE; /* Minimum > 0 */
|
|
break;
|
|
}
|
|
break;
|
|
|
|
/* Opcodes that must match a character */
|
|
|
|
case OP_ANY:
|
|
case OP_ALLANY:
|
|
case OP_ANYBYTE:
|
|
|
|
case OP_PROP:
|
|
case OP_NOTPROP:
|
|
case OP_ANYNL:
|
|
|
|
case OP_NOT_HSPACE:
|
|
case OP_HSPACE:
|
|
case OP_NOT_VSPACE:
|
|
case OP_VSPACE:
|
|
case OP_EXTUNI:
|
|
|
|
case OP_NOT_DIGIT:
|
|
case OP_DIGIT:
|
|
case OP_NOT_WHITESPACE:
|
|
case OP_WHITESPACE:
|
|
case OP_NOT_WORDCHAR:
|
|
case OP_WORDCHAR:
|
|
|
|
case OP_CHAR:
|
|
case OP_CHARI:
|
|
case OP_NOT:
|
|
case OP_NOTI:
|
|
|
|
case OP_PLUS:
|
|
case OP_PLUSI:
|
|
case OP_MINPLUS:
|
|
case OP_MINPLUSI:
|
|
|
|
case OP_NOTPLUS:
|
|
case OP_NOTPLUSI:
|
|
case OP_NOTMINPLUS:
|
|
case OP_NOTMINPLUSI:
|
|
|
|
case OP_POSPLUS:
|
|
case OP_POSPLUSI:
|
|
case OP_NOTPOSPLUS:
|
|
case OP_NOTPOSPLUSI:
|
|
|
|
case OP_EXACT:
|
|
case OP_EXACTI:
|
|
case OP_NOTEXACT:
|
|
case OP_NOTEXACTI:
|
|
|
|
case OP_TYPEPLUS:
|
|
case OP_TYPEMINPLUS:
|
|
case OP_TYPEPOSPLUS:
|
|
case OP_TYPEEXACT:
|
|
goto ISFALSE;
|
|
|
|
/* These are going to continue, as they may be empty, but we have to
|
|
fudge the length for the \p and \P cases. */
|
|
|
|
case OP_TYPESTAR:
|
|
case OP_TYPEMINSTAR:
|
|
case OP_TYPEPOSSTAR:
|
|
case OP_TYPEQUERY:
|
|
case OP_TYPEMINQUERY:
|
|
case OP_TYPEPOSQUERY:
|
|
if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
|
|
break;
|
|
|
|
/* Same for these */
|
|
|
|
case OP_TYPEUPTO:
|
|
case OP_TYPEMINUPTO:
|
|
case OP_TYPEPOSUPTO:
|
|
if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
|
|
code += 2;
|
|
break;
|
|
|
|
/* End of branch */
|
|
|
|
case OP_KET:
|
|
case OP_KETRMAX:
|
|
case OP_KETRMIN:
|
|
case OP_KETRPOS:
|
|
case OP_ALT:
|
|
goto ISTRUE;
|
|
|
|
/* In UTF-8 or UTF-16 mode, STAR, MINSTAR, POSSTAR, QUERY, MINQUERY,
|
|
POSQUERY, UPTO, MINUPTO, and POSUPTO and their caseless and negative
|
|
versions may be followed by a multibyte character. */
|
|
|
|
#ifdef MAYBE_UTF_MULTI
|
|
case OP_STAR:
|
|
case OP_STARI:
|
|
case OP_NOTSTAR:
|
|
case OP_NOTSTARI:
|
|
|
|
case OP_MINSTAR:
|
|
case OP_MINSTARI:
|
|
case OP_NOTMINSTAR:
|
|
case OP_NOTMINSTARI:
|
|
|
|
case OP_POSSTAR:
|
|
case OP_POSSTARI:
|
|
case OP_NOTPOSSTAR:
|
|
case OP_NOTPOSSTARI:
|
|
|
|
case OP_QUERY:
|
|
case OP_QUERYI:
|
|
case OP_NOTQUERY:
|
|
case OP_NOTQUERYI:
|
|
|
|
case OP_MINQUERY:
|
|
case OP_MINQUERYI:
|
|
case OP_NOTMINQUERY:
|
|
case OP_NOTMINQUERYI:
|
|
|
|
case OP_POSQUERY:
|
|
case OP_POSQUERYI:
|
|
case OP_NOTPOSQUERY:
|
|
case OP_NOTPOSQUERYI:
|
|
if (utf && HAS_EXTRALEN(code[1])) code += GET_EXTRALEN(code[1]);
|
|
break;
|
|
|
|
case OP_UPTO:
|
|
case OP_UPTOI:
|
|
case OP_NOTUPTO:
|
|
case OP_NOTUPTOI:
|
|
|
|
case OP_MINUPTO:
|
|
case OP_MINUPTOI:
|
|
case OP_NOTMINUPTO:
|
|
case OP_NOTMINUPTOI:
|
|
|
|
case OP_POSUPTO:
|
|
case OP_POSUPTOI:
|
|
case OP_NOTPOSUPTO:
|
|
case OP_NOTPOSUPTOI:
|
|
if (utf && HAS_EXTRALEN(code[1 + IMM2_SIZE])) code += GET_EXTRALEN(code[1 + IMM2_SIZE]);
|
|
break;
|
|
#endif /* MAYBE_UTF_MULTI */
|
|
|
|
/* MARK, and PRUNE/SKIP/THEN with an argument must skip over the argument
|
|
string. */
|
|
|
|
case OP_MARK:
|
|
case OP_PRUNE_ARG:
|
|
case OP_SKIP_ARG:
|
|
case OP_THEN_ARG:
|
|
code += code[1];
|
|
break;
|
|
|
|
/* None of the remaining opcodes are required to match a character. */
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
ISTRUE:
|
|
groupinfo |= GI_COULD_BE_EMPTY;
|
|
|
|
ISFALSE:
|
|
if (group > 0) cb->groupinfo[group] = groupinfo | GI_SET_COULD_BE_EMPTY;
|
|
|
|
return ((groupinfo & GI_COULD_BE_EMPTY) != 0)? CBE_EMPTY : CBE_NOTEMPTY;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for counted repeat *
|
|
*************************************************/
|
|
|
|
/* This function is called when a '{' is encountered in a place where it might
|
|
start a quantifier. It looks ahead to see if it really is a quantifier, that
|
|
is, one of the forms {ddd} {ddd,} or {ddd,ddd} where the ddds are digits.
|
|
|
|
Argument: pointer to the first char after '{'
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
is_counted_repeat(PCRE2_SPTR p)
|
|
{
|
|
if (!IS_DIGIT(*p)) return FALSE;
|
|
p++;
|
|
while (IS_DIGIT(*p)) p++;
|
|
if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
|
|
|
|
if (*p++ != CHAR_COMMA) return FALSE;
|
|
if (*p == CHAR_RIGHT_CURLY_BRACKET) return TRUE;
|
|
|
|
if (!IS_DIGIT(*p)) return FALSE;
|
|
p++;
|
|
while (IS_DIGIT(*p)) p++;
|
|
|
|
return (*p == CHAR_RIGHT_CURLY_BRACKET);
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Handle escapes *
|
|
*************************************************/
|
|
|
|
/* This function is called when a \ has been encountered. It either returns a
|
|
positive value for a simple escape such as \d, or 0 for a data character, which
|
|
is placed in chptr. A backreference to group n is returned as negative n. On
|
|
entry, ptr is pointing at the \. On exit, it points the final code unit of the
|
|
escape sequence.
|
|
|
|
This function is also called from pcre2_substitute() to handle escape sequences
|
|
in replacement strings. In this case, the cb argument is NULL, and only
|
|
sequences that define a data character are recognised. The isclass argument is
|
|
not relevant, but the options argument is the final value of the compiled
|
|
pattern's options.
|
|
|
|
There is one "trick" case: when a sequence such as [[:>:]] or \s in UCP mode is
|
|
processed, it is replaced by a nested alternative sequence. If this contains a
|
|
backslash (which is usually does), ptrend does not point to its end - it still
|
|
points to the end of the whole pattern. However, we can detect this case
|
|
because cb->nestptr[0] will be non-NULL. The nested sequences are all zero-
|
|
terminated and there are only ever two levels of nesting.
|
|
|
|
Arguments:
|
|
ptrptr points to the input position pointer
|
|
ptrend points to the end of the input
|
|
chptr points to a returned data character
|
|
errorcodeptr points to the errorcode variable (containing zero)
|
|
options the current options bits
|
|
isclass TRUE if inside a character class
|
|
cb compile data block
|
|
|
|
Returns: zero => a data character
|
|
positive => a special escape sequence
|
|
negative => a back reference
|
|
on error, errorcodeptr is set non-zero
|
|
*/
|
|
|
|
int
|
|
PRIV(check_escape)(PCRE2_SPTR *ptrptr, PCRE2_SPTR ptrend, uint32_t *chptr,
|
|
int *errorcodeptr, uint32_t options, BOOL isclass, compile_block *cb)
|
|
{
|
|
BOOL utf = (options & PCRE2_UTF) != 0;
|
|
PCRE2_SPTR ptr = *ptrptr + 1;
|
|
register uint32_t c, cc;
|
|
int escape = 0;
|
|
int i;
|
|
|
|
/* Find the end of a nested insert. */
|
|
|
|
if (cb != NULL && cb->nestptr[0] != NULL)
|
|
ptrend = ptr + PRIV(strlen)(ptr);
|
|
|
|
/* If backslash is at the end of the string, it's an error. */
|
|
|
|
if (ptr >= ptrend)
|
|
{
|
|
*errorcodeptr = ERR1;
|
|
return 0;
|
|
}
|
|
|
|
GETCHARINCTEST(c, ptr); /* Get character value, increment pointer */
|
|
ptr--; /* Set pointer back to the last code unit */
|
|
|
|
/* Non-alphanumerics are literals, so we just leave the value in c. An initial
|
|
value test saves a memory lookup for code points outside the alphanumeric
|
|
range. Otherwise, do a table lookup. A non-zero result is something that can be
|
|
returned immediately. Otherwise further processing is required. */
|
|
|
|
if (c < ESCAPES_FIRST || c > ESCAPES_LAST) {} /* Definitely literal */
|
|
|
|
else if ((i = escapes[c - ESCAPES_FIRST]) != 0)
|
|
{
|
|
if (i > 0) c = (uint32_t)i; else /* Positive is a data character */
|
|
{
|
|
escape = -i; /* Else return a special escape */
|
|
if (escape == ESC_P || escape == ESC_p || escape == ESC_X)
|
|
cb->external_flags |= PCRE2_HASBKPORX; /* Note \P, \p, or \X */
|
|
}
|
|
}
|
|
|
|
/* Escapes that need further processing, including those that are unknown.
|
|
When called from pcre2_substitute(), only \c, \o, and \x are recognized (and \u
|
|
when BSUX is set). */
|
|
|
|
else
|
|
{
|
|
PCRE2_SPTR oldptr;
|
|
BOOL braced, negated, overflow;
|
|
unsigned int s;
|
|
|
|
/* Filter calls from pcre2_substitute(). */
|
|
|
|
if (cb == NULL && c != CHAR_c && c != CHAR_o && c != CHAR_x &&
|
|
(c != CHAR_u || (options & PCRE2_ALT_BSUX) != 0))
|
|
{
|
|
*errorcodeptr = ERR3;
|
|
return 0;
|
|
}
|
|
|
|
switch (c)
|
|
{
|
|
/* A number of Perl escapes are not handled by PCRE. We give an explicit
|
|
error. */
|
|
|
|
case CHAR_l:
|
|
case CHAR_L:
|
|
*errorcodeptr = ERR37;
|
|
break;
|
|
|
|
/* \u is unrecognized when PCRE2_ALT_BSUX is not set. When it is treated
|
|
specially, \u must be followed by four hex digits. Otherwise it is a
|
|
lowercase u letter. */
|
|
|
|
case CHAR_u:
|
|
if ((options & PCRE2_ALT_BSUX) == 0) *errorcodeptr = ERR37; else
|
|
{
|
|
uint32_t xc;
|
|
if ((cc = XDIGIT(ptr[1])) == 0xff) break; /* Not a hex digit */
|
|
if ((xc = XDIGIT(ptr[2])) == 0xff) break; /* Not a hex digit */
|
|
cc = (cc << 4) | xc;
|
|
if ((xc = XDIGIT(ptr[3])) == 0xff) break; /* Not a hex digit */
|
|
cc = (cc << 4) | xc;
|
|
if ((xc = XDIGIT(ptr[4])) == 0xff) break; /* Not a hex digit */
|
|
c = (cc << 4) | xc;
|
|
ptr += 4;
|
|
if (utf)
|
|
{
|
|
if (c > 0x10ffffU) *errorcodeptr = ERR77;
|
|
else if (c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
|
|
}
|
|
else if (c > MAX_NON_UTF_CHAR) *errorcodeptr = ERR77;
|
|
}
|
|
break;
|
|
|
|
case CHAR_U:
|
|
/* \U is unrecognized unless PCRE2_ALT_BSUX is set, in which case it is an
|
|
upper case letter. */
|
|
if ((options & PCRE2_ALT_BSUX) == 0) *errorcodeptr = ERR37;
|
|
break;
|
|
|
|
/* In a character class, \g is just a literal "g". Outside a character
|
|
class, \g must be followed by one of a number of specific things:
|
|
|
|
(1) A number, either plain or braced. If positive, it is an absolute
|
|
backreference. If negative, it is a relative backreference. This is a Perl
|
|
5.10 feature.
|
|
|
|
(2) Perl 5.10 also supports \g{name} as a reference to a named group. This
|
|
is part of Perl's movement towards a unified syntax for back references. As
|
|
this is synonymous with \k{name}, we fudge it up by pretending it really
|
|
was \k.
|
|
|
|
(3) For Oniguruma compatibility we also support \g followed by a name or a
|
|
number either in angle brackets or in single quotes. However, these are
|
|
(possibly recursive) subroutine calls, _not_ backreferences. Just return
|
|
the ESC_g code (cf \k). */
|
|
|
|
case CHAR_g:
|
|
if (isclass) break;
|
|
if (ptr[1] == CHAR_LESS_THAN_SIGN || ptr[1] == CHAR_APOSTROPHE)
|
|
{
|
|
escape = ESC_g;
|
|
break;
|
|
}
|
|
|
|
/* Handle the Perl-compatible cases */
|
|
|
|
if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
|
|
{
|
|
PCRE2_SPTR p;
|
|
for (p = ptr+2; *p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET; p++)
|
|
if (*p != CHAR_MINUS && !IS_DIGIT(*p)) break;
|
|
if (*p != CHAR_NULL && *p != CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
escape = ESC_k;
|
|
break;
|
|
}
|
|
braced = TRUE;
|
|
ptr++;
|
|
}
|
|
else braced = FALSE;
|
|
|
|
if (ptr[1] == CHAR_MINUS)
|
|
{
|
|
negated = TRUE;
|
|
ptr++;
|
|
}
|
|
else negated = FALSE;
|
|
|
|
/* The integer range is limited by the machine's int representation. */
|
|
s = 0;
|
|
overflow = FALSE;
|
|
while (IS_DIGIT(ptr[1]))
|
|
{
|
|
if (s > INT_MAX / 10 - 1) /* Integer overflow */
|
|
{
|
|
overflow = TRUE;
|
|
break;
|
|
}
|
|
s = s * 10 + (int)(*(++ptr) - CHAR_0);
|
|
}
|
|
if (overflow) /* Integer overflow */
|
|
{
|
|
while (IS_DIGIT(ptr[1])) ptr++;
|
|
*errorcodeptr = ERR61;
|
|
break;
|
|
}
|
|
|
|
if (braced && *(++ptr) != CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
*errorcodeptr = ERR57;
|
|
break;
|
|
}
|
|
|
|
if (s == 0)
|
|
{
|
|
*errorcodeptr = ERR58;
|
|
break;
|
|
}
|
|
|
|
if (negated)
|
|
{
|
|
if (s > cb->bracount)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
break;
|
|
}
|
|
s = cb->bracount - (s - 1);
|
|
}
|
|
|
|
escape = -(int)s;
|
|
break;
|
|
|
|
/* The handling of escape sequences consisting of a string of digits
|
|
starting with one that is not zero is not straightforward. Perl has changed
|
|
over the years. Nowadays \g{} for backreferences and \o{} for octal are
|
|
recommended to avoid the ambiguities in the old syntax.
|
|
|
|
Outside a character class, the digits are read as a decimal number. If the
|
|
number is less than 10, or if there are that many previous extracting left
|
|
brackets, it is a back reference. Otherwise, up to three octal digits are
|
|
read to form an escaped character code. Thus \123 is likely to be octal 123
|
|
(cf \0123, which is octal 012 followed by the literal 3).
|
|
|
|
Inside a character class, \ followed by a digit is always either a literal
|
|
8 or 9 or an octal number. */
|
|
|
|
case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4: case CHAR_5:
|
|
case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
|
|
|
|
if (!isclass)
|
|
{
|
|
oldptr = ptr;
|
|
/* The integer range is limited by the machine's int representation. */
|
|
s = c - CHAR_0;
|
|
overflow = FALSE;
|
|
while (IS_DIGIT(ptr[1]))
|
|
{
|
|
if (s > INT_MAX / 10 - 1) /* Integer overflow */
|
|
{
|
|
overflow = TRUE;
|
|
break;
|
|
}
|
|
s = s * 10 + (int)(*(++ptr) - CHAR_0);
|
|
}
|
|
if (overflow) /* Integer overflow */
|
|
{
|
|
while (IS_DIGIT(ptr[1])) ptr++;
|
|
*errorcodeptr = ERR61;
|
|
break;
|
|
}
|
|
|
|
/* \1 to \9 are always back references. \8x and \9x are too; \1x to \7x
|
|
are octal escapes if there are not that many previous captures. */
|
|
|
|
if (s < 10 || *oldptr >= CHAR_8 || s <= cb->bracount)
|
|
{
|
|
escape = -(int)s; /* Indicates a back reference */
|
|
break;
|
|
}
|
|
ptr = oldptr; /* Put the pointer back and fall through */
|
|
}
|
|
|
|
/* Handle a digit following \ when the number is not a back reference, or
|
|
we are within a character class. If the first digit is 8 or 9, Perl used to
|
|
generate a binary zero byte and then treat the digit as a following
|
|
literal. At least by Perl 5.18 this changed so as not to insert the binary
|
|
zero. */
|
|
|
|
if ((c = *ptr) >= CHAR_8) break;
|
|
|
|
/* Fall through with a digit less than 8 */
|
|
|
|
/* \0 always starts an octal number, but we may drop through to here with a
|
|
larger first octal digit. The original code used just to take the least
|
|
significant 8 bits of octal numbers (I think this is what early Perls used
|
|
to do). Nowadays we allow for larger numbers in UTF-8 mode and 16-bit mode,
|
|
but no more than 3 octal digits. */
|
|
|
|
case CHAR_0:
|
|
c -= CHAR_0;
|
|
while(i++ < 2 && ptr[1] >= CHAR_0 && ptr[1] <= CHAR_7)
|
|
c = c * 8 + *(++ptr) - CHAR_0;
|
|
#if PCRE2_CODE_UNIT_WIDTH == 8
|
|
if (!utf && c > 0xff) *errorcodeptr = ERR51;
|
|
#endif
|
|
break;
|
|
|
|
/* \o is a relatively new Perl feature, supporting a more general way of
|
|
specifying character codes in octal. The only supported form is \o{ddd}. */
|
|
|
|
case CHAR_o:
|
|
if (ptr[1] != CHAR_LEFT_CURLY_BRACKET) *errorcodeptr = ERR55; else
|
|
if (ptr[2] == CHAR_RIGHT_CURLY_BRACKET) *errorcodeptr = ERR78; else
|
|
{
|
|
ptr += 2;
|
|
c = 0;
|
|
overflow = FALSE;
|
|
while (*ptr >= CHAR_0 && *ptr <= CHAR_7)
|
|
{
|
|
cc = *ptr++;
|
|
if (c == 0 && cc == CHAR_0) continue; /* Leading zeroes */
|
|
#if PCRE2_CODE_UNIT_WIDTH == 32
|
|
if (c >= 0x20000000l) { overflow = TRUE; break; }
|
|
#endif
|
|
c = (c << 3) + (cc - CHAR_0);
|
|
#if PCRE2_CODE_UNIT_WIDTH == 8
|
|
if (c > (utf ? 0x10ffffU : 0xffU)) { overflow = TRUE; break; }
|
|
#elif PCRE2_CODE_UNIT_WIDTH == 16
|
|
if (c > (utf ? 0x10ffffU : 0xffffU)) { overflow = TRUE; break; }
|
|
#elif PCRE2_CODE_UNIT_WIDTH == 32
|
|
if (utf && c > 0x10ffffU) { overflow = TRUE; break; }
|
|
#endif
|
|
}
|
|
if (overflow)
|
|
{
|
|
while (*ptr >= CHAR_0 && *ptr <= CHAR_7) ptr++;
|
|
*errorcodeptr = ERR34;
|
|
}
|
|
else if (*ptr == CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
|
|
}
|
|
else *errorcodeptr = ERR64;
|
|
}
|
|
break;
|
|
|
|
/* \x is complicated. When PCRE2_ALT_BSUX is set, \x must be followed by
|
|
two hexadecimal digits. Otherwise it is a lowercase x letter. */
|
|
|
|
case CHAR_x:
|
|
if ((options & PCRE2_ALT_BSUX) != 0)
|
|
{
|
|
uint32_t xc;
|
|
if ((cc = XDIGIT(ptr[1])) == 0xff) break; /* Not a hex digit */
|
|
if ((xc = XDIGIT(ptr[2])) == 0xff) break; /* Not a hex digit */
|
|
c = (cc << 4) | xc;
|
|
ptr += 2;
|
|
} /* End PCRE2_ALT_BSUX handling */
|
|
|
|
/* Handle \x in Perl's style. \x{ddd} is a character number which can be
|
|
greater than 0xff in UTF-8 or non-8bit mode, but only if the ddd are hex
|
|
digits. If not, { used to be treated as a data character. However, Perl
|
|
seems to read hex digits up to the first non-such, and ignore the rest, so
|
|
that, for example \x{zz} matches a binary zero. This seems crazy, so PCRE
|
|
now gives an error. */
|
|
|
|
else
|
|
{
|
|
if (ptr[1] == CHAR_LEFT_CURLY_BRACKET)
|
|
{
|
|
ptr += 2;
|
|
if (*ptr == CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
*errorcodeptr = ERR78;
|
|
break;
|
|
}
|
|
c = 0;
|
|
overflow = FALSE;
|
|
|
|
while ((cc = XDIGIT(*ptr)) != 0xff)
|
|
{
|
|
ptr++;
|
|
if (c == 0 && cc == 0) continue; /* Leading zeroes */
|
|
#if PCRE2_CODE_UNIT_WIDTH == 32
|
|
if (c >= 0x10000000l) { overflow = TRUE; break; }
|
|
#endif
|
|
c = (c << 4) | cc;
|
|
if ((utf && c > 0x10ffffU) || (!utf && c > MAX_NON_UTF_CHAR))
|
|
{
|
|
overflow = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (overflow)
|
|
{
|
|
while (XDIGIT(*ptr) != 0xff) ptr++;
|
|
*errorcodeptr = ERR34;
|
|
}
|
|
else if (*ptr == CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
if (utf && c >= 0xd800 && c <= 0xdfff) *errorcodeptr = ERR73;
|
|
}
|
|
|
|
/* If the sequence of hex digits does not end with '}', give an error.
|
|
We used just to recognize this construct and fall through to the normal
|
|
\x handling, but nowadays Perl gives an error, which seems much more
|
|
sensible, so we do too. */
|
|
|
|
else *errorcodeptr = ERR67;
|
|
} /* End of \x{} processing */
|
|
|
|
/* Read a single-byte hex-defined char (up to two hex digits after \x) */
|
|
|
|
else
|
|
{
|
|
c = 0;
|
|
if ((cc = XDIGIT(ptr[1])) == 0xff) break; /* Not a hex digit */
|
|
ptr++;
|
|
c = cc;
|
|
if ((cc = XDIGIT(ptr[1])) == 0xff) break; /* Not a hex digit */
|
|
ptr++;
|
|
c = (c << 4) | cc;
|
|
} /* End of \xdd handling */
|
|
} /* End of Perl-style \x handling */
|
|
break;
|
|
|
|
/* The handling of \c is different in ASCII and EBCDIC environments. In an
|
|
ASCII (or Unicode) environment, an error is given if the character
|
|
following \c is not a printable ASCII character. Otherwise, the following
|
|
character is upper-cased if it is a letter, and after that the 0x40 bit is
|
|
flipped. The result is the value of the escape.
|
|
|
|
In an EBCDIC environment the handling of \c is compatible with the
|
|
specification in the perlebcdic document. The following character must be
|
|
a letter or one of small number of special characters. These provide a
|
|
means of defining the character values 0-31.
|
|
|
|
For testing the EBCDIC handling of \c in an ASCII environment, recognize
|
|
the EBCDIC value of 'c' explicitly. */
|
|
|
|
#if defined EBCDIC && 'a' != 0x81
|
|
case 0x83:
|
|
#else
|
|
case CHAR_c:
|
|
#endif
|
|
|
|
c = *(++ptr);
|
|
if (c >= CHAR_a && c <= CHAR_z) c = UPPER_CASE(c);
|
|
if (c == CHAR_NULL && ptr >= ptrend)
|
|
{
|
|
*errorcodeptr = ERR2;
|
|
break;
|
|
}
|
|
|
|
/* Handle \c in an ASCII/Unicode environment. */
|
|
|
|
#ifndef EBCDIC /* ASCII/UTF-8 coding */
|
|
if (c < 32 || c > 126) /* Excludes all non-printable ASCII */
|
|
{
|
|
*errorcodeptr = ERR68;
|
|
break;
|
|
}
|
|
c ^= 0x40;
|
|
|
|
/* Handle \c in an EBCDIC environment. The special case \c? is converted to
|
|
255 (0xff) or 95 (0x5f) if other character suggest we are using th POSIX-BC
|
|
encoding. (This is the way Perl indicates that it handles \c?.) The other
|
|
valid sequences correspond to a list of specific characters. */
|
|
|
|
#else
|
|
if (c == CHAR_QUESTION_MARK)
|
|
c = ('\\' == 188 && '`' == 74)? 0x5f : 0xff;
|
|
else
|
|
{
|
|
for (i = 0; i < 32; i++)
|
|
{
|
|
if (c == ebcdic_escape_c[i]) break;
|
|
}
|
|
if (i < 32) c = i; else *errorcodeptr = ERR68;
|
|
}
|
|
#endif /* EBCDIC */
|
|
|
|
break;
|
|
|
|
/* Any other alphanumeric following \ is an error. Perl gives an error only
|
|
if in warning mode, but PCRE doesn't have a warning mode. */
|
|
|
|
default:
|
|
*errorcodeptr = ERR3;
|
|
break;
|
|
}
|
|
}
|
|
|
|
/* Perl supports \N{name} for character names, as well as plain \N for "not
|
|
newline". PCRE does not support \N{name}. However, it does support
|
|
quantification such as \N{2,3}. */
|
|
|
|
if (escape == ESC_N && ptr[1] == CHAR_LEFT_CURLY_BRACKET &&
|
|
!is_counted_repeat(ptr+2))
|
|
*errorcodeptr = ERR37;
|
|
|
|
/* If PCRE2_UCP is set, we change the values for \d etc. */
|
|
|
|
if ((options & PCRE2_UCP) != 0 && escape >= ESC_D && escape <= ESC_w)
|
|
escape += (ESC_DU - ESC_D);
|
|
|
|
/* Set the pointer to the final character before returning. */
|
|
|
|
*ptrptr = ptr;
|
|
*chptr = c;
|
|
return escape;
|
|
}
|
|
|
|
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
/*************************************************
|
|
* Handle \P and \p *
|
|
*************************************************/
|
|
|
|
/* This function is called after \P or \p has been encountered, provided that
|
|
PCRE2 is compiled with support for UTF and Unicode properties. On entry, the
|
|
contents of ptrptr are pointing at the P or p. On exit, it is left pointing at
|
|
the final code unit of the escape sequence.
|
|
|
|
Arguments:
|
|
ptrptr the pattern position pointer
|
|
negptr a boolean that is set TRUE for negation else FALSE
|
|
ptypeptr an unsigned int that is set to the type value
|
|
pdataptr an unsigned int that is set to the detailed property value
|
|
errorcodeptr the error code variable
|
|
cb the compile data
|
|
|
|
Returns: TRUE if the type value was found, or FALSE for an invalid type
|
|
*/
|
|
|
|
static BOOL
|
|
get_ucp(PCRE2_SPTR *ptrptr, BOOL *negptr, unsigned int *ptypeptr,
|
|
unsigned int *pdataptr, int *errorcodeptr, compile_block *cb)
|
|
{
|
|
register PCRE2_UCHAR c;
|
|
int i, bot, top;
|
|
PCRE2_SPTR ptr = *ptrptr;
|
|
PCRE2_UCHAR name[32];
|
|
|
|
*negptr = FALSE;
|
|
c = *(++ptr);
|
|
|
|
/* \P or \p can be followed by a name in {}, optionally preceded by ^ for
|
|
negation. */
|
|
|
|
if (c == CHAR_LEFT_CURLY_BRACKET)
|
|
{
|
|
if (ptr[1] == CHAR_CIRCUMFLEX_ACCENT)
|
|
{
|
|
*negptr = TRUE;
|
|
ptr++;
|
|
}
|
|
for (i = 0; i < (int)(sizeof(name) / sizeof(PCRE2_UCHAR)) - 1; i++)
|
|
{
|
|
c = *(++ptr);
|
|
if (c == CHAR_NULL) goto ERROR_RETURN;
|
|
if (c == CHAR_RIGHT_CURLY_BRACKET) break;
|
|
name[i] = c;
|
|
}
|
|
if (c != CHAR_RIGHT_CURLY_BRACKET) goto ERROR_RETURN;
|
|
name[i] = 0;
|
|
}
|
|
|
|
/* Otherwise there is just one following character, which must be an ASCII
|
|
letter. */
|
|
|
|
else if (MAX_255(c) && (cb->ctypes[c] & ctype_letter) != 0)
|
|
{
|
|
name[0] = c;
|
|
name[1] = 0;
|
|
}
|
|
else goto ERROR_RETURN;
|
|
|
|
*ptrptr = ptr;
|
|
|
|
/* Search for a recognized property name using binary chop. */
|
|
|
|
bot = 0;
|
|
top = PRIV(utt_size);
|
|
|
|
while (bot < top)
|
|
{
|
|
int r;
|
|
i = (bot + top) >> 1;
|
|
r = PRIV(strcmp_c8)(name, PRIV(utt_names) + PRIV(utt)[i].name_offset);
|
|
if (r == 0)
|
|
{
|
|
*ptypeptr = PRIV(utt)[i].type;
|
|
*pdataptr = PRIV(utt)[i].value;
|
|
return TRUE;
|
|
}
|
|
if (r > 0) bot = i + 1; else top = i;
|
|
}
|
|
*errorcodeptr = ERR47; /* Unrecognized name */
|
|
return FALSE;
|
|
|
|
ERROR_RETURN: /* Malformed \P or \p */
|
|
*errorcodeptr = ERR46;
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
#endif
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Read repeat counts *
|
|
*************************************************/
|
|
|
|
/* Read an item of the form {n,m} and return the values. This is called only
|
|
after is_counted_repeat() has confirmed that a repeat-count quantifier exists,
|
|
so the syntax is guaranteed to be correct, but we need to check the values.
|
|
|
|
Arguments:
|
|
p pointer to first char after '{'
|
|
minp pointer to int for min
|
|
maxp pointer to int for max
|
|
returned as -1 if no max
|
|
errorcodeptr points to error code variable
|
|
|
|
Returns: pointer to '}' on success;
|
|
current ptr on error, with errorcodeptr set non-zero
|
|
*/
|
|
|
|
static PCRE2_SPTR
|
|
read_repeat_counts(PCRE2_SPTR p, int *minp, int *maxp, int *errorcodeptr)
|
|
{
|
|
int min = 0;
|
|
int max = -1;
|
|
|
|
while (IS_DIGIT(*p))
|
|
{
|
|
min = min * 10 + (int)(*p++ - CHAR_0);
|
|
if (min > 65535)
|
|
{
|
|
*errorcodeptr = ERR5;
|
|
return p;
|
|
}
|
|
}
|
|
|
|
if (*p == CHAR_RIGHT_CURLY_BRACKET) max = min; else
|
|
{
|
|
if (*(++p) != CHAR_RIGHT_CURLY_BRACKET)
|
|
{
|
|
max = 0;
|
|
while(IS_DIGIT(*p))
|
|
{
|
|
max = max * 10 + (int)(*p++ - CHAR_0);
|
|
if (max > 65535)
|
|
{
|
|
*errorcodeptr = ERR5;
|
|
return p;
|
|
}
|
|
}
|
|
if (max < min)
|
|
{
|
|
*errorcodeptr = ERR4;
|
|
return p;
|
|
}
|
|
}
|
|
}
|
|
|
|
*minp = min;
|
|
*maxp = max;
|
|
return p;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan compiled regex for recursion reference *
|
|
*************************************************/
|
|
|
|
/* This function scans through a compiled pattern until it finds an instance of
|
|
OP_RECURSE.
|
|
|
|
Arguments:
|
|
code points to start of expression
|
|
utf TRUE in UTF mode
|
|
|
|
Returns: pointer to the opcode for OP_RECURSE, or NULL if not found
|
|
*/
|
|
|
|
static PCRE2_SPTR
|
|
find_recurse(PCRE2_SPTR code, BOOL utf)
|
|
{
|
|
for (;;)
|
|
{
|
|
register PCRE2_UCHAR c = *code;
|
|
if (c == OP_END) return NULL;
|
|
if (c == OP_RECURSE) return code;
|
|
|
|
/* XCLASS is used for classes that cannot be represented just by a bit map.
|
|
This includes negated single high-valued characters. CALLOUT_STR is used for
|
|
callouts with string arguments. In both cases the length in the table is
|
|
zero; the actual length is stored in the compiled code. */
|
|
|
|
if (c == OP_XCLASS) code += GET(code, 1);
|
|
else if (c == OP_CALLOUT_STR) code += GET(code, 1 + 2*LINK_SIZE);
|
|
|
|
/* Otherwise, we can get the item's length from the table, except that for
|
|
repeated character types, we have to test for \p and \P, which have an extra
|
|
two bytes of parameters, and for MARK/PRUNE/SKIP/THEN with an argument, we
|
|
must add in its length. */
|
|
|
|
else
|
|
{
|
|
switch(c)
|
|
{
|
|
case OP_TYPESTAR:
|
|
case OP_TYPEMINSTAR:
|
|
case OP_TYPEPLUS:
|
|
case OP_TYPEMINPLUS:
|
|
case OP_TYPEQUERY:
|
|
case OP_TYPEMINQUERY:
|
|
case OP_TYPEPOSSTAR:
|
|
case OP_TYPEPOSPLUS:
|
|
case OP_TYPEPOSQUERY:
|
|
if (code[1] == OP_PROP || code[1] == OP_NOTPROP) code += 2;
|
|
break;
|
|
|
|
case OP_TYPEPOSUPTO:
|
|
case OP_TYPEUPTO:
|
|
case OP_TYPEMINUPTO:
|
|
case OP_TYPEEXACT:
|
|
if (code[1 + IMM2_SIZE] == OP_PROP || code[1 + IMM2_SIZE] == OP_NOTPROP)
|
|
code += 2;
|
|
break;
|
|
|
|
case OP_MARK:
|
|
case OP_PRUNE_ARG:
|
|
case OP_SKIP_ARG:
|
|
case OP_THEN_ARG:
|
|
code += code[1];
|
|
break;
|
|
}
|
|
|
|
/* Add in the fixed length from the table */
|
|
|
|
code += PRIV(OP_lengths)[c];
|
|
|
|
/* In UTF-8 and UTF-16 modes, opcodes that are followed by a character may
|
|
be followed by a multi-unit character. The length in the table is a
|
|
minimum, so we have to arrange to skip the extra units. */
|
|
|
|
#ifdef MAYBE_UTF_MULTI
|
|
if (utf) switch(c)
|
|
{
|
|
case OP_CHAR:
|
|
case OP_CHARI:
|
|
case OP_NOT:
|
|
case OP_NOTI:
|
|
case OP_EXACT:
|
|
case OP_EXACTI:
|
|
case OP_NOTEXACT:
|
|
case OP_NOTEXACTI:
|
|
case OP_UPTO:
|
|
case OP_UPTOI:
|
|
case OP_NOTUPTO:
|
|
case OP_NOTUPTOI:
|
|
case OP_MINUPTO:
|
|
case OP_MINUPTOI:
|
|
case OP_NOTMINUPTO:
|
|
case OP_NOTMINUPTOI:
|
|
case OP_POSUPTO:
|
|
case OP_POSUPTOI:
|
|
case OP_NOTPOSUPTO:
|
|
case OP_NOTPOSUPTOI:
|
|
case OP_STAR:
|
|
case OP_STARI:
|
|
case OP_NOTSTAR:
|
|
case OP_NOTSTARI:
|
|
case OP_MINSTAR:
|
|
case OP_MINSTARI:
|
|
case OP_NOTMINSTAR:
|
|
case OP_NOTMINSTARI:
|
|
case OP_POSSTAR:
|
|
case OP_POSSTARI:
|
|
case OP_NOTPOSSTAR:
|
|
case OP_NOTPOSSTARI:
|
|
case OP_PLUS:
|
|
case OP_PLUSI:
|
|
case OP_NOTPLUS:
|
|
case OP_NOTPLUSI:
|
|
case OP_MINPLUS:
|
|
case OP_MINPLUSI:
|
|
case OP_NOTMINPLUS:
|
|
case OP_NOTMINPLUSI:
|
|
case OP_POSPLUS:
|
|
case OP_POSPLUSI:
|
|
case OP_NOTPOSPLUS:
|
|
case OP_NOTPOSPLUSI:
|
|
case OP_QUERY:
|
|
case OP_QUERYI:
|
|
case OP_NOTQUERY:
|
|
case OP_NOTQUERYI:
|
|
case OP_MINQUERY:
|
|
case OP_MINQUERYI:
|
|
case OP_NOTMINQUERY:
|
|
case OP_NOTMINQUERYI:
|
|
case OP_POSQUERY:
|
|
case OP_POSQUERYI:
|
|
case OP_NOTPOSQUERY:
|
|
case OP_NOTPOSQUERYI:
|
|
if (HAS_EXTRALEN(code[-1])) code += GET_EXTRALEN(code[-1]);
|
|
break;
|
|
}
|
|
#else
|
|
(void)(utf); /* Keep compiler happy by referencing function argument */
|
|
#endif /* MAYBE_UTF_MULTI */
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for POSIX class syntax *
|
|
*************************************************/
|
|
|
|
/* This function is called when the sequence "[:" or "[." or "[=" is
|
|
encountered in a character class. It checks whether this is followed by a
|
|
sequence of characters terminated by a matching ":]" or ".]" or "=]". If we
|
|
reach an unescaped ']' without the special preceding character, return FALSE.
|
|
|
|
Originally, this function only recognized a sequence of letters between the
|
|
terminators, but it seems that Perl recognizes any sequence of characters,
|
|
though of course unknown POSIX names are subsequently rejected. Perl gives an
|
|
"Unknown POSIX class" error for [:f\oo:] for example, where previously PCRE
|
|
didn't consider this to be a POSIX class. Likewise for [:1234:].
|
|
|
|
The problem in trying to be exactly like Perl is in the handling of escapes. We
|
|
have to be sure that [abc[:x\]pqr] is *not* treated as containing a POSIX
|
|
class, but [abc[:x\]pqr:]] is (so that an error can be generated). The code
|
|
below handles the special cases \\ and \], but does not try to do any other
|
|
escape processing. This makes it different from Perl for cases such as
|
|
[:l\ower:] where Perl recognizes it as the POSIX class "lower" but PCRE does
|
|
not recognize "l\ower". This is a lesser evil than not diagnosing bad classes
|
|
when Perl does, I think.
|
|
|
|
A user pointed out that PCRE was rejecting [:a[:digit:]] whereas Perl was not.
|
|
It seems that the appearance of a nested POSIX class supersedes an apparent
|
|
external class. For example, [:a[:digit:]b:] matches "a", "b", ":", or
|
|
a digit. This is handled by returning FALSE if the start of a new group with
|
|
the same terminator is encountered, since the next closing sequence must close
|
|
the nested group, not the outer one.
|
|
|
|
In Perl, unescaped square brackets may also appear as part of class names. For
|
|
example, [:a[:abc]b:] gives unknown POSIX class "[:abc]b:]". However, for
|
|
[:a[:abc]b][b:] it gives unknown POSIX class "[:abc]b][b:]", which does not
|
|
seem right at all. PCRE does not allow closing square brackets in POSIX class
|
|
names.
|
|
|
|
Arguments:
|
|
ptr pointer to the initial [
|
|
endptr where to return a pointer to the terminating ':', '.', or '='
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
check_posix_syntax(PCRE2_SPTR ptr, PCRE2_SPTR *endptr)
|
|
{
|
|
PCRE2_UCHAR terminator; /* Don't combine these lines; the Solaris cc */
|
|
terminator = *(++ptr); /* compiler warns about "non-constant" initializer. */
|
|
|
|
for (++ptr; *ptr != CHAR_NULL; ptr++)
|
|
{
|
|
if (*ptr == CHAR_BACKSLASH &&
|
|
(ptr[1] == CHAR_RIGHT_SQUARE_BRACKET || ptr[1] == CHAR_BACKSLASH))
|
|
ptr++;
|
|
else if ((*ptr == CHAR_LEFT_SQUARE_BRACKET && ptr[1] == terminator) ||
|
|
*ptr == CHAR_RIGHT_SQUARE_BRACKET) return FALSE;
|
|
else if (*ptr == terminator && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
|
|
{
|
|
*endptr = ptr;
|
|
return TRUE;
|
|
}
|
|
}
|
|
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check POSIX class name *
|
|
*************************************************/
|
|
|
|
/* This function is called to check the name given in a POSIX-style class entry
|
|
such as [:alnum:].
|
|
|
|
Arguments:
|
|
ptr points to the first letter
|
|
len the length of the name
|
|
|
|
Returns: a value representing the name, or -1 if unknown
|
|
*/
|
|
|
|
static int
|
|
check_posix_name(PCRE2_SPTR ptr, int len)
|
|
{
|
|
const char *pn = posix_names;
|
|
register int yield = 0;
|
|
while (posix_name_lengths[yield] != 0)
|
|
{
|
|
if (len == posix_name_lengths[yield] &&
|
|
PRIV(strncmp_c8)(ptr, pn, (unsigned int)len) == 0) return yield;
|
|
pn += posix_name_lengths[yield] + 1;
|
|
yield++;
|
|
}
|
|
return -1;
|
|
}
|
|
|
|
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
/*************************************************
|
|
* Get othercase range *
|
|
*************************************************/
|
|
|
|
/* This function is passed the start and end of a class range in UCT mode. It
|
|
searches up the characters, looking for ranges of characters in the "other"
|
|
case. Each call returns the next one, updating the start address. A character
|
|
with multiple other cases is returned on its own with a special return value.
|
|
|
|
Arguments:
|
|
cptr points to starting character value; updated
|
|
d end value
|
|
ocptr where to put start of othercase range
|
|
odptr where to put end of othercase range
|
|
|
|
Yield: -1 when no more
|
|
0 when a range is returned
|
|
>0 the CASESET offset for char with multiple other cases
|
|
in this case, ocptr contains the original
|
|
*/
|
|
|
|
static int
|
|
get_othercase_range(uint32_t *cptr, uint32_t d, uint32_t *ocptr,
|
|
uint32_t *odptr)
|
|
{
|
|
uint32_t c, othercase, next;
|
|
unsigned int co;
|
|
|
|
/* Find the first character that has an other case. If it has multiple other
|
|
cases, return its case offset value. */
|
|
|
|
for (c = *cptr; c <= d; c++)
|
|
{
|
|
if ((co = UCD_CASESET(c)) != 0)
|
|
{
|
|
*ocptr = c++; /* Character that has the set */
|
|
*cptr = c; /* Rest of input range */
|
|
return (int)co;
|
|
}
|
|
if ((othercase = UCD_OTHERCASE(c)) != c) break;
|
|
}
|
|
|
|
if (c > d) return -1; /* Reached end of range */
|
|
|
|
/* Found a character that has a single other case. Search for the end of the
|
|
range, which is either the end of the input range, or a character that has zero
|
|
or more than one other cases. */
|
|
|
|
*ocptr = othercase;
|
|
next = othercase + 1;
|
|
|
|
for (++c; c <= d; c++)
|
|
{
|
|
if ((co = UCD_CASESET(c)) != 0 || UCD_OTHERCASE(c) != next) break;
|
|
next++;
|
|
}
|
|
|
|
*odptr = next - 1; /* End of othercase range */
|
|
*cptr = c; /* Rest of input range */
|
|
return 0;
|
|
}
|
|
#endif /* SUPPORT_UNICODE */
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Add a character or range to a class *
|
|
*************************************************/
|
|
|
|
/* This function packages up the logic of adding a character or range of
|
|
characters to a class. The character values in the arguments will be within the
|
|
valid values for the current mode (8-bit, 16-bit, UTF, etc). This function is
|
|
mutually recursive with the function immediately below.
|
|
|
|
Arguments:
|
|
classbits the bit map for characters < 256
|
|
uchardptr points to the pointer for extra data
|
|
options the options word
|
|
cb compile data
|
|
start start of range character
|
|
end end of range character
|
|
|
|
Returns: the number of < 256 characters added
|
|
the pointer to extra data is updated
|
|
*/
|
|
|
|
static int
|
|
add_to_class(uint8_t *classbits, PCRE2_UCHAR **uchardptr, uint32_t options,
|
|
compile_block *cb, uint32_t start, uint32_t end)
|
|
{
|
|
uint32_t c;
|
|
uint32_t classbits_end = (end <= 0xff ? end : 0xff);
|
|
int n8 = 0;
|
|
|
|
/* If caseless matching is required, scan the range and process alternate
|
|
cases. In Unicode, there are 8-bit characters that have alternate cases that
|
|
are greater than 255 and vice-versa. Sometimes we can just extend the original
|
|
range. */
|
|
|
|
if ((options & PCRE2_CASELESS) != 0)
|
|
{
|
|
#ifdef SUPPORT_UNICODE
|
|
if ((options & PCRE2_UTF) != 0)
|
|
{
|
|
int rc;
|
|
uint32_t oc, od;
|
|
|
|
options &= ~PCRE2_CASELESS; /* Remove for recursive calls */
|
|
c = start;
|
|
|
|
while ((rc = get_othercase_range(&c, end, &oc, &od)) >= 0)
|
|
{
|
|
/* Handle a single character that has more than one other case. */
|
|
|
|
if (rc > 0) n8 += add_list_to_class(classbits, uchardptr, options, cb,
|
|
PRIV(ucd_caseless_sets) + rc, oc);
|
|
|
|
/* Do nothing if the other case range is within the original range. */
|
|
|
|
else if (oc >= start && od <= end) continue;
|
|
|
|
/* Extend the original range if there is overlap, noting that if oc < c, we
|
|
can't have od > end because a subrange is always shorter than the basic
|
|
range. Otherwise, use a recursive call to add the additional range. */
|
|
|
|
else if (oc < start && od >= start - 1) start = oc; /* Extend downwards */
|
|
else if (od > end && oc <= end + 1)
|
|
{
|
|
end = od; /* Extend upwards */
|
|
if (end > classbits_end) classbits_end = (end <= 0xff ? end : 0xff);
|
|
}
|
|
else n8 += add_to_class(classbits, uchardptr, options, cb, oc, od);
|
|
}
|
|
}
|
|
else
|
|
#endif /* SUPPORT_UNICODE */
|
|
|
|
/* Not UTF mode */
|
|
|
|
for (c = start; c <= classbits_end; c++)
|
|
{
|
|
SETBIT(classbits, cb->fcc[c]);
|
|
n8++;
|
|
}
|
|
}
|
|
|
|
/* Now handle the original range. Adjust the final value according to the bit
|
|
length - this means that the same lists of (e.g.) horizontal spaces can be used
|
|
in all cases. */
|
|
|
|
if ((options & PCRE2_UTF) == 0 && end > MAX_NON_UTF_CHAR)
|
|
end = MAX_NON_UTF_CHAR;
|
|
|
|
/* Use the bitmap for characters < 256. Otherwise use extra data.*/
|
|
|
|
for (c = start; c <= classbits_end; c++)
|
|
{
|
|
/* Regardless of start, c will always be <= 255. */
|
|
SETBIT(classbits, c);
|
|
n8++;
|
|
}
|
|
|
|
#ifdef SUPPORT_WIDE_CHARS
|
|
if (start <= 0xff) start = 0xff + 1;
|
|
|
|
if (end >= start)
|
|
{
|
|
PCRE2_UCHAR *uchardata = *uchardptr;
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
if ((options & PCRE2_UTF) != 0)
|
|
{
|
|
if (start < end)
|
|
{
|
|
*uchardata++ = XCL_RANGE;
|
|
uchardata += PRIV(ord2utf)(start, uchardata);
|
|
uchardata += PRIV(ord2utf)(end, uchardata);
|
|
}
|
|
else if (start == end)
|
|
{
|
|
*uchardata++ = XCL_SINGLE;
|
|
uchardata += PRIV(ord2utf)(start, uchardata);
|
|
}
|
|
}
|
|
else
|
|
#endif /* SUPPORT_UNICODE */
|
|
|
|
/* Without UTF support, character values are constrained by the bit length,
|
|
and can only be > 256 for 16-bit and 32-bit libraries. */
|
|
|
|
#if PCRE2_CODE_UNIT_WIDTH == 8
|
|
{}
|
|
#else
|
|
if (start < end)
|
|
{
|
|
*uchardata++ = XCL_RANGE;
|
|
*uchardata++ = start;
|
|
*uchardata++ = end;
|
|
}
|
|
else if (start == end)
|
|
{
|
|
*uchardata++ = XCL_SINGLE;
|
|
*uchardata++ = start;
|
|
}
|
|
#endif
|
|
*uchardptr = uchardata; /* Updata extra data pointer */
|
|
}
|
|
#else
|
|
(void)uchardptr; /* Avoid compiler warning */
|
|
#endif /* SUPPORT_WIDE_CHARS */
|
|
|
|
return n8; /* Number of 8-bit characters */
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Add a list of characters to a class *
|
|
*************************************************/
|
|
|
|
/* This function is used for adding a list of case-equivalent characters to a
|
|
class, and also for adding a list of horizontal or vertical whitespace. If the
|
|
list is in order (which it should be), ranges of characters are detected and
|
|
handled appropriately. This function is mutually recursive with the function
|
|
above.
|
|
|
|
Arguments:
|
|
classbits the bit map for characters < 256
|
|
uchardptr points to the pointer for extra data
|
|
options the options word
|
|
cb contains pointers to tables etc.
|
|
p points to row of 32-bit values, terminated by NOTACHAR
|
|
except character to omit; this is used when adding lists of
|
|
case-equivalent characters to avoid including the one we
|
|
already know about
|
|
|
|
Returns: the number of < 256 characters added
|
|
the pointer to extra data is updated
|
|
*/
|
|
|
|
static int
|
|
add_list_to_class(uint8_t *classbits, PCRE2_UCHAR **uchardptr, uint32_t options,
|
|
compile_block *cb, const uint32_t *p, unsigned int except)
|
|
{
|
|
int n8 = 0;
|
|
while (p[0] < NOTACHAR)
|
|
{
|
|
int n = 0;
|
|
if (p[0] != except)
|
|
{
|
|
while(p[n+1] == p[0] + n + 1) n++;
|
|
n8 += add_to_class(classbits, uchardptr, options, cb, p[0], p[n]);
|
|
}
|
|
p += n + 1;
|
|
}
|
|
return n8;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Add characters not in a list to a class *
|
|
*************************************************/
|
|
|
|
/* This function is used for adding the complement of a list of horizontal or
|
|
vertical whitespace to a class. The list must be in order.
|
|
|
|
Arguments:
|
|
classbits the bit map for characters < 256
|
|
uchardptr points to the pointer for extra data
|
|
options the options word
|
|
cb contains pointers to tables etc.
|
|
p points to row of 32-bit values, terminated by NOTACHAR
|
|
|
|
Returns: the number of < 256 characters added
|
|
the pointer to extra data is updated
|
|
*/
|
|
|
|
static int
|
|
add_not_list_to_class(uint8_t *classbits, PCRE2_UCHAR **uchardptr,
|
|
uint32_t options, compile_block *cb, const uint32_t *p)
|
|
{
|
|
BOOL utf = (options & PCRE2_UTF) != 0;
|
|
int n8 = 0;
|
|
if (p[0] > 0)
|
|
n8 += add_to_class(classbits, uchardptr, options, cb, 0, p[0] - 1);
|
|
while (p[0] < NOTACHAR)
|
|
{
|
|
while (p[1] == p[0] + 1) p++;
|
|
n8 += add_to_class(classbits, uchardptr, options, cb, p[0] + 1,
|
|
(p[1] == NOTACHAR) ? (utf ? 0x10ffffu : 0xffffffffu) : p[1] - 1);
|
|
p++;
|
|
}
|
|
return n8;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Process (*VERB) name for escapes *
|
|
*************************************************/
|
|
|
|
/* This function is called when the PCRE2_ALT_VERBNAMES option is set, to
|
|
process the characters in a verb's name argument. It is called twice, once with
|
|
codeptr == NULL, to find out the length of the processed name, and again to put
|
|
the name into memory.
|
|
|
|
Arguments:
|
|
ptrptr pointer to the input pointer
|
|
codeptr pointer to the compiled code pointer
|
|
errorcodeptr pointer to the error code
|
|
options the options bits
|
|
utf TRUE if processing UTF
|
|
cb compile data block
|
|
|
|
Returns: length of the processed name, or < 0 on error
|
|
*/
|
|
|
|
static int
|
|
process_verb_name(PCRE2_SPTR *ptrptr, PCRE2_UCHAR **codeptr, int *errorcodeptr,
|
|
uint32_t options, BOOL utf, compile_block *cb)
|
|
{
|
|
int32_t arglen = 0;
|
|
BOOL inescq = FALSE;
|
|
PCRE2_SPTR ptr = *ptrptr;
|
|
PCRE2_UCHAR *code = (codeptr == NULL)? NULL : *codeptr;
|
|
|
|
for (; ptr < cb->end_pattern; ptr++)
|
|
{
|
|
uint32_t x = *ptr;
|
|
|
|
/* Skip over literals */
|
|
|
|
if (inescq)
|
|
{
|
|
if (x == CHAR_BACKSLASH && ptr[1] == CHAR_E)
|
|
{
|
|
inescq = FALSE;
|
|
ptr++;;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
else /* Not a literal character */
|
|
{
|
|
if (x == CHAR_RIGHT_PARENTHESIS) break;
|
|
|
|
/* Skip over comments and whitespace in extended mode. */
|
|
|
|
if ((options & PCRE2_EXTENDED) != 0)
|
|
{
|
|
PCRE2_SPTR wscptr = ptr;
|
|
while (MAX_255(x) && (cb->ctypes[x] & ctype_space) != 0) x = *(++ptr);
|
|
if (x == CHAR_NUMBER_SIGN)
|
|
{
|
|
ptr++;
|
|
while (*ptr != CHAR_NULL || ptr < cb->end_pattern)
|
|
{
|
|
if (IS_NEWLINE(ptr)) /* For non-fixed-length newline cases, */
|
|
{ /* IS_NEWLINE sets cb->nllen. */
|
|
ptr += cb->nllen;
|
|
break;
|
|
}
|
|
ptr++;
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf) FORWARDCHAR(ptr);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* If we have skipped any characters, restart the loop. */
|
|
|
|
if (ptr > wscptr)
|
|
{
|
|
ptr--;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Process escapes */
|
|
|
|
if (x == '\\')
|
|
{
|
|
int rc;
|
|
*errorcodeptr = 0;
|
|
rc = PRIV(check_escape)(&ptr, cb->end_pattern, &x, errorcodeptr, options,
|
|
FALSE, cb);
|
|
*ptrptr = ptr; /* For possible error */
|
|
if (*errorcodeptr != 0) return -1;
|
|
if (rc != 0)
|
|
{
|
|
if (rc == ESC_Q)
|
|
{
|
|
inescq = TRUE;
|
|
continue;
|
|
}
|
|
if (rc == ESC_E) continue;
|
|
*errorcodeptr = ERR40;
|
|
return -1;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* We have the next character in the name. */
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf)
|
|
{
|
|
if (code == NULL) /* Just want the length */
|
|
{
|
|
#if PCRE2_CODE_UNIT_WIDTH == 8
|
|
int i;
|
|
for (i = 0; i < PRIV(utf8_table1_size); i++)
|
|
if ((int)x <= PRIV(utf8_table1)[i]) break;
|
|
arglen += i;
|
|
#elif PCRE2_CODE_UNIT_WIDTH == 16
|
|
if (x > 0xffff) arglen++;
|
|
#endif
|
|
}
|
|
else
|
|
{
|
|
PCRE2_UCHAR cbuff[8];
|
|
x = PRIV(ord2utf)(x, cbuff);
|
|
memcpy(code, cbuff, CU2BYTES(x));
|
|
code += x;
|
|
}
|
|
}
|
|
else
|
|
#endif /* SUPPORT_UNICODE */
|
|
|
|
/* Not UTF */
|
|
{
|
|
if (code != NULL) *code++ = x;
|
|
}
|
|
|
|
arglen++;
|
|
|
|
if ((unsigned int)arglen > MAX_MARK)
|
|
{
|
|
*errorcodeptr = ERR76;
|
|
*ptrptr = ptr;
|
|
return -1;
|
|
}
|
|
}
|
|
|
|
/* Update the pointers before returning. */
|
|
|
|
*ptrptr = ptr;
|
|
if (codeptr != NULL) *codeptr = code;
|
|
return arglen;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Macro for the next two functions *
|
|
*************************************************/
|
|
|
|
/* Both scan_for_captures() and compile_branch() use this macro to generate a
|
|
fragment of code that reads the characters of a name and sets its length
|
|
(checking for not being too long). Count the characters dynamically, to avoid
|
|
the possibility of integer overflow. The same macro is used for reading *VERB
|
|
names. */
|
|
|
|
#define READ_NAME(ctype, errno, errset) \
|
|
namelen = 0; \
|
|
while (MAX_255(*ptr) && (cb->ctypes[*ptr] & ctype) != 0) \
|
|
{ \
|
|
ptr++; \
|
|
namelen++; \
|
|
if (namelen > MAX_NAME_SIZE) \
|
|
{ \
|
|
errset = errno; \
|
|
goto FAILED; \
|
|
} \
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Scan regex to identify named groups *
|
|
*************************************************/
|
|
|
|
/* This function is called first of all, to scan for named capturing groups so
|
|
that information about them is fully available to both the compiling scans.
|
|
It skips over everything except parenthesized items.
|
|
|
|
Arguments:
|
|
ptrptr points to pointer to the start of the pattern
|
|
options compiling dynamic options
|
|
cb pointer to the compile data block
|
|
|
|
Returns: zero on success or a non-zero error code, with pointer updated
|
|
*/
|
|
|
|
typedef struct nest_save {
|
|
uint16_t nest_depth;
|
|
uint16_t reset_group;
|
|
uint16_t max_group;
|
|
uint16_t flags;
|
|
} nest_save;
|
|
|
|
#define NSF_RESET 0x0001u
|
|
#define NSF_EXTENDED 0x0002u
|
|
#define NSF_DUPNAMES 0x0004u
|
|
|
|
static uint32_t scan_for_captures(PCRE2_SPTR *ptrptr, uint32_t options,
|
|
compile_block *cb)
|
|
{
|
|
uint32_t c;
|
|
uint32_t delimiter;
|
|
uint32_t nest_depth = 0;
|
|
uint32_t set, unset, *optset;
|
|
int errorcode = 0;
|
|
int escape;
|
|
int namelen;
|
|
int i;
|
|
BOOL inescq = FALSE;
|
|
BOOL isdupname;
|
|
BOOL skiptoket = FALSE;
|
|
BOOL utf = (options & PCRE2_UTF) != 0;
|
|
BOOL negate_class;
|
|
PCRE2_SPTR name;
|
|
PCRE2_SPTR start;
|
|
PCRE2_SPTR ptr = *ptrptr;
|
|
named_group *ng;
|
|
nest_save *top_nest = NULL;
|
|
nest_save *end_nests = (nest_save *)(cb->start_workspace + cb->workspace_size);
|
|
|
|
/* The size of the nest_save structure might not be a factor of the size of the
|
|
workspace. Therefore we must round down end_nests so as to correctly avoid
|
|
creating a nest_save that spans the end of the workspace. */
|
|
|
|
end_nests = (nest_save *)((char *)end_nests -
|
|
((cb->workspace_size * sizeof(PCRE2_UCHAR)) % sizeof(nest_save)));
|
|
|
|
/* Now scan the pattern */
|
|
|
|
for (; ptr < cb->end_pattern; ptr++)
|
|
{
|
|
c = *ptr;
|
|
|
|
/* Parenthesized groups set skiptoket when all following characters up to the
|
|
next closing parenthesis must be ignored. The parenthesis itself must be
|
|
processed (to end the nested parenthesized item). */
|
|
|
|
if (skiptoket)
|
|
{
|
|
if (c != CHAR_RIGHT_PARENTHESIS) continue;
|
|
skiptoket = FALSE;
|
|
}
|
|
|
|
/* Skip over literals */
|
|
|
|
if (inescq)
|
|
{
|
|
if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E)
|
|
{
|
|
inescq = FALSE;
|
|
ptr++;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* Skip over comments and whitespace in extended mode. Need a loop to handle
|
|
whitespace after a comment. */
|
|
|
|
if ((options & PCRE2_EXTENDED) != 0)
|
|
{
|
|
for (;;)
|
|
{
|
|
while (MAX_255(c) && (cb->ctypes[c] & ctype_space) != 0) c = *(++ptr);
|
|
if (c != CHAR_NUMBER_SIGN) break;
|
|
ptr++;
|
|
while (*ptr != CHAR_NULL)
|
|
{
|
|
if (IS_NEWLINE(ptr)) /* For non-fixed-length newline cases, */
|
|
{ /* IS_NEWLINE sets cb->nllen. */
|
|
ptr += cb->nllen;
|
|
break;
|
|
}
|
|
ptr++;
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf) FORWARDCHAR(ptr);
|
|
#endif
|
|
}
|
|
c = *ptr; /* Either NULL or the char after a newline */
|
|
}
|
|
}
|
|
|
|
/* Process the next pattern item. */
|
|
|
|
switch(c)
|
|
{
|
|
default: /* Most characters are just skipped */
|
|
break;
|
|
|
|
/* Skip escapes except for \Q */
|
|
|
|
case CHAR_BACKSLASH:
|
|
errorcode = 0;
|
|
escape = PRIV(check_escape)(&ptr, cb->end_pattern, &c, &errorcode, options,
|
|
FALSE, cb);
|
|
if (errorcode != 0) goto FAILED;
|
|
if (escape == ESC_Q) inescq = TRUE;
|
|
break;
|
|
|
|
/* Skip a character class. The syntax is complicated so we have to
|
|
replicate some of what happens when a class is processed for real. */
|
|
|
|
case CHAR_LEFT_SQUARE_BRACKET:
|
|
if (PRIV(strncmp_c8)(ptr+1, STRING_WEIRD_STARTWORD, 6) == 0 ||
|
|
PRIV(strncmp_c8)(ptr+1, STRING_WEIRD_ENDWORD, 6) == 0)
|
|
{
|
|
ptr += 6;
|
|
break;
|
|
}
|
|
|
|
/* If the first character is '^', set the negation flag (not actually used
|
|
here, except to recognize only one ^) and skip it. If the first few
|
|
characters (either before or after ^) are \Q\E or \E we skip them too. This
|
|
makes for compatibility with Perl. */
|
|
|
|
negate_class = FALSE;
|
|
for (;;)
|
|
{
|
|
c = *(++ptr); /* First character in class */
|
|
if (c == CHAR_BACKSLASH)
|
|
{
|
|
if (ptr[1] == CHAR_E)
|
|
ptr++;
|
|
else if (PRIV(strncmp_c8)(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0)
|
|
ptr += 3;
|
|
else
|
|
break;
|
|
}
|
|
else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT)
|
|
negate_class = TRUE;
|
|
else break;
|
|
}
|
|
|
|
if (c == CHAR_RIGHT_SQUARE_BRACKET &&
|
|
(cb->external_options & PCRE2_ALLOW_EMPTY_CLASS) != 0)
|
|
break;
|
|
|
|
/* Loop for the contents of the class */
|
|
|
|
for (;;)
|
|
{
|
|
PCRE2_SPTR tempptr;
|
|
|
|
if (c == CHAR_NULL && ptr >= cb->end_pattern)
|
|
{
|
|
errorcode = ERR6; /* Missing terminating ']' */
|
|
goto FAILED;
|
|
}
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf && HAS_EXTRALEN(c))
|
|
{ /* Braces are required because the */
|
|
GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
|
|
}
|
|
#endif
|
|
|
|
/* Inside \Q...\E everything is literal except \E */
|
|
|
|
if (inescq)
|
|
{
|
|
if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */
|
|
{
|
|
inescq = FALSE; /* Reset literal state */
|
|
ptr++; /* Skip the 'E' */
|
|
}
|
|
goto CONTINUE_CLASS;
|
|
}
|
|
|
|
/* Skip POSIX class names. */
|
|
if (c == CHAR_LEFT_SQUARE_BRACKET &&
|
|
(ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
|
|
ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr))
|
|
{
|
|
ptr = tempptr + 1;
|
|
}
|
|
else if (c == CHAR_BACKSLASH)
|
|
{
|
|
errorcode = 0;
|
|
escape = PRIV(check_escape)(&ptr, cb->end_pattern, &c, &errorcode,
|
|
options, TRUE, cb);
|
|
if (errorcode != 0) goto FAILED;
|
|
if (escape == ESC_Q) inescq = TRUE;
|
|
}
|
|
|
|
CONTINUE_CLASS:
|
|
c = *(++ptr);
|
|
if (c == CHAR_RIGHT_SQUARE_BRACKET && !inescq) break;
|
|
} /* End of class-processing loop */
|
|
break;
|
|
|
|
/* This is the real work of this function - handling parentheses. */
|
|
|
|
case CHAR_LEFT_PARENTHESIS:
|
|
nest_depth++;
|
|
|
|
if (ptr[1] != CHAR_QUESTION_MARK)
|
|
{
|
|
if (ptr[1] != CHAR_ASTERISK)
|
|
{
|
|
if ((options & PCRE2_NO_AUTO_CAPTURE) == 0) cb->bracount++;
|
|
}
|
|
|
|
/* (*something) - just skip to closing ket unless PCRE2_ALT_VERBNAMES is
|
|
set, in which case we have to process escapes in the string after the
|
|
name. */
|
|
|
|
else
|
|
{
|
|
ptr += 2;
|
|
while (MAX_255(*ptr) && (cb->ctypes[*ptr] & ctype_word) != 0) ptr++;
|
|
if (*ptr == CHAR_COLON)
|
|
{
|
|
ptr++;
|
|
if ((options & PCRE2_ALT_VERBNAMES) != 0)
|
|
{
|
|
if (process_verb_name(&ptr, NULL, &errorcode, options, utf, cb) < 0)
|
|
goto FAILED;
|
|
}
|
|
else
|
|
{
|
|
while (ptr < cb->end_pattern && *ptr != CHAR_RIGHT_PARENTHESIS)
|
|
ptr++;
|
|
}
|
|
}
|
|
nest_depth--;
|
|
}
|
|
}
|
|
|
|
/* Handle (?...) groups */
|
|
|
|
else switch(ptr[2])
|
|
{
|
|
default:
|
|
ptr += 2;
|
|
if (ptr[0] == CHAR_R || /* (?R) */
|
|
ptr[0] == CHAR_NUMBER_SIGN || /* (?#) */
|
|
IS_DIGIT(ptr[0]) || /* (?n) */
|
|
(ptr[0] == CHAR_MINUS && IS_DIGIT(ptr[1]))) /* (?-n) */
|
|
{
|
|
skiptoket = TRUE;
|
|
break;
|
|
}
|
|
|
|
/* Handle (?| and (?imsxJU: which are the only other valid forms. Both
|
|
need a new block on the nest stack. */
|
|
|
|
if (top_nest == NULL) top_nest = (nest_save *)(cb->start_workspace);
|
|
else if (++top_nest >= end_nests)
|
|
{
|
|
errorcode = ERR84;
|
|
goto FAILED;
|
|
}
|
|
top_nest->nest_depth = nest_depth;
|
|
top_nest->flags = 0;
|
|
if ((options & PCRE2_EXTENDED) != 0) top_nest->flags |= NSF_EXTENDED;
|
|
if ((options & PCRE2_DUPNAMES) != 0) top_nest->flags |= NSF_DUPNAMES;
|
|
|
|
if (*ptr == CHAR_VERTICAL_LINE)
|
|
{
|
|
top_nest->reset_group = cb->bracount;
|
|
top_nest->max_group = cb->bracount;
|
|
top_nest->flags |= NSF_RESET;
|
|
cb->external_flags |= PCRE2_DUPCAPUSED;
|
|
break;
|
|
}
|
|
|
|
/* Scan options */
|
|
|
|
top_nest->reset_group = 0;
|
|
top_nest->max_group = 0;
|
|
|
|
set = unset = 0;
|
|
optset = &set;
|
|
|
|
/* Need only track (?x: and (?J: at this stage */
|
|
|
|
while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON)
|
|
{
|
|
switch (*ptr++)
|
|
{
|
|
case CHAR_MINUS: optset = &unset; break;
|
|
|
|
case CHAR_x: *optset |= PCRE2_EXTENDED; break;
|
|
|
|
case CHAR_J:
|
|
*optset |= PCRE2_DUPNAMES;
|
|
cb->external_flags |= PCRE2_JCHANGED;
|
|
break;
|
|
|
|
case CHAR_i:
|
|
case CHAR_m:
|
|
case CHAR_s:
|
|
case CHAR_U:
|
|
break;
|
|
|
|
default: errorcode = ERR11;
|
|
ptr--; /* Correct the offset */
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
options = (options | set) & (~unset);
|
|
|
|
/* If the options ended with ')' this is not the start of a nested
|
|
group with option changes, so the options change at this level. If the
|
|
previous level set up a nest block, discard the one we have just created.
|
|
Otherwise adjust it for the previous level. */
|
|
|
|
if (*ptr == CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
nest_depth--;
|
|
if (top_nest > (nest_save *)(cb->start_workspace) &&
|
|
(top_nest-1)->nest_depth == nest_depth) top_nest --;
|
|
else top_nest->nest_depth = nest_depth;
|
|
}
|
|
break;
|
|
|
|
/* Skip over a numerical or string argument for a callout. */
|
|
|
|
case CHAR_C:
|
|
ptr += 2;
|
|
if (ptr[1] == CHAR_RIGHT_PARENTHESIS) break;
|
|
if (IS_DIGIT(ptr[1]))
|
|
{
|
|
while (IS_DIGIT(ptr[1])) ptr++;
|
|
}
|
|
|
|
/* Handle a string argument */
|
|
|
|
else
|
|
{
|
|
ptr++;
|
|
delimiter = 0;
|
|
for (i = 0; PRIV(callout_start_delims)[i] != 0; i++)
|
|
{
|
|
if (*ptr == PRIV(callout_start_delims)[i])
|
|
{
|
|
delimiter = PRIV(callout_end_delims)[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (delimiter == 0)
|
|
{
|
|
errorcode = ERR82;
|
|
goto FAILED;
|
|
}
|
|
|
|
start = ptr;
|
|
do
|
|
{
|
|
if (++ptr >= cb->end_pattern)
|
|
{
|
|
errorcode = ERR81;
|
|
ptr = start; /* To give a more useful message */
|
|
goto FAILED;
|
|
}
|
|
if (ptr[0] == delimiter && ptr[1] == delimiter) ptr += 2;
|
|
}
|
|
while (ptr[0] != delimiter);
|
|
}
|
|
|
|
/* Check terminating ) */
|
|
|
|
if (ptr[1] != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
errorcode = ERR39;
|
|
ptr++;
|
|
goto FAILED;
|
|
}
|
|
break;
|
|
|
|
/* Conditional group */
|
|
|
|
case CHAR_LEFT_PARENTHESIS:
|
|
if (ptr[3] != CHAR_QUESTION_MARK) /* Not assertion or callout */
|
|
{
|
|
nest_depth++;
|
|
ptr += 2;
|
|
break;
|
|
}
|
|
|
|
/* Must be an assertion or a callout */
|
|
|
|
switch(ptr[4])
|
|
{
|
|
case CHAR_LESS_THAN_SIGN:
|
|
if (ptr[5] != CHAR_EXCLAMATION_MARK && ptr[5] != CHAR_EQUALS_SIGN)
|
|
goto MISSING_ASSERTION;
|
|
/* Fall through */
|
|
|
|
case CHAR_C:
|
|
case CHAR_EXCLAMATION_MARK:
|
|
case CHAR_EQUALS_SIGN:
|
|
ptr++;
|
|
break;
|
|
|
|
default:
|
|
MISSING_ASSERTION:
|
|
ptr += 3; /* To improve error message */
|
|
errorcode = ERR28;
|
|
goto FAILED;
|
|
}
|
|
break;
|
|
|
|
case CHAR_COLON:
|
|
case CHAR_GREATER_THAN_SIGN:
|
|
case CHAR_EQUALS_SIGN:
|
|
case CHAR_EXCLAMATION_MARK:
|
|
case CHAR_AMPERSAND:
|
|
case CHAR_PLUS:
|
|
ptr += 2;
|
|
break;
|
|
|
|
case CHAR_P:
|
|
if (ptr[3] != CHAR_LESS_THAN_SIGN)
|
|
{
|
|
ptr += 3;
|
|
break;
|
|
}
|
|
ptr++;
|
|
c = CHAR_GREATER_THAN_SIGN; /* Terminator */
|
|
goto DEFINE_NAME;
|
|
|
|
case CHAR_LESS_THAN_SIGN:
|
|
if (ptr[3] == CHAR_EQUALS_SIGN || ptr[3] == CHAR_EXCLAMATION_MARK)
|
|
{
|
|
ptr += 3;
|
|
break;
|
|
}
|
|
c = CHAR_GREATER_THAN_SIGN; /* Terminator */
|
|
goto DEFINE_NAME;
|
|
|
|
case CHAR_APOSTROPHE:
|
|
c = CHAR_APOSTROPHE; /* Terminator */
|
|
|
|
DEFINE_NAME:
|
|
name = ptr = ptr + 3;
|
|
|
|
if (*ptr == c) /* Empty name */
|
|
{
|
|
errorcode = ERR62;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (IS_DIGIT(*ptr))
|
|
{
|
|
errorcode = ERR44; /* Group name must start with non-digit */
|
|
goto FAILED;
|
|
}
|
|
|
|
if (MAX_255(*ptr) && (cb->ctypes[*ptr] & ctype_word) == 0)
|
|
{
|
|
errorcode = ERR24;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Advance ptr, set namelen and check its length. */
|
|
READ_NAME(ctype_word, ERR48, errorcode);
|
|
|
|
if (*ptr != c)
|
|
{
|
|
errorcode = ERR42;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (cb->names_found >= MAX_NAME_COUNT)
|
|
{
|
|
errorcode = ERR49;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (namelen + IMM2_SIZE + 1 > cb->name_entry_size)
|
|
cb->name_entry_size = namelen + IMM2_SIZE + 1;
|
|
|
|
/* We have a valid name for this capturing group. */
|
|
|
|
cb->bracount++;
|
|
|
|
/* Scan the list to check for duplicates. For duplicate names, if the
|
|
number is the same, break the loop, which causes the name to be
|
|
discarded; otherwise, if DUPNAMES is not set, give an error.
|
|
If it is set, allow the name with a different number, but continue
|
|
scanning in case this is a duplicate with the same number. For
|
|
non-duplicate names, give an error if the number is duplicated. */
|
|
|
|
isdupname = FALSE;
|
|
ng = cb->named_groups;
|
|
for (i = 0; i < cb->names_found; i++, ng++)
|
|
{
|
|
if (namelen == ng->length &&
|
|
PRIV(strncmp)(name, ng->name, namelen) == 0)
|
|
{
|
|
if (ng->number == cb->bracount) break;
|
|
if ((options & PCRE2_DUPNAMES) == 0)
|
|
{
|
|
errorcode = ERR43;
|
|
goto FAILED;
|
|
}
|
|
isdupname = ng->isdup = TRUE; /* Mark as a duplicate */
|
|
cb->dupnames = TRUE; /* Duplicate names exist */
|
|
}
|
|
else if (ng->number == cb->bracount)
|
|
{
|
|
errorcode = ERR65;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
if (i < cb->names_found) break; /* Ignore duplicate with same number */
|
|
|
|
/* Increase the list size if necessary */
|
|
|
|
if (cb->names_found >= cb->named_group_list_size)
|
|
{
|
|
int newsize = cb->named_group_list_size * 2;
|
|
named_group *newspace =
|
|
cb->cx->memctl.malloc(newsize * sizeof(named_group),
|
|
cb->cx->memctl.memory_data);
|
|
if (newspace == NULL)
|
|
{
|
|
errorcode = ERR21;
|
|
goto FAILED;
|
|
}
|
|
|
|
memcpy(newspace, cb->named_groups,
|
|
cb->named_group_list_size * sizeof(named_group));
|
|
if (cb->named_group_list_size > NAMED_GROUP_LIST_SIZE)
|
|
cb->cx->memctl.free((void *)cb->named_groups,
|
|
cb->cx->memctl.memory_data);
|
|
cb->named_groups = newspace;
|
|
cb->named_group_list_size = newsize;
|
|
}
|
|
|
|
/* Add this name to the list */
|
|
|
|
cb->named_groups[cb->names_found].name = name;
|
|
cb->named_groups[cb->names_found].length = namelen;
|
|
cb->named_groups[cb->names_found].number = cb->bracount;
|
|
cb->named_groups[cb->names_found].isdup = isdupname;
|
|
cb->names_found++;
|
|
break;
|
|
} /* End of (? switch */
|
|
break; /* End of ( handling */
|
|
|
|
/* At an alternation, reset the capture count if we are in a (?| group. */
|
|
|
|
case CHAR_VERTICAL_LINE:
|
|
if (top_nest != NULL && top_nest->nest_depth == nest_depth &&
|
|
(top_nest->flags & NSF_RESET) != 0)
|
|
{
|
|
if (cb->bracount > top_nest->max_group)
|
|
top_nest->max_group = cb->bracount;
|
|
cb->bracount = top_nest->reset_group;
|
|
}
|
|
break;
|
|
|
|
/* At a right parenthesis, reset the capture count to the maximum if we
|
|
are in a (?| group and/or reset the extended option. */
|
|
|
|
case CHAR_RIGHT_PARENTHESIS:
|
|
if (top_nest != NULL && top_nest->nest_depth == nest_depth)
|
|
{
|
|
if ((top_nest->flags & NSF_RESET) != 0 &&
|
|
top_nest->max_group > cb->bracount)
|
|
cb->bracount = top_nest->max_group;
|
|
if ((top_nest->flags & NSF_EXTENDED) != 0) options |= PCRE2_EXTENDED;
|
|
else options &= ~PCRE2_EXTENDED;
|
|
if ((top_nest->flags & NSF_DUPNAMES) != 0) options |= PCRE2_DUPNAMES;
|
|
else options &= ~PCRE2_DUPNAMES;
|
|
if (top_nest == (nest_save *)(cb->start_workspace)) top_nest = NULL;
|
|
else top_nest--;
|
|
}
|
|
if (nest_depth > 0) nest_depth--; /* Can be 0 for unmatched ) */
|
|
break;
|
|
}
|
|
}
|
|
|
|
cb->final_bracount = cb->bracount;
|
|
return 0;
|
|
|
|
FAILED:
|
|
*ptrptr = ptr;
|
|
return errorcode;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Compile one branch *
|
|
*************************************************/
|
|
|
|
/* Scan the pattern, compiling it into the a vector. If the options are
|
|
changed during the branch, the pointer is used to change the external options
|
|
bits. This function is used during the pre-compile phase when we are trying
|
|
to find out the amount of memory needed, as well as during the real compile
|
|
phase. The value of lengthptr distinguishes the two phases.
|
|
|
|
Arguments:
|
|
optionsptr pointer to the option bits
|
|
codeptr points to the pointer to the current code point
|
|
ptrptr points to the current pattern pointer
|
|
errorcodeptr points to error code variable
|
|
firstcuptr place to put the first required code unit
|
|
firstcuflagsptr place to put the first code unit flags, or a negative number
|
|
reqcuptr place to put the last required code unit
|
|
reqcuflagsptr place to put the last required code unit flags, or a negative number
|
|
bcptr points to current branch chain
|
|
cond_depth conditional nesting depth
|
|
cb contains pointers to tables etc.
|
|
lengthptr NULL during the real compile phase
|
|
points to length accumulator during pre-compile phase
|
|
|
|
Returns: TRUE on success
|
|
FALSE, with *errorcodeptr set non-zero on error
|
|
*/
|
|
|
|
static BOOL
|
|
compile_branch(uint32_t *optionsptr, PCRE2_UCHAR **codeptr,
|
|
PCRE2_SPTR *ptrptr, int *errorcodeptr,
|
|
uint32_t *firstcuptr, int32_t *firstcuflagsptr,
|
|
uint32_t *reqcuptr, int32_t *reqcuflagsptr,
|
|
branch_chain *bcptr, int cond_depth,
|
|
compile_block *cb, size_t *lengthptr)
|
|
{
|
|
int repeat_min = 0, repeat_max = 0; /* To please picky compilers */
|
|
int bravalue = 0;
|
|
uint32_t greedy_default, greedy_non_default;
|
|
uint32_t repeat_type, op_type;
|
|
uint32_t options = *optionsptr; /* May change dynamically */
|
|
uint32_t firstcu, reqcu;
|
|
int32_t firstcuflags, reqcuflags;
|
|
uint32_t zeroreqcu, zerofirstcu;
|
|
int32_t zeroreqcuflags, zerofirstcuflags;
|
|
int32_t req_caseopt, reqvary, tempreqvary;
|
|
int after_manual_callout = 0;
|
|
int escape;
|
|
size_t length_prevgroup = 0;
|
|
register uint32_t c;
|
|
register PCRE2_UCHAR *code = *codeptr;
|
|
PCRE2_UCHAR *last_code = code;
|
|
PCRE2_UCHAR *orig_code = code;
|
|
PCRE2_UCHAR *tempcode;
|
|
BOOL inescq = FALSE;
|
|
BOOL groupsetfirstcu = FALSE;
|
|
PCRE2_SPTR ptr = *ptrptr;
|
|
PCRE2_SPTR tempptr;
|
|
PCRE2_UCHAR *previous = NULL;
|
|
PCRE2_UCHAR *previous_callout = NULL;
|
|
uint8_t classbits[32];
|
|
|
|
/* We can fish out the UTF setting once and for all into a BOOL, but we must
|
|
not do this for other options (e.g. PCRE2_EXTENDED) because they may change
|
|
dynamically as we process the pattern. */
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
BOOL utf = (options & PCRE2_UTF) != 0;
|
|
#if PCRE2_CODE_UNIT_WIDTH != 32
|
|
PCRE2_UCHAR utf_units[6]; /* For setting up multi-cu chars */
|
|
#endif
|
|
|
|
#else /* No UTF support */
|
|
BOOL utf = FALSE;
|
|
#endif
|
|
|
|
/* Helper variables for OP_XCLASS opcode (for characters > 255). We define
|
|
class_uchardata always so that it can be passed to add_to_class() always,
|
|
though it will not be used in non-UTF 8-bit cases. This avoids having to supply
|
|
alternative calls for the different cases. */
|
|
|
|
PCRE2_UCHAR *class_uchardata;
|
|
#ifdef SUPPORT_WIDE_CHARS
|
|
BOOL xclass;
|
|
PCRE2_UCHAR *class_uchardata_base;
|
|
#endif
|
|
|
|
/* Set up the default and non-default settings for greediness */
|
|
|
|
greedy_default = ((options & PCRE2_UNGREEDY) != 0);
|
|
greedy_non_default = greedy_default ^ 1;
|
|
|
|
/* Initialize no first unit, no required unit. REQ_UNSET means "no char
|
|
matching encountered yet". It gets changed to REQ_NONE if we hit something that
|
|
matches a non-fixed first unit; reqcu just remains unset if we never find one.
|
|
|
|
When we hit a repeat whose minimum is zero, we may have to adjust these values
|
|
to take the zero repeat into account. This is implemented by setting them to
|
|
zerofirstcu and zeroreqcu when such a repeat is encountered. The individual
|
|
item types that can be repeated set these backoff variables appropriately. */
|
|
|
|
firstcu = reqcu = zerofirstcu = zeroreqcu = 0;
|
|
firstcuflags = reqcuflags = zerofirstcuflags = zeroreqcuflags = REQ_UNSET;
|
|
|
|
/* The variable req_caseopt contains either the REQ_CASELESS value or zero,
|
|
according to the current setting of the caseless flag. The REQ_CASELESS value
|
|
leaves the lower 28 bit empty. It is added into the firstcu or reqcu variables
|
|
to record the case status of the value. This is used only for ASCII characters.
|
|
*/
|
|
|
|
req_caseopt = ((options & PCRE2_CASELESS) != 0)? REQ_CASELESS:0;
|
|
|
|
/* Switch on next character until the end of the branch */
|
|
|
|
for (;; ptr++)
|
|
{
|
|
BOOL negate_class;
|
|
BOOL should_flip_negation;
|
|
BOOL match_all_or_no_wide_chars;
|
|
BOOL possessive_quantifier;
|
|
BOOL is_quantifier;
|
|
BOOL is_recurse;
|
|
BOOL is_dupname;
|
|
BOOL reset_bracount;
|
|
int class_has_8bitchar;
|
|
int class_one_char;
|
|
#ifdef SUPPORT_WIDE_CHARS
|
|
BOOL xclass_has_prop;
|
|
#endif
|
|
int recno; /* Must be signed */
|
|
int refsign; /* Must be signed */
|
|
int terminator; /* Must be signed */
|
|
unsigned int mclength;
|
|
unsigned int tempbracount;
|
|
uint32_t ec;
|
|
uint32_t newoptions;
|
|
uint32_t skipunits;
|
|
uint32_t subreqcu, subfirstcu;
|
|
int32_t subreqcuflags, subfirstcuflags; /* Must be signed */
|
|
PCRE2_UCHAR mcbuffer[8];
|
|
|
|
/* Get next character in the pattern */
|
|
|
|
c = *ptr;
|
|
|
|
/* If we are at the end of a nested substitution, revert to the outer level
|
|
string. Nesting only happens one or two levels deep, and the inserted string
|
|
is always zero terminated. */
|
|
|
|
if (c == CHAR_NULL && cb->nestptr[0] != NULL)
|
|
{
|
|
ptr = cb->nestptr[0];
|
|
cb->nestptr[0] = cb->nestptr[1];
|
|
cb->nestptr[1] = NULL;
|
|
c = *ptr;
|
|
}
|
|
|
|
/* If we are in the pre-compile phase, accumulate the length used for the
|
|
previous cycle of this loop. */
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
if (code > cb->start_workspace + cb->workspace_size -
|
|
WORK_SIZE_SAFETY_MARGIN) /* Check for overrun */
|
|
{
|
|
*errorcodeptr = (code >= cb->start_workspace + cb->workspace_size)?
|
|
ERR52 : ERR86;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* There is at least one situation where code goes backwards: this is the
|
|
case of a zero quantifier after a class (e.g. [ab]{0}). At compile time,
|
|
the class is simply eliminated. However, it is created first, so we have to
|
|
allow memory for it. Therefore, don't ever reduce the length at this point.
|
|
*/
|
|
|
|
if (code < last_code) code = last_code;
|
|
|
|
/* Paranoid check for integer overflow */
|
|
|
|
if (OFLOW_MAX - *lengthptr < (size_t)(code - last_code))
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
goto FAILED;
|
|
}
|
|
*lengthptr += code - last_code;
|
|
|
|
/* If "previous" is set and it is not at the start of the work space, move
|
|
it back to there, in order to avoid filling up the work space. Otherwise,
|
|
if "previous" is NULL, reset the current code pointer to the start. */
|
|
|
|
if (previous != NULL)
|
|
{
|
|
if (previous > orig_code)
|
|
{
|
|
memmove(orig_code, previous, CU2BYTES(code - previous));
|
|
code -= previous - orig_code;
|
|
previous = orig_code;
|
|
}
|
|
}
|
|
else code = orig_code;
|
|
|
|
/* Remember where this code item starts so we can pick up the length
|
|
next time round. */
|
|
|
|
last_code = code;
|
|
}
|
|
|
|
/* Before doing anything else we must handle all the special items that do
|
|
nothing, and which may come between an item and its quantifier. Otherwise,
|
|
when auto-callouts are enabled, a callout gets incorrectly inserted before
|
|
the quantifier is recognized. After recognizing a "do nothing" item, restart
|
|
the loop in case another one follows. */
|
|
|
|
/* If c is not NULL we are not at the end of the pattern. If it is NULL, we
|
|
may still be in the pattern with a NULL data item. In these cases, if we are
|
|
in \Q...\E, check for the \E that ends the literal string; if not, we have a
|
|
literal character. If not in \Q...\E, an isolated \E is ignored. */
|
|
|
|
if (c != CHAR_NULL || ptr < cb->end_pattern)
|
|
{
|
|
if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E)
|
|
{
|
|
inescq = FALSE;
|
|
ptr++;
|
|
continue;
|
|
}
|
|
else if (inescq) /* Literal character */
|
|
{
|
|
if (previous_callout != NULL)
|
|
{
|
|
if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
|
|
complete_callout(previous_callout, ptr, cb);
|
|
previous_callout = NULL;
|
|
}
|
|
if ((options & PCRE2_AUTO_CALLOUT) != 0)
|
|
{
|
|
previous_callout = code;
|
|
code = auto_callout(code, ptr, cb);
|
|
}
|
|
goto NORMAL_CHAR;
|
|
}
|
|
|
|
/* Check for the start of a \Q...\E sequence. We must do this here rather
|
|
than later in case it is immediately followed by \E, which turns it into a
|
|
"do nothing" sequence. */
|
|
|
|
if (c == CHAR_BACKSLASH && ptr[1] == CHAR_Q)
|
|
{
|
|
inescq = TRUE;
|
|
ptr++;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* In extended mode, skip white space and #-comments that end at newline. */
|
|
|
|
if ((options & PCRE2_EXTENDED) != 0)
|
|
{
|
|
PCRE2_SPTR wscptr = ptr;
|
|
while (MAX_255(c) && (cb->ctypes[c] & ctype_space) != 0) c = *(++ptr);
|
|
if (c == CHAR_NUMBER_SIGN)
|
|
{
|
|
ptr++;
|
|
while (ptr < cb->end_pattern)
|
|
{
|
|
if (IS_NEWLINE(ptr)) /* For non-fixed-length newline cases, */
|
|
{ /* IS_NEWLINE sets cb->nllen. */
|
|
ptr += cb->nllen;
|
|
break;
|
|
}
|
|
ptr++;
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf) FORWARDCHAR(ptr);
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* If we skipped any characters, restart the loop. Otherwise, we didn't see
|
|
a comment. */
|
|
|
|
if (ptr > wscptr)
|
|
{
|
|
ptr--;
|
|
continue;
|
|
}
|
|
}
|
|
|
|
/* Skip over (?# comments. */
|
|
|
|
if (c == CHAR_LEFT_PARENTHESIS && ptr[1] == CHAR_QUESTION_MARK &&
|
|
ptr[2] == CHAR_NUMBER_SIGN)
|
|
{
|
|
ptr += 3;
|
|
while (ptr < cb->end_pattern && *ptr != CHAR_RIGHT_PARENTHESIS) ptr++;
|
|
if (*ptr != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
*errorcodeptr = ERR18;
|
|
goto FAILED;
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* End of processing "do nothing" items. See if the next thing is a
|
|
quantifier. */
|
|
|
|
is_quantifier =
|
|
c == CHAR_ASTERISK || c == CHAR_PLUS || c == CHAR_QUESTION_MARK ||
|
|
(c == CHAR_LEFT_CURLY_BRACKET && is_counted_repeat(ptr+1));
|
|
|
|
/* Fill in length of a previous callout and create an auto callout if
|
|
required, except when the next thing is a quantifier or when processing a
|
|
property substitution string for \w etc in UCP mode. */
|
|
|
|
if (!is_quantifier && cb->nestptr[0] == NULL)
|
|
{
|
|
if (previous_callout != NULL && after_manual_callout-- <= 0)
|
|
{
|
|
if (lengthptr == NULL) /* Don't attempt in pre-compile phase */
|
|
complete_callout(previous_callout, ptr, cb);
|
|
previous_callout = NULL;
|
|
}
|
|
|
|
if ((options & PCRE2_AUTO_CALLOUT) != 0)
|
|
{
|
|
previous_callout = code;
|
|
code = auto_callout(code, ptr, cb);
|
|
}
|
|
}
|
|
|
|
/* Process the next pattern item. */
|
|
|
|
switch(c)
|
|
{
|
|
/* ===================================================================*/
|
|
/* The branch terminates at string end or | or ) */
|
|
|
|
case CHAR_NULL:
|
|
if (ptr < cb->end_pattern) goto NORMAL_CHAR; /* Zero data character */
|
|
/* Fall through */
|
|
|
|
case CHAR_VERTICAL_LINE:
|
|
case CHAR_RIGHT_PARENTHESIS:
|
|
*firstcuptr = firstcu;
|
|
*firstcuflagsptr = firstcuflags;
|
|
*reqcuptr = reqcu;
|
|
*reqcuflagsptr = reqcuflags;
|
|
*codeptr = code;
|
|
*ptrptr = ptr;
|
|
if (lengthptr != NULL)
|
|
{
|
|
if (OFLOW_MAX - *lengthptr < (size_t)(code - last_code))
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
goto FAILED;
|
|
}
|
|
*lengthptr += code - last_code; /* To include callout length */
|
|
}
|
|
return TRUE;
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Handle single-character metacharacters. In multiline mode, ^ disables
|
|
the setting of any following char as a first character. */
|
|
|
|
case CHAR_CIRCUMFLEX_ACCENT:
|
|
previous = NULL;
|
|
if ((options & PCRE2_MULTILINE) != 0)
|
|
{
|
|
if (firstcuflags == REQ_UNSET)
|
|
zerofirstcuflags = firstcuflags = REQ_NONE;
|
|
*code++ = OP_CIRCM;
|
|
}
|
|
else *code++ = OP_CIRC;
|
|
break;
|
|
|
|
case CHAR_DOLLAR_SIGN:
|
|
previous = NULL;
|
|
*code++ = ((options & PCRE2_MULTILINE) != 0)? OP_DOLLM : OP_DOLL;
|
|
break;
|
|
|
|
/* There can never be a first char if '.' is first, whatever happens about
|
|
repeats. The value of reqcu doesn't change either. */
|
|
|
|
case CHAR_DOT:
|
|
if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE;
|
|
zerofirstcu = firstcu;
|
|
zerofirstcuflags = firstcuflags;
|
|
zeroreqcu = reqcu;
|
|
zeroreqcuflags = reqcuflags;
|
|
previous = code;
|
|
*code++ = ((options & PCRE2_DOTALL) != 0)? OP_ALLANY: OP_ANY;
|
|
break;
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Character classes. If the included characters are all < 256, we build a
|
|
32-byte bitmap of the permitted characters, except in the special case
|
|
where there is only one such character. For negated classes, we build the
|
|
map as usual, then invert it at the end. However, we use a different opcode
|
|
so that data characters > 255 can be handled correctly.
|
|
|
|
If the class contains characters outside the 0-255 range, a different
|
|
opcode is compiled. It may optionally have a bit map for characters < 256,
|
|
but those above are are explicitly listed afterwards. A flag byte tells
|
|
whether the bitmap is present, and whether this is a negated class or not.
|
|
|
|
An isolated ']' character is not treated specially, so is just another data
|
|
character. In earlier versions of PCRE that used the original API there was
|
|
a "JavaScript compatibility mode" in which it gave an error. However,
|
|
JavaScript itself has changed in this respect so there is no longer any
|
|
need for this special handling.
|
|
|
|
In another (POSIX) regex library, the ugly syntax [[:<:]] and [[:>:]] is
|
|
used for "start of word" and "end of word". As these are otherwise illegal
|
|
sequences, we don't break anything by recognizing them. They are replaced
|
|
by \b(?=\w) and \b(?<=\w) respectively. This can only happen at the top
|
|
nesting level, as no other inserted sequences will contains these oddities.
|
|
Sequences like [a[:<:]] are erroneous and are handled by the normal code
|
|
below. */
|
|
|
|
case CHAR_LEFT_SQUARE_BRACKET:
|
|
if (PRIV(strncmp_c8)(ptr+1, STRING_WEIRD_STARTWORD, 6) == 0)
|
|
{
|
|
cb->nestptr[0] = ptr + 7;
|
|
ptr = sub_start_of_word; /* Do not combine these statements; clang's */
|
|
ptr--; /* sanitizer moans about a negative index. */
|
|
continue;
|
|
}
|
|
|
|
if (PRIV(strncmp_c8)(ptr+1, STRING_WEIRD_ENDWORD, 6) == 0)
|
|
{
|
|
cb->nestptr[0] = ptr + 7;
|
|
ptr = sub_end_of_word; /* Do not combine these statements; clang's */
|
|
ptr--; /* sanitizer moans about a negative index. */
|
|
continue;
|
|
}
|
|
|
|
/* Handle a real character class. */
|
|
|
|
previous = code;
|
|
|
|
/* PCRE supports POSIX class stuff inside a class. Perl gives an error if
|
|
they are encountered at the top level, so we'll do that too. */
|
|
|
|
if ((ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
|
|
ptr[1] == CHAR_EQUALS_SIGN) &&
|
|
check_posix_syntax(ptr, &tempptr))
|
|
{
|
|
*errorcodeptr = (ptr[1] == CHAR_COLON)? ERR12 : ERR13;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If the first character is '^', set the negation flag and skip it. Also,
|
|
if the first few characters (either before or after ^) are \Q\E or \E we
|
|
skip them too. This makes for compatibility with Perl. */
|
|
|
|
negate_class = FALSE;
|
|
for (;;)
|
|
{
|
|
c = *(++ptr);
|
|
if (c == CHAR_BACKSLASH)
|
|
{
|
|
if (ptr[1] == CHAR_E)
|
|
ptr++;
|
|
else if (PRIV(strncmp_c8)(ptr + 1, STR_Q STR_BACKSLASH STR_E, 3) == 0)
|
|
ptr += 3;
|
|
else
|
|
break;
|
|
}
|
|
else if (!negate_class && c == CHAR_CIRCUMFLEX_ACCENT)
|
|
negate_class = TRUE;
|
|
else break;
|
|
}
|
|
|
|
/* Empty classes are allowed if PCRE2_ALLOW_EMPTY_CLASS is set. Otherwise,
|
|
an initial ']' is taken as a data character -- the code below handles
|
|
that. When empty classes are allowed, [] must always fail, so generate
|
|
OP_FAIL, whereas [^] must match any character, so generate OP_ALLANY. */
|
|
|
|
if (c == CHAR_RIGHT_SQUARE_BRACKET &&
|
|
(cb->external_options & PCRE2_ALLOW_EMPTY_CLASS) != 0)
|
|
{
|
|
*code++ = negate_class? OP_ALLANY : OP_FAIL;
|
|
if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE;
|
|
zerofirstcu = firstcu;
|
|
zerofirstcuflags = firstcuflags;
|
|
break;
|
|
}
|
|
|
|
/* If a non-extended class contains a negative special such as \S, we need
|
|
to flip the negation flag at the end, so that support for characters > 255
|
|
works correctly (they are all included in the class). An extended class may
|
|
need to insert specific matching or non-matching code for wide characters.
|
|
*/
|
|
|
|
should_flip_negation = match_all_or_no_wide_chars = FALSE;
|
|
|
|
/* Extended class (xclass) will be used when characters > 255
|
|
might match. */
|
|
|
|
#ifdef SUPPORT_WIDE_CHARS
|
|
xclass = FALSE;
|
|
class_uchardata = code + LINK_SIZE + 2; /* For XCLASS items */
|
|
class_uchardata_base = class_uchardata; /* Save the start */
|
|
#endif
|
|
|
|
/* For optimization purposes, we track some properties of the class:
|
|
class_has_8bitchar will be non-zero if the class contains at least one 256
|
|
character with a code point less than 256; class_one_char will be 1 if the
|
|
class contains just one character; xclass_has_prop will be TRUE if Unicode
|
|
property checks are present in the class. */
|
|
|
|
class_has_8bitchar = 0;
|
|
class_one_char = 0;
|
|
#ifdef SUPPORT_WIDE_CHARS
|
|
xclass_has_prop = FALSE;
|
|
#endif
|
|
|
|
/* Initialize the 256-bit (32-byte) bit map to all zeros. We build the map
|
|
in a temporary bit of memory, in case the class contains fewer than two
|
|
8-bit characters because in that case the compiled code doesn't use the bit
|
|
map. */
|
|
|
|
memset(classbits, 0, 32 * sizeof(uint8_t));
|
|
|
|
/* Process characters until ] is reached. As the test is at the end of the
|
|
loop, an initial ] is taken as a data character. At the start of the loop,
|
|
c contains the first code unit of the character. If it is zero, check for
|
|
the end of the pattern, to allow binary zero as data. */
|
|
|
|
for(;;)
|
|
{
|
|
PCRE2_SPTR oldptr;
|
|
#ifdef EBCDIC
|
|
BOOL range_is_literal = TRUE;
|
|
#endif
|
|
|
|
if (c == CHAR_NULL && ptr >= cb->end_pattern)
|
|
{
|
|
*errorcodeptr = ERR6; /* Missing terminating ']' */
|
|
goto FAILED;
|
|
}
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf && HAS_EXTRALEN(c))
|
|
{ /* Braces are required because the */
|
|
GETCHARLEN(c, ptr, ptr); /* macro generates multiple statements */
|
|
}
|
|
#endif
|
|
|
|
/* Inside \Q...\E everything is literal except \E */
|
|
|
|
if (inescq)
|
|
{
|
|
if (c == CHAR_BACKSLASH && ptr[1] == CHAR_E) /* If we are at \E */
|
|
{
|
|
inescq = FALSE; /* Reset literal state */
|
|
ptr++; /* Skip the 'E' */
|
|
goto CONTINUE_CLASS; /* Carry on with next char */
|
|
}
|
|
goto CHECK_RANGE; /* Could be range if \E follows */
|
|
}
|
|
|
|
/* Handle POSIX class names. Perl allows a negation extension of the
|
|
form [:^name:]. A square bracket that doesn't match the syntax is
|
|
treated as a literal. We also recognize the POSIX constructions
|
|
[.ch.] and [=ch=] ("collating elements") and fault them, as Perl
|
|
5.6 and 5.8 do. */
|
|
|
|
if (c == CHAR_LEFT_SQUARE_BRACKET &&
|
|
(ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
|
|
ptr[1] == CHAR_EQUALS_SIGN) && check_posix_syntax(ptr, &tempptr))
|
|
{
|
|
BOOL local_negate = FALSE;
|
|
int posix_class, taboffset, tabopt;
|
|
register const uint8_t *cbits = cb->cbits;
|
|
uint8_t pbits[32];
|
|
|
|
if (ptr[1] != CHAR_COLON)
|
|
{
|
|
*errorcodeptr = ERR13;
|
|
goto FAILED;
|
|
}
|
|
|
|
ptr += 2;
|
|
if (*ptr == CHAR_CIRCUMFLEX_ACCENT)
|
|
{
|
|
local_negate = TRUE;
|
|
should_flip_negation = TRUE; /* Note negative special */
|
|
ptr++;
|
|
}
|
|
|
|
posix_class = check_posix_name(ptr, (int)(tempptr - ptr));
|
|
if (posix_class < 0)
|
|
{
|
|
*errorcodeptr = ERR30;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If matching is caseless, upper and lower are converted to
|
|
alpha. This relies on the fact that the class table starts with
|
|
alpha, lower, upper as the first 3 entries. */
|
|
|
|
if ((options & PCRE2_CASELESS) != 0 && posix_class <= 2)
|
|
posix_class = 0;
|
|
|
|
/* When PCRE2_UCP is set, some of the POSIX classes are converted to
|
|
different escape sequences that use Unicode properties \p or \P. Others
|
|
that are not available via \p or \P generate XCL_PROP/XCL_NOTPROP
|
|
directly. UCP support is not available unless UTF support is.*/
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
if ((options & PCRE2_UCP) != 0)
|
|
{
|
|
unsigned int ptype = 0;
|
|
int pc = posix_class + ((local_negate)? POSIX_SUBSIZE/2 : 0);
|
|
|
|
/* The posix_substitutes table specifies which POSIX classes can be
|
|
converted to \p or \P items. This can only happen at top nestling
|
|
level, as there will never be a POSIX class in a string that is
|
|
substituted for something else. */
|
|
|
|
if (posix_substitutes[pc] != NULL)
|
|
{
|
|
cb->nestptr[0] = tempptr + 1;
|
|
ptr = posix_substitutes[pc] - 1;
|
|
goto CONTINUE_CLASS;
|
|
}
|
|
|
|
/* There are three other classes that generate special property calls
|
|
that are recognized only in an XCLASS. */
|
|
|
|
else switch(posix_class)
|
|
{
|
|
case PC_GRAPH:
|
|
ptype = PT_PXGRAPH;
|
|
/* Fall through */
|
|
case PC_PRINT:
|
|
if (ptype == 0) ptype = PT_PXPRINT;
|
|
/* Fall through */
|
|
case PC_PUNCT:
|
|
if (ptype == 0) ptype = PT_PXPUNCT;
|
|
*class_uchardata++ = local_negate? XCL_NOTPROP : XCL_PROP;
|
|
*class_uchardata++ = ptype;
|
|
*class_uchardata++ = 0;
|
|
xclass_has_prop = TRUE;
|
|
ptr = tempptr + 1;
|
|
goto CONTINUE_CLASS;
|
|
|
|
/* For the other POSIX classes (ascii, xdigit) we are going to fall
|
|
through to the non-UCP case and build a bit map for characters with
|
|
code points less than 256. However, if we are in a negated POSIX
|
|
class, characters with code points greater than 255 must either all
|
|
match or all not match, depending on whether the whole class is not
|
|
or is negated. For example, for [[:^ascii:]... they must all match,
|
|
whereas for [^[:^xdigit:]... they must not.
|
|
|
|
In the special case where there are no xclass items, this is
|
|
automatically handled by the use of OP_CLASS or OP_NCLASS, but an
|
|
explicit range is needed for OP_XCLASS. Setting a flag here causes
|
|
the range to be generated later when it is known that OP_XCLASS is
|
|
required. */
|
|
|
|
default:
|
|
match_all_or_no_wide_chars |= local_negate;
|
|
break;
|
|
}
|
|
}
|
|
#endif /* SUPPORT_UNICODE */
|
|
|
|
/* In the non-UCP case, or when UCP makes no difference, we build the
|
|
bit map for the POSIX class in a chunk of local store because we may be
|
|
adding and subtracting from it, and we don't want to subtract bits that
|
|
may be in the main map already. At the end we or the result into the
|
|
bit map that is being built. */
|
|
|
|
posix_class *= 3;
|
|
|
|
/* Copy in the first table (always present) */
|
|
|
|
memcpy(pbits, cbits + posix_class_maps[posix_class],
|
|
32 * sizeof(uint8_t));
|
|
|
|
/* If there is a second table, add or remove it as required. */
|
|
|
|
taboffset = posix_class_maps[posix_class + 1];
|
|
tabopt = posix_class_maps[posix_class + 2];
|
|
|
|
if (taboffset >= 0)
|
|
{
|
|
if (tabopt >= 0)
|
|
for (c = 0; c < 32; c++) pbits[c] |= cbits[c + taboffset];
|
|
else
|
|
for (c = 0; c < 32; c++) pbits[c] &= ~cbits[c + taboffset];
|
|
}
|
|
|
|
/* Now see if we need to remove any special characters. An option
|
|
value of 1 removes vertical space and 2 removes underscore. */
|
|
|
|
if (tabopt < 0) tabopt = -tabopt;
|
|
if (tabopt == 1) pbits[1] &= ~0x3c;
|
|
else if (tabopt == 2) pbits[11] &= 0x7f;
|
|
|
|
/* Add the POSIX table or its complement into the main table that is
|
|
being built and we are done. */
|
|
|
|
if (local_negate)
|
|
for (c = 0; c < 32; c++) classbits[c] |= ~pbits[c];
|
|
else
|
|
for (c = 0; c < 32; c++) classbits[c] |= pbits[c];
|
|
|
|
ptr = tempptr + 1;
|
|
/* Every class contains at least one < 256 character. */
|
|
class_has_8bitchar = 1;
|
|
/* Every class contains at least two characters. */
|
|
class_one_char = 2;
|
|
goto CONTINUE_CLASS; /* End of POSIX syntax handling */
|
|
}
|
|
|
|
/* Backslash may introduce a single character, or it may introduce one
|
|
of the specials, which just set a flag. The sequence \b is a special
|
|
case. Inside a class (and only there) it is treated as backspace. We
|
|
assume that other escapes have more than one character in them, so
|
|
speculatively set both class_has_8bitchar and class_one_char bigger
|
|
than one. Unrecognized escapes fall through and are faulted. */
|
|
|
|
if (c == CHAR_BACKSLASH)
|
|
{
|
|
escape = PRIV(check_escape)(&ptr, cb->end_pattern, &ec, errorcodeptr,
|
|
options, TRUE, cb);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
if (escape == 0) /* Escaped single char */
|
|
{
|
|
c = ec;
|
|
#ifdef EBCDIC
|
|
range_is_literal = FALSE;
|
|
#endif
|
|
}
|
|
else if (escape == ESC_b) c = CHAR_BS; /* \b is backspace in a class */
|
|
else if (escape == ESC_N) /* \N is not supported in a class */
|
|
{
|
|
*errorcodeptr = ERR71;
|
|
goto FAILED;
|
|
}
|
|
else if (escape == ESC_Q) /* Handle start of quoted string */
|
|
{
|
|
if (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
|
|
{
|
|
ptr += 2; /* avoid empty string */
|
|
}
|
|
else inescq = TRUE;
|
|
goto CONTINUE_CLASS;
|
|
}
|
|
else if (escape == ESC_E) goto CONTINUE_CLASS; /* Ignore orphan \E */
|
|
|
|
else /* Handle \d-type escapes */
|
|
{
|
|
register const uint8_t *cbits = cb->cbits;
|
|
/* Every class contains at least two < 256 characters. */
|
|
class_has_8bitchar++;
|
|
/* Every class contains at least two characters. */
|
|
class_one_char += 2;
|
|
|
|
switch (escape)
|
|
{
|
|
#ifdef SUPPORT_UNICODE
|
|
case ESC_du: /* These are the values given for \d etc */
|
|
case ESC_DU: /* when PCRE2_UCP is set. We replace the */
|
|
case ESC_wu: /* escape sequence with an appropriate \p */
|
|
case ESC_WU: /* or \P to test Unicode properties instead */
|
|
case ESC_su: /* of the default ASCII testing. This might be */
|
|
case ESC_SU: /* a 2nd-level nesting for [[:<:]] or [[:>:]]. */
|
|
cb->nestptr[1] = cb->nestptr[0];
|
|
cb->nestptr[0] = ptr;
|
|
ptr = substitutes[escape - ESC_DU] - 1; /* Just before substitute */
|
|
class_has_8bitchar--; /* Undo! */
|
|
break;
|
|
#endif
|
|
case ESC_d:
|
|
for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_digit];
|
|
break;
|
|
|
|
case ESC_D:
|
|
should_flip_negation = TRUE;
|
|
for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_digit];
|
|
break;
|
|
|
|
case ESC_w:
|
|
for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_word];
|
|
break;
|
|
|
|
case ESC_W:
|
|
should_flip_negation = TRUE;
|
|
for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_word];
|
|
break;
|
|
|
|
/* Perl 5.004 onwards omitted VT from \s, but restored it at Perl
|
|
5.18. Before PCRE 8.34, we had to preserve the VT bit if it was
|
|
previously set by something earlier in the character class.
|
|
Luckily, the value of CHAR_VT is 0x0b in both ASCII and EBCDIC, so
|
|
we could just adjust the appropriate bit. From PCRE 8.34 we no
|
|
longer treat \s and \S specially. */
|
|
|
|
case ESC_s:
|
|
for (c = 0; c < 32; c++) classbits[c] |= cbits[c+cbit_space];
|
|
break;
|
|
|
|
case ESC_S:
|
|
should_flip_negation = TRUE;
|
|
for (c = 0; c < 32; c++) classbits[c] |= ~cbits[c+cbit_space];
|
|
break;
|
|
|
|
/* The rest apply in both UCP and non-UCP cases. */
|
|
|
|
case ESC_h:
|
|
(void)add_list_to_class(classbits, &class_uchardata, options, cb,
|
|
PRIV(hspace_list), NOTACHAR);
|
|
break;
|
|
|
|
case ESC_H:
|
|
(void)add_not_list_to_class(classbits, &class_uchardata, options,
|
|
cb, PRIV(hspace_list));
|
|
break;
|
|
|
|
case ESC_v:
|
|
(void)add_list_to_class(classbits, &class_uchardata, options, cb,
|
|
PRIV(vspace_list), NOTACHAR);
|
|
break;
|
|
|
|
case ESC_V:
|
|
(void)add_not_list_to_class(classbits, &class_uchardata, options,
|
|
cb, PRIV(vspace_list));
|
|
break;
|
|
|
|
case ESC_p:
|
|
case ESC_P:
|
|
#ifdef SUPPORT_UNICODE
|
|
{
|
|
BOOL negated;
|
|
unsigned int ptype = 0, pdata = 0;
|
|
if (!get_ucp(&ptr, &negated, &ptype, &pdata, errorcodeptr, cb))
|
|
goto FAILED;
|
|
*class_uchardata++ = ((escape == ESC_p) != negated)?
|
|
XCL_PROP : XCL_NOTPROP;
|
|
*class_uchardata++ = ptype;
|
|
*class_uchardata++ = pdata;
|
|
xclass_has_prop = TRUE;
|
|
class_has_8bitchar--; /* Undo! */
|
|
}
|
|
break;
|
|
#else
|
|
*errorcodeptr = ERR45;
|
|
goto FAILED;
|
|
#endif
|
|
/* Unrecognized escapes are faulted. */
|
|
|
|
default:
|
|
*errorcodeptr = ERR7;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Handled \d-type escape */
|
|
|
|
goto CONTINUE_CLASS;
|
|
}
|
|
|
|
/* Control gets here if the escape just defined a single character.
|
|
This is in c and may be greater than 256. */
|
|
|
|
escape = 0;
|
|
} /* End of backslash handling */
|
|
|
|
/* A character may be followed by '-' to form a range. However, Perl does
|
|
not permit ']' to be the end of the range. A '-' character at the end is
|
|
treated as a literal. Perl ignores orphaned \E sequences entirely. The
|
|
code for handling \Q and \E is messy. */
|
|
|
|
CHECK_RANGE:
|
|
while (ptr[1] == CHAR_BACKSLASH && ptr[2] == CHAR_E)
|
|
{
|
|
inescq = FALSE;
|
|
ptr += 2;
|
|
}
|
|
oldptr = ptr;
|
|
|
|
/* Remember if \r or \n were explicitly used */
|
|
|
|
if (c == CHAR_CR || c == CHAR_NL) cb->external_flags |= PCRE2_HASCRORLF;
|
|
|
|
/* Check for range */
|
|
|
|
if (!inescq && ptr[1] == CHAR_MINUS)
|
|
{
|
|
uint32_t d;
|
|
ptr += 2;
|
|
while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E) ptr += 2;
|
|
|
|
/* If we hit \Q (not followed by \E) at this point, go into escaped
|
|
mode. */
|
|
|
|
while (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_Q)
|
|
{
|
|
ptr += 2;
|
|
if (*ptr == CHAR_BACKSLASH && ptr[1] == CHAR_E)
|
|
{ ptr += 2; continue; }
|
|
inescq = TRUE;
|
|
break;
|
|
}
|
|
|
|
/* Minus (hyphen) at the end of a class is treated as a literal, so put
|
|
back the pointer and jump to handle the character that preceded it. */
|
|
|
|
if (*ptr == CHAR_NULL || (!inescq && *ptr == CHAR_RIGHT_SQUARE_BRACKET))
|
|
{
|
|
ptr = oldptr;
|
|
goto CLASS_SINGLE_CHARACTER;
|
|
}
|
|
|
|
/* Otherwise, we have a potential range; pick up the next character */
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf)
|
|
{ /* Braces are required because the */
|
|
GETCHARLEN(d, ptr, ptr); /* macro generates multiple statements */
|
|
}
|
|
else
|
|
#endif
|
|
d = *ptr; /* Not UTF mode */
|
|
|
|
/* The second part of a range can be a single-character escape
|
|
sequence, but not any of the other escapes. Perl treats a hyphen as a
|
|
literal in such circumstances. However, in Perl's warning mode, a
|
|
warning is given, so PCRE now faults it as it is almost certainly a
|
|
mistake on the user's part. */
|
|
|
|
if (!inescq)
|
|
{
|
|
if (d == CHAR_BACKSLASH)
|
|
{
|
|
int descape;
|
|
descape = PRIV(check_escape)(&ptr, cb->end_pattern, &d,
|
|
errorcodeptr, options, TRUE, cb);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
#ifdef EBCDIC
|
|
range_is_literal = FALSE;
|
|
#endif
|
|
/* 0 means a character was put into d; \b is backspace; any other
|
|
special causes an error. */
|
|
|
|
if (descape != 0)
|
|
{
|
|
if (descape == ESC_b) d = CHAR_BS; else
|
|
{
|
|
*errorcodeptr = ERR50;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* A hyphen followed by a POSIX class is treated in the same way. */
|
|
|
|
else if (d == CHAR_LEFT_SQUARE_BRACKET &&
|
|
(ptr[1] == CHAR_COLON || ptr[1] == CHAR_DOT ||
|
|
ptr[1] == CHAR_EQUALS_SIGN) &&
|
|
check_posix_syntax(ptr, &tempptr))
|
|
{
|
|
*errorcodeptr = ERR50;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
/* Check that the two values are in the correct order. Optimize
|
|
one-character ranges. */
|
|
|
|
if (d < c)
|
|
{
|
|
*errorcodeptr = ERR8;
|
|
goto FAILED;
|
|
}
|
|
if (d == c) goto CLASS_SINGLE_CHARACTER; /* A few lines below */
|
|
|
|
/* We have found a character range, so single character optimizations
|
|
cannot be done anymore. Any value greater than 1 indicates that there
|
|
is more than one character. */
|
|
|
|
class_one_char = 2;
|
|
|
|
/* Remember an explicit \r or \n, and add the range to the class. */
|
|
|
|
if (d == CHAR_CR || d == CHAR_NL) cb->external_flags |= PCRE2_HASCRORLF;
|
|
|
|
/* In an EBCDIC environment, Perl treats alphabetic ranges specially
|
|
because there are holes in the encoding, and simply using the range A-Z
|
|
(for example) would include the characters in the holes. This applies
|
|
only to literal ranges; [\xC1-\xE9] is different to [A-Z]. */
|
|
|
|
#ifdef EBCDIC
|
|
if (range_is_literal &&
|
|
(cb->ctypes[c] & ctype_letter) != 0 &&
|
|
(cb->ctypes[d] & ctype_letter) != 0 &&
|
|
(c <= CHAR_z) == (d <= CHAR_z))
|
|
{
|
|
uint32_t uc = (c <= CHAR_z)? 0 : 64;
|
|
uint32_t C = c - uc;
|
|
uint32_t D = d - uc;
|
|
|
|
if (C <= CHAR_i)
|
|
{
|
|
class_has_8bitchar +=
|
|
add_to_class(classbits, &class_uchardata, options, cb, C + uc,
|
|
((D < CHAR_i)? D : CHAR_i) + uc);
|
|
C = CHAR_j;
|
|
}
|
|
|
|
if (C <= D && C <= CHAR_r)
|
|
{
|
|
class_has_8bitchar +=
|
|
add_to_class(classbits, &class_uchardata, options, cb, C + uc,
|
|
((D < CHAR_r)? D : CHAR_r) + uc);
|
|
C = CHAR_s;
|
|
}
|
|
|
|
if (C <= D)
|
|
{
|
|
class_has_8bitchar +=
|
|
add_to_class(classbits, &class_uchardata, options, cb, C + uc,
|
|
D + uc);
|
|
}
|
|
}
|
|
else
|
|
#endif
|
|
class_has_8bitchar +=
|
|
add_to_class(classbits, &class_uchardata, options, cb, c, d);
|
|
goto CONTINUE_CLASS; /* Go get the next char in the class */
|
|
}
|
|
|
|
/* Handle a single character - we can get here for a normal non-escape
|
|
char, or after \ that introduces a single character or for an apparent
|
|
range that isn't. Only the value 1 matters for class_one_char, so don't
|
|
increase it if it is already 2 or more ... just in case there's a class
|
|
with a zillion characters in it. */
|
|
|
|
CLASS_SINGLE_CHARACTER:
|
|
if (class_one_char < 2) class_one_char++;
|
|
|
|
/* If class_one_char is 1 and xclass_has_prop is false, we have the first
|
|
single character in the class, and there have been no prior ranges, or
|
|
XCLASS items generated by escapes. If this is the final character in the
|
|
class, we can optimize by turning the item into a 1-character OP_CHAR[I]
|
|
if it's positive, or OP_NOT[I] if it's negative. In the positive case, it
|
|
can cause firstcu to be set. Otherwise, there can be no first char if
|
|
this item is first, whatever repeat count may follow. In the case of
|
|
reqcu, save the previous value for reinstating. */
|
|
|
|
if (!inescq &&
|
|
#ifdef SUPPORT_UNICODE
|
|
!xclass_has_prop &&
|
|
#endif
|
|
class_one_char == 1 && ptr[1] == CHAR_RIGHT_SQUARE_BRACKET)
|
|
{
|
|
ptr++;
|
|
zeroreqcu = reqcu;
|
|
zeroreqcuflags = reqcuflags;
|
|
|
|
if (negate_class)
|
|
{
|
|
#ifdef SUPPORT_UNICODE
|
|
int d;
|
|
#endif
|
|
if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE;
|
|
zerofirstcu = firstcu;
|
|
zerofirstcuflags = firstcuflags;
|
|
|
|
/* For caseless UTF mode, check whether this character has more than
|
|
one other case. If so, generate a special OP_NOTPROP item instead of
|
|
OP_NOTI. */
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf && (options & PCRE2_CASELESS) != 0 &&
|
|
(d = UCD_CASESET(c)) != 0)
|
|
{
|
|
*code++ = OP_NOTPROP;
|
|
*code++ = PT_CLIST;
|
|
*code++ = d;
|
|
}
|
|
else
|
|
#endif
|
|
/* Char has only one other case, or UCP not available */
|
|
|
|
{
|
|
*code++ = ((options & PCRE2_CASELESS) != 0)? OP_NOTI: OP_NOT;
|
|
code += PUTCHAR(c, code);
|
|
}
|
|
|
|
/* We are finished with this character class */
|
|
|
|
goto END_CLASS;
|
|
}
|
|
|
|
/* For a single, positive character, get the value into mcbuffer, and
|
|
then we can handle this with the normal one-character code. */
|
|
mclength = PUTCHAR(c, mcbuffer);
|
|
goto ONE_CHAR;
|
|
} /* End of 1-char optimization */
|
|
|
|
/* There is more than one character in the class, or an XCLASS item
|
|
has been generated. Add this character to the class. */
|
|
|
|
class_has_8bitchar +=
|
|
add_to_class(classbits, &class_uchardata, options, cb, c, c);
|
|
|
|
/* Continue to the next character in the class. Closing square bracket
|
|
not within \Q..\E ends the class. A NULL character terminates a
|
|
nested substitution string, but may be a data character in the main
|
|
pattern (tested at the start of this loop). */
|
|
|
|
CONTINUE_CLASS:
|
|
c = *(++ptr);
|
|
if (c == CHAR_NULL && cb->nestptr[0] != NULL)
|
|
{
|
|
ptr = cb->nestptr[0];
|
|
cb->nestptr[0] = cb->nestptr[1];
|
|
cb->nestptr[1] = NULL;
|
|
c = *(++ptr);
|
|
}
|
|
|
|
#ifdef SUPPORT_WIDE_CHARS
|
|
/* If any wide characters have been encountered, set xclass = TRUE. Then,
|
|
in the pre-compile phase, accumulate the length of the wide characters
|
|
and reset the pointer. This is so that very large classes that contain a
|
|
zillion wide characters do not overwrite the work space (which is on the
|
|
stack). */
|
|
|
|
if (class_uchardata > class_uchardata_base)
|
|
{
|
|
xclass = TRUE;
|
|
if (lengthptr != NULL)
|
|
{
|
|
*lengthptr += class_uchardata - class_uchardata_base;
|
|
class_uchardata = class_uchardata_base;
|
|
}
|
|
}
|
|
#endif
|
|
/* An unescaped ] ends the class */
|
|
|
|
if (c == CHAR_RIGHT_SQUARE_BRACKET && !inescq) break;
|
|
} /* End of main class-processing loop */
|
|
|
|
/* If this is the first thing in the branch, there can be no first char
|
|
setting, whatever the repeat count. Any reqcu setting must remain
|
|
unchanged after any kind of repeat. */
|
|
|
|
if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE;
|
|
zerofirstcu = firstcu;
|
|
zerofirstcuflags = firstcuflags;
|
|
zeroreqcu = reqcu;
|
|
zeroreqcuflags = reqcuflags;
|
|
|
|
/* If there are characters with values > 255, or Unicode property settings
|
|
(\p or \P), we have to compile an extended class, with its own opcode,
|
|
unless there were no property settings and there was a negated special such
|
|
as \S in the class, and PCRE2_UCP is not set, because in that case all
|
|
characters > 255 are in or not in the class, so any that were explicitly
|
|
given as well can be ignored.
|
|
|
|
In the UCP case, if certain negated POSIX classes ([:^ascii:] or
|
|
[^:xdigit:]) were present in a class, we either have to match or not match
|
|
all wide characters (depending on whether the whole class is or is not
|
|
negated). This requirement is indicated by match_all_or_no_wide_chars being
|
|
true. We do this by including an explicit range, which works in both cases.
|
|
|
|
If, when generating an xclass, there are no characters < 256, we can omit
|
|
the bitmap in the actual compiled code. */
|
|
|
|
#ifdef SUPPORT_WIDE_CHARS
|
|
#ifdef SUPPORT_UNICODE
|
|
if (xclass && (xclass_has_prop || !should_flip_negation ||
|
|
(options & PCRE2_UCP) != 0))
|
|
#elif PCRE2_CODE_UNIT_WIDTH != 8
|
|
if (xclass && (xclass_has_prop || !should_flip_negation))
|
|
#endif
|
|
{
|
|
if (match_all_or_no_wide_chars)
|
|
{
|
|
*class_uchardata++ = XCL_RANGE;
|
|
class_uchardata += PRIV(ord2utf)(0x100, class_uchardata);
|
|
class_uchardata += PRIV(ord2utf)(MAX_UTF_CODE_POINT, class_uchardata);
|
|
}
|
|
*class_uchardata++ = XCL_END; /* Marks the end of extra data */
|
|
*code++ = OP_XCLASS;
|
|
code += LINK_SIZE;
|
|
*code = negate_class? XCL_NOT:0;
|
|
if (xclass_has_prop) *code |= XCL_HASPROP;
|
|
|
|
/* If the map is required, move up the extra data to make room for it;
|
|
otherwise just move the code pointer to the end of the extra data. */
|
|
|
|
if (class_has_8bitchar > 0)
|
|
{
|
|
*code++ |= XCL_MAP;
|
|
memmove(code + (32 / sizeof(PCRE2_UCHAR)), code,
|
|
CU2BYTES(class_uchardata - code));
|
|
if (negate_class && !xclass_has_prop)
|
|
for (c = 0; c < 32; c++) classbits[c] = ~classbits[c];
|
|
memcpy(code, classbits, 32);
|
|
code = class_uchardata + (32 / sizeof(PCRE2_UCHAR));
|
|
}
|
|
else code = class_uchardata;
|
|
|
|
/* Now fill in the complete length of the item */
|
|
|
|
PUT(previous, 1, (int)(code - previous));
|
|
break; /* End of class handling */
|
|
}
|
|
#endif
|
|
|
|
/* If there are no characters > 255, or they are all to be included or
|
|
excluded, set the opcode to OP_CLASS or OP_NCLASS, depending on whether the
|
|
whole class was negated and whether there were negative specials such as \S
|
|
(non-UCP) in the class. Then copy the 32-byte map into the code vector,
|
|
negating it if necessary. */
|
|
|
|
*code++ = (negate_class == should_flip_negation) ? OP_CLASS : OP_NCLASS;
|
|
if (lengthptr == NULL) /* Save time in the pre-compile phase */
|
|
{
|
|
if (negate_class)
|
|
for (c = 0; c < 32; c++) classbits[c] = ~classbits[c];
|
|
memcpy(code, classbits, 32);
|
|
}
|
|
code += 32 / sizeof(PCRE2_UCHAR);
|
|
|
|
END_CLASS:
|
|
break;
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Various kinds of repeat; '{' is not necessarily a quantifier, but this
|
|
has been tested above. */
|
|
|
|
case CHAR_LEFT_CURLY_BRACKET:
|
|
if (!is_quantifier) goto NORMAL_CHAR;
|
|
ptr = read_repeat_counts(ptr+1, &repeat_min, &repeat_max, errorcodeptr);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
goto REPEAT;
|
|
|
|
case CHAR_ASTERISK:
|
|
repeat_min = 0;
|
|
repeat_max = -1;
|
|
goto REPEAT;
|
|
|
|
case CHAR_PLUS:
|
|
repeat_min = 1;
|
|
repeat_max = -1;
|
|
goto REPEAT;
|
|
|
|
case CHAR_QUESTION_MARK:
|
|
repeat_min = 0;
|
|
repeat_max = 1;
|
|
|
|
REPEAT:
|
|
if (previous == NULL)
|
|
{
|
|
*errorcodeptr = ERR9;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (repeat_min == 0)
|
|
{
|
|
firstcu = zerofirstcu; /* Adjust for zero repeat */
|
|
firstcuflags = zerofirstcuflags;
|
|
reqcu = zeroreqcu; /* Ditto */
|
|
reqcuflags = zeroreqcuflags;
|
|
}
|
|
|
|
/* Remember whether this is a variable length repeat */
|
|
|
|
reqvary = (repeat_min == repeat_max)? 0 : REQ_VARY;
|
|
|
|
op_type = 0; /* Default single-char op codes */
|
|
possessive_quantifier = FALSE; /* Default not possessive quantifier */
|
|
|
|
/* Save start of previous item, in case we have to move it up in order to
|
|
insert something before it. */
|
|
|
|
tempcode = previous;
|
|
|
|
/* Before checking for a possessive quantifier, we must skip over
|
|
whitespace and comments in extended mode because Perl allows white space at
|
|
this point. */
|
|
|
|
if ((options & PCRE2_EXTENDED) != 0)
|
|
{
|
|
ptr++;
|
|
for (;;)
|
|
{
|
|
while (MAX_255(*ptr) && (cb->ctypes[*ptr] & ctype_space) != 0) ptr++;
|
|
if (*ptr != CHAR_NUMBER_SIGN) break;
|
|
ptr++;
|
|
while (ptr < cb->end_pattern)
|
|
{
|
|
if (IS_NEWLINE(ptr)) /* For non-fixed-length newline cases, */
|
|
{ /* IS_NEWLINE sets cb->nllen. */
|
|
ptr += cb->nllen;
|
|
break;
|
|
}
|
|
ptr++;
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf) FORWARDCHAR(ptr);
|
|
#endif
|
|
} /* Loop for comment characters */
|
|
} /* Loop for multiple comments */
|
|
ptr--; /* Last code unit of previous character. */
|
|
}
|
|
|
|
/* If the next character is '+', we have a possessive quantifier. This
|
|
implies greediness, whatever the setting of the PCRE2_UNGREEDY option.
|
|
If the next character is '?' this is a minimizing repeat, by default,
|
|
but if PCRE2_UNGREEDY is set, it works the other way round. We change the
|
|
repeat type to the non-default. */
|
|
|
|
if (ptr[1] == CHAR_PLUS)
|
|
{
|
|
repeat_type = 0; /* Force greedy */
|
|
possessive_quantifier = TRUE;
|
|
ptr++;
|
|
}
|
|
else if (ptr[1] == CHAR_QUESTION_MARK)
|
|
{
|
|
repeat_type = greedy_non_default;
|
|
ptr++;
|
|
}
|
|
else repeat_type = greedy_default;
|
|
|
|
/* If the repeat is {1} we can ignore it. */
|
|
|
|
if (repeat_max == 1 && repeat_min == 1) goto END_REPEAT;
|
|
|
|
/* If previous was a recursion call, wrap it in atomic brackets so that
|
|
previous becomes the atomic group. All recursions were so wrapped in the
|
|
past, but it no longer happens for non-repeated recursions. In fact, the
|
|
repeated ones could be re-implemented independently so as not to need this,
|
|
but for the moment we rely on the code for repeating groups. */
|
|
|
|
if (*previous == OP_RECURSE)
|
|
{
|
|
memmove(previous + 1 + LINK_SIZE, previous, CU2BYTES(1 + LINK_SIZE));
|
|
*previous = OP_ONCE;
|
|
PUT(previous, 1, 2 + 2*LINK_SIZE);
|
|
previous[2 + 2*LINK_SIZE] = OP_KET;
|
|
PUT(previous, 3 + 2*LINK_SIZE, 2 + 2*LINK_SIZE);
|
|
code += 2 + 2 * LINK_SIZE;
|
|
length_prevgroup = 3 + 3*LINK_SIZE;
|
|
}
|
|
|
|
/* Now handle repetition for the different types of item. */
|
|
|
|
/* If previous was a character or negated character match, abolish the item
|
|
and generate a repeat item instead. If a char item has a minimum of more
|
|
than one, ensure that it is set in reqcu - it might not be if a sequence
|
|
such as x{3} is the first thing in a branch because the x will have gone
|
|
into firstcu instead. */
|
|
|
|
if (*previous == OP_CHAR || *previous == OP_CHARI
|
|
|| *previous == OP_NOT || *previous == OP_NOTI)
|
|
{
|
|
switch (*previous)
|
|
{
|
|
default: /* Make compiler happy. */
|
|
case OP_CHAR: op_type = OP_STAR - OP_STAR; break;
|
|
case OP_CHARI: op_type = OP_STARI - OP_STAR; break;
|
|
case OP_NOT: op_type = OP_NOTSTAR - OP_STAR; break;
|
|
case OP_NOTI: op_type = OP_NOTSTARI - OP_STAR; break;
|
|
}
|
|
|
|
/* Deal with UTF characters that take up more than one code unit. It's
|
|
easier to write this out separately than try to macrify it. Use c to
|
|
hold the length of the character in code units, plus UTF_LENGTH to flag
|
|
that it's a length rather than a small character. */
|
|
|
|
#ifdef MAYBE_UTF_MULTI
|
|
if (utf && NOT_FIRSTCU(code[-1]))
|
|
{
|
|
PCRE2_UCHAR *lastchar = code - 1;
|
|
BACKCHAR(lastchar);
|
|
c = (int)(code - lastchar); /* Length of UTF character */
|
|
memcpy(utf_units, lastchar, CU2BYTES(c)); /* Save the char */
|
|
c |= UTF_LENGTH; /* Flag c as a length */
|
|
}
|
|
else
|
|
#endif /* MAYBE_UTF_MULTI */
|
|
|
|
/* Handle the case of a single charater - either with no UTF support, or
|
|
with UTF disabled, or for a single-code-unit UTF character. */
|
|
{
|
|
c = code[-1];
|
|
if (*previous <= OP_CHARI && repeat_min > 1)
|
|
{
|
|
reqcu = c;
|
|
reqcuflags = req_caseopt | cb->req_varyopt;
|
|
}
|
|
}
|
|
|
|
goto OUTPUT_SINGLE_REPEAT; /* Code shared with single character types */
|
|
}
|
|
|
|
/* If previous was a character type match (\d or similar), abolish it and
|
|
create a suitable repeat item. The code is shared with single-character
|
|
repeats by setting op_type to add a suitable offset into repeat_type. Note
|
|
the the Unicode property types will be present only when SUPPORT_UNICODE is
|
|
defined, but we don't wrap the little bits of code here because it just
|
|
makes it horribly messy. */
|
|
|
|
else if (*previous < OP_EODN)
|
|
{
|
|
PCRE2_UCHAR *oldcode;
|
|
int prop_type, prop_value;
|
|
op_type = OP_TYPESTAR - OP_STAR; /* Use type opcodes */
|
|
c = *previous; /* Save previous opcode */
|
|
if (c == OP_PROP || c == OP_NOTPROP)
|
|
{
|
|
prop_type = previous[1];
|
|
prop_value = previous[2];
|
|
}
|
|
else
|
|
{
|
|
/* Come here from just above with a character in c */
|
|
OUTPUT_SINGLE_REPEAT:
|
|
prop_type = prop_value = -1;
|
|
}
|
|
|
|
/* At this point we either have prop_type == prop_value == -1 and either
|
|
a code point or a character type that is not OP_[NOT]PROP in c, or we
|
|
have OP_[NOT]PROP in c and prop_type/prop_value not negative. */
|
|
|
|
oldcode = code; /* Save where we were */
|
|
code = previous; /* Usually overwrite previous item */
|
|
|
|
/* If the maximum is zero then the minimum must also be zero; Perl allows
|
|
this case, so we do too - by simply omitting the item altogether. */
|
|
|
|
if (repeat_max == 0) goto END_REPEAT;
|
|
|
|
/* Combine the op_type with the repeat_type */
|
|
|
|
repeat_type += op_type;
|
|
|
|
/* A minimum of zero is handled either as the special case * or ?, or as
|
|
an UPTO, with the maximum given. */
|
|
|
|
if (repeat_min == 0)
|
|
{
|
|
if (repeat_max == -1) *code++ = OP_STAR + repeat_type;
|
|
else if (repeat_max == 1) *code++ = OP_QUERY + repeat_type;
|
|
else
|
|
{
|
|
*code++ = OP_UPTO + repeat_type;
|
|
PUT2INC(code, 0, repeat_max);
|
|
}
|
|
}
|
|
|
|
/* A repeat minimum of 1 is optimized into some special cases. If the
|
|
maximum is unlimited, we use OP_PLUS. Otherwise, the original item is
|
|
left in place and, if the maximum is greater than 1, we use OP_UPTO with
|
|
one less than the maximum. */
|
|
|
|
else if (repeat_min == 1)
|
|
{
|
|
if (repeat_max == -1)
|
|
*code++ = OP_PLUS + repeat_type;
|
|
else
|
|
{
|
|
code = oldcode; /* Leave previous item in place */
|
|
if (repeat_max == 1) goto END_REPEAT;
|
|
*code++ = OP_UPTO + repeat_type;
|
|
PUT2INC(code, 0, repeat_max - 1);
|
|
}
|
|
}
|
|
|
|
/* The case {n,n} is just an EXACT, while the general case {n,m} is
|
|
handled as an EXACT followed by an UPTO or STAR or QUERY. */
|
|
|
|
else
|
|
{
|
|
*code++ = OP_EXACT + op_type; /* NB EXACT doesn't have repeat_type */
|
|
PUT2INC(code, 0, repeat_min);
|
|
|
|
/* Unless repeat_max equals repeat_min, fill in the data for EXACT, and
|
|
then generate the second opcode. In UTF mode, multi-code-unit
|
|
characters have their length in c, with the UTF_LENGTH bit as a flag,
|
|
and the code units in utf_units. For a repeated Unicode property match,
|
|
there are two extra values that define the required property, and c
|
|
never has the UTF_LENGTH bit set. */
|
|
|
|
if (repeat_max != repeat_min)
|
|
{
|
|
#ifdef MAYBE_UTF_MULTI
|
|
if (utf && (c & UTF_LENGTH) != 0)
|
|
{
|
|
memcpy(code, utf_units, CU2BYTES(c & 7));
|
|
code += c & 7;
|
|
}
|
|
else
|
|
#endif /* MAYBE_UTF_MULTI */
|
|
{
|
|
*code++ = c;
|
|
if (prop_type >= 0)
|
|
{
|
|
*code++ = prop_type;
|
|
*code++ = prop_value;
|
|
}
|
|
}
|
|
|
|
/* Now set up the following opcode */
|
|
|
|
if (repeat_max < 0) *code++ = OP_STAR + repeat_type; else
|
|
{
|
|
repeat_max -= repeat_min;
|
|
if (repeat_max == 1)
|
|
{
|
|
*code++ = OP_QUERY + repeat_type;
|
|
}
|
|
else
|
|
{
|
|
*code++ = OP_UPTO + repeat_type;
|
|
PUT2INC(code, 0, repeat_max);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Fill in the character or character type for the final opcode. */
|
|
|
|
#ifdef MAYBE_UTF_MULTI
|
|
if (utf && (c & UTF_LENGTH) != 0)
|
|
{
|
|
memcpy(code, utf_units, CU2BYTES(c & 7));
|
|
code += c & 7;
|
|
}
|
|
else
|
|
#endif /* MAYBEW_UTF_MULTI */
|
|
{
|
|
*code++ = c;
|
|
if (prop_type >= 0)
|
|
{
|
|
*code++ = prop_type;
|
|
*code++ = prop_value;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If previous was a character class or a back reference, we put the repeat
|
|
stuff after it, but just skip the item if the repeat was {0,0}. */
|
|
|
|
else if (*previous == OP_CLASS || *previous == OP_NCLASS ||
|
|
#ifdef SUPPORT_WIDE_CHARS
|
|
*previous == OP_XCLASS ||
|
|
#endif
|
|
*previous == OP_REF || *previous == OP_REFI ||
|
|
*previous == OP_DNREF || *previous == OP_DNREFI)
|
|
{
|
|
if (repeat_max == 0)
|
|
{
|
|
code = previous;
|
|
goto END_REPEAT;
|
|
}
|
|
|
|
if (repeat_min == 0 && repeat_max == -1)
|
|
*code++ = OP_CRSTAR + repeat_type;
|
|
else if (repeat_min == 1 && repeat_max == -1)
|
|
*code++ = OP_CRPLUS + repeat_type;
|
|
else if (repeat_min == 0 && repeat_max == 1)
|
|
*code++ = OP_CRQUERY + repeat_type;
|
|
else
|
|
{
|
|
*code++ = OP_CRRANGE + repeat_type;
|
|
PUT2INC(code, 0, repeat_min);
|
|
if (repeat_max == -1) repeat_max = 0; /* 2-byte encoding for max */
|
|
PUT2INC(code, 0, repeat_max);
|
|
}
|
|
}
|
|
|
|
/* If previous was a bracket group, we may have to replicate it in certain
|
|
cases. Note that at this point we can encounter only the "basic" bracket
|
|
opcodes such as BRA and CBRA, as this is the place where they get converted
|
|
into the more special varieties such as BRAPOS and SBRA. A test for >=
|
|
OP_ASSERT and <= OP_COND includes ASSERT, ASSERT_NOT, ASSERTBACK,
|
|
ASSERTBACK_NOT, ONCE, ONCE_NC, BRA, BRAPOS, CBRA, CBRAPOS, and COND.
|
|
Originally, PCRE did not allow repetition of assertions, but now it does,
|
|
for Perl compatibility. */
|
|
|
|
else if (*previous >= OP_ASSERT && *previous <= OP_COND)
|
|
{
|
|
register int i;
|
|
int len = (int)(code - previous);
|
|
PCRE2_UCHAR *bralink = NULL;
|
|
PCRE2_UCHAR *brazeroptr = NULL;
|
|
|
|
/* Repeating a DEFINE group (or any group where the condition is always
|
|
FALSE and there is only one branch) is pointless, but Perl allows the
|
|
syntax, so we just ignore the repeat. */
|
|
|
|
if (*previous == OP_COND && previous[LINK_SIZE+1] == OP_FALSE &&
|
|
previous[GET(previous, 1)] != OP_ALT)
|
|
goto END_REPEAT;
|
|
|
|
/* There is no sense in actually repeating assertions. The only potential
|
|
use of repetition is in cases when the assertion is optional. Therefore,
|
|
if the minimum is greater than zero, just ignore the repeat. If the
|
|
maximum is not zero or one, set it to 1. */
|
|
|
|
if (*previous < OP_ONCE) /* Assertion */
|
|
{
|
|
if (repeat_min > 0) goto END_REPEAT;
|
|
if (repeat_max < 0 || repeat_max > 1) repeat_max = 1;
|
|
}
|
|
|
|
/* The case of a zero minimum is special because of the need to stick
|
|
OP_BRAZERO in front of it, and because the group appears once in the
|
|
data, whereas in other cases it appears the minimum number of times. For
|
|
this reason, it is simplest to treat this case separately, as otherwise
|
|
the code gets far too messy. There are several special subcases when the
|
|
minimum is zero. */
|
|
|
|
if (repeat_min == 0)
|
|
{
|
|
/* If the maximum is also zero, we used to just omit the group from the
|
|
output altogether, like this:
|
|
|
|
** if (repeat_max == 0)
|
|
** {
|
|
** code = previous;
|
|
** goto END_REPEAT;
|
|
** }
|
|
|
|
However, that fails when a group or a subgroup within it is referenced
|
|
as a subroutine from elsewhere in the pattern, so now we stick in
|
|
OP_SKIPZERO in front of it so that it is skipped on execution. As we
|
|
don't have a list of which groups are referenced, we cannot do this
|
|
selectively.
|
|
|
|
If the maximum is 1 or unlimited, we just have to stick in the BRAZERO
|
|
and do no more at this point. */
|
|
|
|
if (repeat_max <= 1) /* Covers 0, 1, and unlimited */
|
|
{
|
|
memmove(previous + 1, previous, CU2BYTES(len));
|
|
code++;
|
|
if (repeat_max == 0)
|
|
{
|
|
*previous++ = OP_SKIPZERO;
|
|
goto END_REPEAT;
|
|
}
|
|
brazeroptr = previous; /* Save for possessive optimizing */
|
|
*previous++ = OP_BRAZERO + repeat_type;
|
|
}
|
|
|
|
/* If the maximum is greater than 1 and limited, we have to replicate
|
|
in a nested fashion, sticking OP_BRAZERO before each set of brackets.
|
|
The first one has to be handled carefully because it's the original
|
|
copy, which has to be moved up. The remainder can be handled by code
|
|
that is common with the non-zero minimum case below. We have to
|
|
adjust the value or repeat_max, since one less copy is required. */
|
|
|
|
else
|
|
{
|
|
int offset;
|
|
memmove(previous + 2 + LINK_SIZE, previous, CU2BYTES(len));
|
|
code += 2 + LINK_SIZE;
|
|
*previous++ = OP_BRAZERO + repeat_type;
|
|
*previous++ = OP_BRA;
|
|
|
|
/* We chain together the bracket offset fields that have to be
|
|
filled in later when the ends of the brackets are reached. */
|
|
|
|
offset = (bralink == NULL)? 0 : (int)(previous - bralink);
|
|
bralink = previous;
|
|
PUTINC(previous, 0, offset);
|
|
}
|
|
|
|
repeat_max--;
|
|
}
|
|
|
|
/* If the minimum is greater than zero, replicate the group as many
|
|
times as necessary, and adjust the maximum to the number of subsequent
|
|
copies that we need. */
|
|
|
|
else
|
|
{
|
|
if (repeat_min > 1)
|
|
{
|
|
/* In the pre-compile phase, we don't actually do the replication. We
|
|
just adjust the length as if we had. Do some paranoid checks for
|
|
potential integer overflow. The INT64_OR_DOUBLE type is a 64-bit
|
|
integer type when available, otherwise double. */
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
size_t delta = (repeat_min - 1)*length_prevgroup;
|
|
if ((INT64_OR_DOUBLE)(repeat_min - 1)*
|
|
(INT64_OR_DOUBLE)length_prevgroup >
|
|
(INT64_OR_DOUBLE)INT_MAX ||
|
|
OFLOW_MAX - *lengthptr < delta)
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
goto FAILED;
|
|
}
|
|
*lengthptr += delta;
|
|
}
|
|
|
|
/* This is compiling for real. If there is a set first byte for
|
|
the group, and we have not yet set a "required byte", set it. */
|
|
|
|
else
|
|
{
|
|
if (groupsetfirstcu && reqcuflags < 0)
|
|
{
|
|
reqcu = firstcu;
|
|
reqcuflags = firstcuflags;
|
|
}
|
|
for (i = 1; i < repeat_min; i++)
|
|
{
|
|
memcpy(code, previous, CU2BYTES(len));
|
|
code += len;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (repeat_max > 0) repeat_max -= repeat_min;
|
|
}
|
|
|
|
/* This code is common to both the zero and non-zero minimum cases. If
|
|
the maximum is limited, it replicates the group in a nested fashion,
|
|
remembering the bracket starts on a stack. In the case of a zero minimum,
|
|
the first one was set up above. In all cases the repeat_max now specifies
|
|
the number of additional copies needed. Again, we must remember to
|
|
replicate entries on the forward reference list. */
|
|
|
|
if (repeat_max >= 0)
|
|
{
|
|
/* In the pre-compile phase, we don't actually do the replication. We
|
|
just adjust the length as if we had. For each repetition we must add 1
|
|
to the length for BRAZERO and for all but the last repetition we must
|
|
add 2 + 2*LINKSIZE to allow for the nesting that occurs. Do some
|
|
paranoid checks to avoid integer overflow. The INT64_OR_DOUBLE type is
|
|
a 64-bit integer type when available, otherwise double. */
|
|
|
|
if (lengthptr != NULL && repeat_max > 0)
|
|
{
|
|
size_t delta = repeat_max*(length_prevgroup + 1 + 2 + 2*LINK_SIZE) -
|
|
2 - 2*LINK_SIZE; /* Last one doesn't nest */
|
|
if ((INT64_OR_DOUBLE)repeat_max *
|
|
(INT64_OR_DOUBLE)(length_prevgroup + 1 + 2 + 2*LINK_SIZE)
|
|
> (INT64_OR_DOUBLE)INT_MAX ||
|
|
OFLOW_MAX - *lengthptr < delta)
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
goto FAILED;
|
|
}
|
|
*lengthptr += delta;
|
|
}
|
|
|
|
/* This is compiling for real */
|
|
|
|
else for (i = repeat_max - 1; i >= 0; i--)
|
|
{
|
|
*code++ = OP_BRAZERO + repeat_type;
|
|
|
|
/* All but the final copy start a new nesting, maintaining the
|
|
chain of brackets outstanding. */
|
|
|
|
if (i != 0)
|
|
{
|
|
int offset;
|
|
*code++ = OP_BRA;
|
|
offset = (bralink == NULL)? 0 : (int)(code - bralink);
|
|
bralink = code;
|
|
PUTINC(code, 0, offset);
|
|
}
|
|
|
|
memcpy(code, previous, CU2BYTES(len));
|
|
code += len;
|
|
}
|
|
|
|
/* Now chain through the pending brackets, and fill in their length
|
|
fields (which are holding the chain links pro tem). */
|
|
|
|
while (bralink != NULL)
|
|
{
|
|
int oldlinkoffset;
|
|
int offset = (int)(code - bralink + 1);
|
|
PCRE2_UCHAR *bra = code - offset;
|
|
oldlinkoffset = GET(bra, 1);
|
|
bralink = (oldlinkoffset == 0)? NULL : bralink - oldlinkoffset;
|
|
*code++ = OP_KET;
|
|
PUTINC(code, 0, offset);
|
|
PUT(bra, 1, offset);
|
|
}
|
|
}
|
|
|
|
/* If the maximum is unlimited, set a repeater in the final copy. For
|
|
ONCE brackets, that's all we need to do. However, possessively repeated
|
|
ONCE brackets can be converted into non-capturing brackets, as the
|
|
behaviour of (?:xx)++ is the same as (?>xx)++ and this saves having to
|
|
deal with possessive ONCEs specially.
|
|
|
|
Otherwise, when we are doing the actual compile phase, check to see
|
|
whether this group is one that could match an empty string. If so,
|
|
convert the initial operator to the S form (e.g. OP_BRA -> OP_SBRA) so
|
|
that runtime checking can be done. [This check is also applied to ONCE
|
|
groups at runtime, but in a different way.]
|
|
|
|
Then, if the quantifier was possessive and the bracket is not a
|
|
conditional, we convert the BRA code to the POS form, and the KET code to
|
|
KETRPOS. (It turns out to be convenient at runtime to detect this kind of
|
|
subpattern at both the start and at the end.) The use of special opcodes
|
|
makes it possible to reduce greatly the stack usage in pcre2_match(). If
|
|
the group is preceded by OP_BRAZERO, convert this to OP_BRAPOSZERO.
|
|
|
|
Then, if the minimum number of matches is 1 or 0, cancel the possessive
|
|
flag so that the default action below, of wrapping everything inside
|
|
atomic brackets, does not happen. When the minimum is greater than 1,
|
|
there will be earlier copies of the group, and so we still have to wrap
|
|
the whole thing. */
|
|
|
|
else
|
|
{
|
|
PCRE2_UCHAR *ketcode = code - 1 - LINK_SIZE;
|
|
PCRE2_UCHAR *bracode = ketcode - GET(ketcode, 1);
|
|
|
|
/* Convert possessive ONCE brackets to non-capturing */
|
|
|
|
if ((*bracode == OP_ONCE || *bracode == OP_ONCE_NC) &&
|
|
possessive_quantifier) *bracode = OP_BRA;
|
|
|
|
/* For non-possessive ONCE brackets, all we need to do is to
|
|
set the KET. */
|
|
|
|
if (*bracode == OP_ONCE || *bracode == OP_ONCE_NC)
|
|
*ketcode = OP_KETRMAX + repeat_type;
|
|
|
|
/* Handle non-ONCE brackets and possessive ONCEs (which have been
|
|
converted to non-capturing above). */
|
|
|
|
else
|
|
{
|
|
/* In the compile phase, check whether the group could match an empty
|
|
string. */
|
|
|
|
if (lengthptr == NULL)
|
|
{
|
|
PCRE2_UCHAR *scode = bracode;
|
|
do
|
|
{
|
|
int count = 0;
|
|
int rc = could_be_empty_branch(scode, ketcode, utf, cb, FALSE,
|
|
NULL, &count);
|
|
if (rc < 0)
|
|
{
|
|
*errorcodeptr = ERR86;
|
|
goto FAILED;
|
|
}
|
|
if (rc > 0)
|
|
{
|
|
*bracode += OP_SBRA - OP_BRA;
|
|
break;
|
|
}
|
|
scode += GET(scode, 1);
|
|
}
|
|
while (*scode == OP_ALT);
|
|
|
|
/* A conditional group with only one branch has an implicit empty
|
|
alternative branch. */
|
|
|
|
if (*bracode == OP_COND && bracode[GET(bracode,1)] != OP_ALT)
|
|
*bracode = OP_SCOND;
|
|
}
|
|
|
|
/* Handle possessive quantifiers. */
|
|
|
|
if (possessive_quantifier)
|
|
{
|
|
/* For COND brackets, we wrap the whole thing in a possessively
|
|
repeated non-capturing bracket, because we have not invented POS
|
|
versions of the COND opcodes. */
|
|
|
|
if (*bracode == OP_COND || *bracode == OP_SCOND)
|
|
{
|
|
int nlen = (int)(code - bracode);
|
|
memmove(bracode + 1 + LINK_SIZE, bracode, CU2BYTES(nlen));
|
|
code += 1 + LINK_SIZE;
|
|
nlen += 1 + LINK_SIZE;
|
|
*bracode = (*bracode == OP_COND)? OP_BRAPOS : OP_SBRAPOS;
|
|
*code++ = OP_KETRPOS;
|
|
PUTINC(code, 0, nlen);
|
|
PUT(bracode, 1, nlen);
|
|
}
|
|
|
|
/* For non-COND brackets, we modify the BRA code and use KETRPOS. */
|
|
|
|
else
|
|
{
|
|
*bracode += 1; /* Switch to xxxPOS opcodes */
|
|
*ketcode = OP_KETRPOS;
|
|
}
|
|
|
|
/* If the minimum is zero, mark it as possessive, then unset the
|
|
possessive flag when the minimum is 0 or 1. */
|
|
|
|
if (brazeroptr != NULL) *brazeroptr = OP_BRAPOSZERO;
|
|
if (repeat_min < 2) possessive_quantifier = FALSE;
|
|
}
|
|
|
|
/* Non-possessive quantifier */
|
|
|
|
else *ketcode = OP_KETRMAX + repeat_type;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If previous is OP_FAIL, it was generated by an empty class []
|
|
(PCRE2_ALLOW_EMPTY_CLASS is set). The other ways in which OP_FAIL can be
|
|
generated, that is by (*FAIL) or (?!), set previous to NULL, which gives a
|
|
"nothing to repeat" error above. We can just ignore the repeat in empty
|
|
class case. */
|
|
|
|
else if (*previous == OP_FAIL) goto END_REPEAT;
|
|
|
|
/* Else there's some kind of shambles */
|
|
|
|
else
|
|
{
|
|
*errorcodeptr = ERR10;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If the character following a repeat is '+', possessive_quantifier is
|
|
TRUE. For some opcodes, there are special alternative opcodes for this
|
|
case. For anything else, we wrap the entire repeated item inside OP_ONCE
|
|
brackets. Logically, the '+' notation is just syntactic sugar, taken from
|
|
Sun's Java package, but the special opcodes can optimize it.
|
|
|
|
Some (but not all) possessively repeated subpatterns have already been
|
|
completely handled in the code just above. For them, possessive_quantifier
|
|
is always FALSE at this stage. Note that the repeated item starts at
|
|
tempcode, not at previous, which might be the first part of a string whose
|
|
(former) last char we repeated. */
|
|
|
|
if (possessive_quantifier)
|
|
{
|
|
int len;
|
|
|
|
/* Possessifying an EXACT quantifier has no effect, so we can ignore it.
|
|
However, QUERY, STAR, or UPTO may follow (for quantifiers such as {5,6},
|
|
{5,}, or {5,10}). We skip over an EXACT item; if the length of what
|
|
remains is greater than zero, there's a further opcode that can be
|
|
handled. If not, do nothing, leaving the EXACT alone. */
|
|
|
|
switch(*tempcode)
|
|
{
|
|
case OP_TYPEEXACT:
|
|
tempcode += PRIV(OP_lengths)[*tempcode] +
|
|
((tempcode[1 + IMM2_SIZE] == OP_PROP
|
|
|| tempcode[1 + IMM2_SIZE] == OP_NOTPROP)? 2 : 0);
|
|
break;
|
|
|
|
/* CHAR opcodes are used for exacts whose count is 1. */
|
|
|
|
case OP_CHAR:
|
|
case OP_CHARI:
|
|
case OP_NOT:
|
|
case OP_NOTI:
|
|
case OP_EXACT:
|
|
case OP_EXACTI:
|
|
case OP_NOTEXACT:
|
|
case OP_NOTEXACTI:
|
|
tempcode += PRIV(OP_lengths)[*tempcode];
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf && HAS_EXTRALEN(tempcode[-1]))
|
|
tempcode += GET_EXTRALEN(tempcode[-1]);
|
|
#endif
|
|
break;
|
|
|
|
/* For the class opcodes, the repeat operator appears at the end;
|
|
adjust tempcode to point to it. */
|
|
|
|
case OP_CLASS:
|
|
case OP_NCLASS:
|
|
tempcode += 1 + 32/sizeof(PCRE2_UCHAR);
|
|
break;
|
|
|
|
#ifdef SUPPORT_WIDE_CHARS
|
|
case OP_XCLASS:
|
|
tempcode += GET(tempcode, 1);
|
|
break;
|
|
#endif
|
|
}
|
|
|
|
/* If tempcode is equal to code (which points to the end of the repeated
|
|
item), it means we have skipped an EXACT item but there is no following
|
|
QUERY, STAR, or UPTO; the value of len will be 0, and we do nothing. In
|
|
all other cases, tempcode will be pointing to the repeat opcode, and will
|
|
be less than code, so the value of len will be greater than 0. */
|
|
|
|
len = (int)(code - tempcode);
|
|
if (len > 0)
|
|
{
|
|
unsigned int repcode = *tempcode;
|
|
|
|
/* There is a table for possessifying opcodes, all of which are less
|
|
than OP_CALLOUT. A zero entry means there is no possessified version.
|
|
*/
|
|
|
|
if (repcode < OP_CALLOUT && opcode_possessify[repcode] > 0)
|
|
*tempcode = opcode_possessify[repcode];
|
|
|
|
/* For opcode without a special possessified version, wrap the item in
|
|
ONCE brackets. */
|
|
|
|
else
|
|
{
|
|
memmove(tempcode + 1 + LINK_SIZE, tempcode, CU2BYTES(len));
|
|
code += 1 + LINK_SIZE;
|
|
len += 1 + LINK_SIZE;
|
|
tempcode[0] = OP_ONCE;
|
|
*code++ = OP_KET;
|
|
PUTINC(code, 0, len);
|
|
PUT(tempcode, 1, len);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* In all case we no longer have a previous item. We also set the
|
|
"follows varying string" flag for subsequently encountered reqcus if
|
|
it isn't already set and we have just passed a varying length item. */
|
|
|
|
END_REPEAT:
|
|
previous = NULL;
|
|
cb->req_varyopt |= reqvary;
|
|
break;
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Start of nested parenthesized sub-expression, or lookahead or lookbehind
|
|
or option setting or condition or all the other extended parenthesis forms.
|
|
We must save the current high-water-mark for the forward reference list so
|
|
that we know where they start for this group. However, because the list may
|
|
be extended when there are very many forward references (usually the result
|
|
of a replicated inner group), we must use an offset rather than an absolute
|
|
address. Note that (?# comments are dealt with at the top of the loop;
|
|
they do not get this far. */
|
|
|
|
case CHAR_LEFT_PARENTHESIS:
|
|
ptr++;
|
|
|
|
/* Deal with various "verbs" that can be introduced by '*'. */
|
|
|
|
if (ptr[0] == CHAR_ASTERISK && (ptr[1] == ':'
|
|
|| (MAX_255(ptr[1]) && ((cb->ctypes[ptr[1]] & ctype_letter) != 0))))
|
|
{
|
|
int i, namelen;
|
|
int arglen = 0;
|
|
const char *vn = verbnames;
|
|
PCRE2_SPTR name = ptr + 1;
|
|
PCRE2_SPTR arg = NULL;
|
|
previous = NULL;
|
|
ptr++;
|
|
|
|
/* Increment ptr, set namelen, check length */
|
|
|
|
READ_NAME(ctype_letter, ERR60, *errorcodeptr);
|
|
|
|
/* It appears that Perl allows any characters whatsoever, other than
|
|
a closing parenthesis, to appear in arguments, so we no longer insist on
|
|
letters, digits, and underscores. Perl does not, however, do any
|
|
interpretation within arguments, and has no means of including a closing
|
|
parenthesis. PCRE supports escape processing but only when it is
|
|
requested by an option. Note that check_escape() will not return values
|
|
greater than the code unit maximum when not in UTF mode. */
|
|
|
|
if (*ptr == CHAR_COLON)
|
|
{
|
|
arg = ++ptr;
|
|
|
|
if ((options & PCRE2_ALT_VERBNAMES) == 0)
|
|
{
|
|
arglen = 0;
|
|
while (ptr < cb->end_pattern && *ptr != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
ptr++; /* Check length as we go */
|
|
arglen++; /* along, to avoid the */
|
|
if ((unsigned int)arglen > MAX_MARK) /* possibility of overflow. */
|
|
{
|
|
*errorcodeptr = ERR76;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
}
|
|
else
|
|
{
|
|
/* The length check is in process_verb_names() */
|
|
arglen = process_verb_name(&ptr, NULL, errorcodeptr, options,
|
|
utf, cb);
|
|
if (arglen < 0) goto FAILED;
|
|
}
|
|
}
|
|
|
|
if (*ptr != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
*errorcodeptr = ERR60;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Scan the table of verb names */
|
|
|
|
for (i = 0; i < verbcount; i++)
|
|
{
|
|
if (namelen == verbs[i].len &&
|
|
PRIV(strncmp_c8)(name, vn, namelen) == 0)
|
|
{
|
|
int setverb;
|
|
|
|
/* Check for open captures before ACCEPT and convert it to
|
|
ASSERT_ACCEPT if in an assertion. */
|
|
|
|
if (verbs[i].op == OP_ACCEPT)
|
|
{
|
|
open_capitem *oc;
|
|
if (arglen != 0)
|
|
{
|
|
*errorcodeptr = ERR59;
|
|
goto FAILED;
|
|
}
|
|
cb->had_accept = TRUE;
|
|
/* In the first pass, just accumulate the length required;
|
|
otherwise hitting (*ACCEPT) inside many nested parentheses can
|
|
cause workspace overflow. */
|
|
for (oc = cb->open_caps; oc != NULL; oc = oc->next)
|
|
{
|
|
if (lengthptr != NULL)
|
|
{
|
|
*lengthptr += CU2BYTES(1) + IMM2_SIZE;
|
|
}
|
|
else
|
|
{
|
|
*code++ = OP_CLOSE;
|
|
PUT2INC(code, 0, oc->number);
|
|
}
|
|
}
|
|
|
|
setverb = *code++ =
|
|
(cb->assert_depth > 0)? OP_ASSERT_ACCEPT : OP_ACCEPT;
|
|
|
|
/* Do not set firstcu after *ACCEPT */
|
|
if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE;
|
|
}
|
|
|
|
/* Handle other cases with/without an argument */
|
|
|
|
else if (arglen == 0) /* There is no argument */
|
|
{
|
|
if (verbs[i].op < 0) /* Argument is mandatory */
|
|
{
|
|
*errorcodeptr = ERR66;
|
|
goto FAILED;
|
|
}
|
|
setverb = *code++ = verbs[i].op;
|
|
}
|
|
|
|
else /* An argument is present */
|
|
{
|
|
if (verbs[i].op_arg < 0) /* Argument is forbidden */
|
|
{
|
|
*errorcodeptr = ERR59;
|
|
goto FAILED;
|
|
}
|
|
setverb = *code++ = verbs[i].op_arg;
|
|
|
|
/* Arguments can be very long, especially in 16- and 32-bit modes,
|
|
and can overflow the workspace in the first pass. Instead of
|
|
putting the argument into memory, we just update the length counter
|
|
and set up an empty argument. */
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
*lengthptr += arglen;
|
|
*code++ = 0;
|
|
}
|
|
else
|
|
{
|
|
*code++ = arglen;
|
|
if ((options & PCRE2_ALT_VERBNAMES) != 0)
|
|
{
|
|
PCRE2_UCHAR *memcode = code; /* code is "register" */
|
|
(void)process_verb_name(&arg, &memcode, errorcodeptr, options,
|
|
utf, cb);
|
|
code = memcode;
|
|
}
|
|
else /* No argument processing */
|
|
{
|
|
memcpy(code, arg, CU2BYTES(arglen));
|
|
code += arglen;
|
|
}
|
|
}
|
|
|
|
*code++ = 0;
|
|
}
|
|
|
|
switch (setverb)
|
|
{
|
|
case OP_THEN:
|
|
case OP_THEN_ARG:
|
|
cb->external_flags |= PCRE2_HASTHEN;
|
|
break;
|
|
|
|
case OP_PRUNE:
|
|
case OP_PRUNE_ARG:
|
|
case OP_SKIP:
|
|
case OP_SKIP_ARG:
|
|
cb->had_pruneorskip = TRUE;
|
|
break;
|
|
}
|
|
|
|
break; /* Found verb, exit loop */
|
|
}
|
|
|
|
vn += verbs[i].len + 1;
|
|
}
|
|
|
|
if (i < verbcount) continue; /* Successfully handled a verb */
|
|
*errorcodeptr = ERR60; /* Verb not recognized */
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Initialization for "real" parentheses */
|
|
|
|
newoptions = options;
|
|
skipunits = 0;
|
|
bravalue = OP_CBRA;
|
|
reset_bracount = FALSE;
|
|
|
|
/* Deal with the extended parentheses; all are introduced by '?', and the
|
|
appearance of any of them means that this is not a capturing group. */
|
|
|
|
if (*ptr == CHAR_QUESTION_MARK)
|
|
{
|
|
int i, count;
|
|
int namelen; /* Must be signed */
|
|
uint32_t index;
|
|
uint32_t set, unset, *optset;
|
|
named_group *ng;
|
|
PCRE2_SPTR name;
|
|
PCRE2_UCHAR *slot;
|
|
|
|
switch (*(++ptr))
|
|
{
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_VERTICAL_LINE: /* Reset capture count for each branch */
|
|
reset_bracount = TRUE;
|
|
/* Fall through */
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_COLON: /* Non-capturing bracket */
|
|
bravalue = OP_BRA;
|
|
ptr++;
|
|
break;
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_LEFT_PARENTHESIS:
|
|
bravalue = OP_COND; /* Conditional group */
|
|
tempptr = ptr;
|
|
|
|
/* A condition can be an assertion, a number (referring to a numbered
|
|
group's having been set), a name (referring to a named group), or 'R',
|
|
referring to recursion. R<digits> and R&name are also permitted for
|
|
recursion tests.
|
|
|
|
There are ways of testing a named group: (?(name)) is used by Python;
|
|
Perl 5.10 onwards uses (?(<name>) or (?('name')).
|
|
|
|
There is one unfortunate ambiguity, caused by history. 'R' can be the
|
|
recursive thing or the name 'R' (and similarly for 'R' followed by
|
|
digits). We look for a name first; if not found, we try the other case.
|
|
|
|
For compatibility with auto-callouts, we allow a callout to be
|
|
specified before a condition that is an assertion. First, check for the
|
|
syntax of a callout; if found, adjust the temporary pointer that is
|
|
used to check for an assertion condition. That's all that is needed! */
|
|
|
|
if (ptr[1] == CHAR_QUESTION_MARK && ptr[2] == CHAR_C)
|
|
{
|
|
if (IS_DIGIT(ptr[3]) || ptr[3] == CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
for (i = 3;; i++) if (!IS_DIGIT(ptr[i])) break;
|
|
if (ptr[i] == CHAR_RIGHT_PARENTHESIS)
|
|
tempptr += i + 1;
|
|
}
|
|
else
|
|
{
|
|
uint32_t delimiter = 0;
|
|
for (i = 0; PRIV(callout_start_delims)[i] != 0; i++)
|
|
{
|
|
if (ptr[3] == PRIV(callout_start_delims)[i])
|
|
{
|
|
delimiter = PRIV(callout_end_delims)[i];
|
|
break;
|
|
}
|
|
}
|
|
if (delimiter != 0)
|
|
{
|
|
for (i = 4; ptr + i < cb->end_pattern; i++)
|
|
{
|
|
if (ptr[i] == delimiter)
|
|
{
|
|
if (ptr[i+1] == delimiter) i++;
|
|
else
|
|
{
|
|
if (ptr[i+1] == CHAR_RIGHT_PARENTHESIS) tempptr += i + 2;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* tempptr should now be pointing to the opening parenthesis of the
|
|
assertion condition. */
|
|
|
|
if (*tempptr != CHAR_LEFT_PARENTHESIS)
|
|
{
|
|
*errorcodeptr = ERR28;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
/* For conditions that are assertions, check the syntax, and then exit
|
|
the switch. This will take control down to where bracketed groups
|
|
are processed. The assertion will be handled as part of the group,
|
|
but we need to identify this case because the conditional assertion may
|
|
not be quantifier. */
|
|
|
|
if (tempptr[1] == CHAR_QUESTION_MARK &&
|
|
(tempptr[2] == CHAR_EQUALS_SIGN ||
|
|
tempptr[2] == CHAR_EXCLAMATION_MARK ||
|
|
(tempptr[2] == CHAR_LESS_THAN_SIGN &&
|
|
(tempptr[3] == CHAR_EQUALS_SIGN ||
|
|
tempptr[3] == CHAR_EXCLAMATION_MARK))))
|
|
{
|
|
cb->iscondassert = TRUE;
|
|
break;
|
|
}
|
|
|
|
/* Other conditions use OP_CREF/OP_DNCREF/OP_RREF/OP_DNRREF, and all
|
|
need to skip at least 1+IMM2_SIZE bytes at the start of the group. */
|
|
|
|
code[1+LINK_SIZE] = OP_CREF;
|
|
skipunits = 1+IMM2_SIZE;
|
|
refsign = -1; /* => not a number */
|
|
namelen = -1; /* => not a name; must set to avoid warning */
|
|
name = NULL; /* Always set to avoid warning */
|
|
recno = 0; /* Always set to avoid warning */
|
|
|
|
/* Point at character after (?( */
|
|
|
|
ptr++;
|
|
|
|
/* Check for (?(VERSION[>]=n.m), which is a facility whereby indirect
|
|
users of PCRE2 via an application can discover which release of PCRE2
|
|
is being used. */
|
|
|
|
if (PRIV(strncmp_c8)(ptr, STRING_VERSION, 7) == 0 &&
|
|
ptr[7] != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
BOOL ge = FALSE;
|
|
int major = 0;
|
|
int minor = 0;
|
|
|
|
ptr += 7;
|
|
if (*ptr == CHAR_GREATER_THAN_SIGN)
|
|
{
|
|
ge = TRUE;
|
|
ptr++;
|
|
}
|
|
|
|
/* NOTE: cannot write IS_DIGIT(*(++ptr)) here because IS_DIGIT
|
|
references its argument twice. */
|
|
|
|
if (*ptr != CHAR_EQUALS_SIGN || (ptr++, !IS_DIGIT(*ptr)))
|
|
{
|
|
*errorcodeptr = ERR79;
|
|
goto FAILED;
|
|
}
|
|
|
|
while (IS_DIGIT(*ptr)) major = major * 10 + *ptr++ - '0';
|
|
if (*ptr == CHAR_DOT)
|
|
{
|
|
ptr++;
|
|
while (IS_DIGIT(*ptr)) minor = minor * 10 + *ptr++ - '0';
|
|
if (minor < 10) minor *= 10;
|
|
}
|
|
|
|
if (*ptr != CHAR_RIGHT_PARENTHESIS || minor > 99)
|
|
{
|
|
*errorcodeptr = ERR79;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (ge)
|
|
code[1+LINK_SIZE] = ((PCRE2_MAJOR > major) ||
|
|
(PCRE2_MAJOR == major && PCRE2_MINOR >= minor))?
|
|
OP_TRUE : OP_FALSE;
|
|
else
|
|
code[1+LINK_SIZE] = (PCRE2_MAJOR == major && PCRE2_MINOR == minor)?
|
|
OP_TRUE : OP_FALSE;
|
|
|
|
ptr++;
|
|
skipunits = 1;
|
|
break; /* End of condition processing */
|
|
}
|
|
|
|
/* Check for a test for recursion in a named group. */
|
|
|
|
if (*ptr == CHAR_R && ptr[1] == CHAR_AMPERSAND)
|
|
{
|
|
terminator = -1;
|
|
ptr += 2;
|
|
code[1+LINK_SIZE] = OP_RREF; /* Change the type of test */
|
|
}
|
|
|
|
/* Check for a test for a named group's having been set, using the Perl
|
|
syntax (?(<name>) or (?('name'), and also allow for the original PCRE
|
|
syntax of (?(name) or for (?(+n), (?(-n), and just (?(n). */
|
|
|
|
else if (*ptr == CHAR_LESS_THAN_SIGN)
|
|
{
|
|
terminator = CHAR_GREATER_THAN_SIGN;
|
|
ptr++;
|
|
}
|
|
else if (*ptr == CHAR_APOSTROPHE)
|
|
{
|
|
terminator = CHAR_APOSTROPHE;
|
|
ptr++;
|
|
}
|
|
else
|
|
{
|
|
terminator = CHAR_NULL;
|
|
if (*ptr == CHAR_MINUS || *ptr == CHAR_PLUS) refsign = *ptr++;
|
|
else if (IS_DIGIT(*ptr)) refsign = 0;
|
|
}
|
|
|
|
/* Handle a number */
|
|
|
|
if (refsign >= 0)
|
|
{
|
|
while (IS_DIGIT(*ptr))
|
|
{
|
|
if (recno > INT_MAX / 10 - 1) /* Integer overflow */
|
|
{
|
|
while (IS_DIGIT(*ptr)) ptr++;
|
|
*errorcodeptr = ERR61;
|
|
goto FAILED;
|
|
}
|
|
recno = recno * 10 + (int)(*ptr - CHAR_0);
|
|
ptr++;
|
|
}
|
|
}
|
|
|
|
/* Otherwise we expect to read a name; anything else is an error. When
|
|
the referenced name is one of a number of duplicates, a different
|
|
opcode is used and it needs more memory. Unfortunately we cannot tell
|
|
whether this is the case in the first pass, so we have to allow for
|
|
more memory always. In the second pass, the additional to skipunits
|
|
happens later. */
|
|
|
|
else
|
|
{
|
|
if (IS_DIGIT(*ptr))
|
|
{
|
|
*errorcodeptr = ERR44; /* Group name must start with non-digit */
|
|
goto FAILED;
|
|
}
|
|
if (!MAX_255(*ptr) || (cb->ctypes[*ptr] & ctype_word) == 0)
|
|
{
|
|
*errorcodeptr = ERR28; /* Assertion expected */
|
|
goto FAILED;
|
|
}
|
|
name = ptr;
|
|
/* Increment ptr, set namelen, check length */
|
|
READ_NAME(ctype_word, ERR48, *errorcodeptr);
|
|
if (lengthptr != NULL) skipunits += IMM2_SIZE;
|
|
}
|
|
|
|
/* Check the terminator */
|
|
|
|
if ((terminator > 0 && *ptr++ != (PCRE2_UCHAR)terminator) ||
|
|
*ptr++ != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
ptr--; /* Error offset */
|
|
*errorcodeptr = ERR26; /* Malformed number or name */
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Do no further checking in the pre-compile phase. */
|
|
|
|
if (lengthptr != NULL) break;
|
|
|
|
/* In the real compile we do the work of looking for the actual
|
|
reference. If refsign is not negative, it means we have a number in
|
|
recno. */
|
|
|
|
if (refsign >= 0)
|
|
{
|
|
if (recno <= 0)
|
|
{
|
|
*errorcodeptr = ERR35;
|
|
goto FAILED;
|
|
}
|
|
if (refsign != 0) recno = (refsign == CHAR_MINUS)?
|
|
(cb->bracount + 1) - recno : recno + cb->bracount;
|
|
if (recno <= 0 || (uint32_t)recno > cb->final_bracount)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
PUT2(code, 2+LINK_SIZE, recno);
|
|
if ((uint32_t)recno > cb->top_backref) cb->top_backref = recno;
|
|
break;
|
|
}
|
|
|
|
/* Otherwise look for the name. */
|
|
|
|
slot = cb->name_table;
|
|
for (i = 0; i < cb->names_found; i++)
|
|
{
|
|
if (PRIV(strncmp)(name, slot+IMM2_SIZE, namelen) == 0) break;
|
|
slot += cb->name_entry_size;
|
|
}
|
|
|
|
/* Found the named subpattern. If the name is duplicated, add one to
|
|
the opcode to change CREF/RREF into DNCREF/DNRREF and insert
|
|
appropriate data values. Otherwise, just insert the unique subpattern
|
|
number. */
|
|
|
|
if (i < cb->names_found)
|
|
{
|
|
int offset = i; /* Offset of first name found */
|
|
|
|
count = 0;
|
|
for (;;)
|
|
{
|
|
recno = GET2(slot, 0); /* Number for last found */
|
|
if ((uint32_t)recno > cb->top_backref) cb->top_backref = recno;
|
|
count++;
|
|
if (++i >= cb->names_found) break;
|
|
slot += cb->name_entry_size;
|
|
if (PRIV(strncmp)(name, slot+IMM2_SIZE, namelen) != 0 ||
|
|
(slot+IMM2_SIZE)[namelen] != 0) break;
|
|
}
|
|
|
|
if (count > 1)
|
|
{
|
|
PUT2(code, 2+LINK_SIZE, offset);
|
|
PUT2(code, 2+LINK_SIZE+IMM2_SIZE, count);
|
|
skipunits += IMM2_SIZE;
|
|
code[1+LINK_SIZE]++;
|
|
}
|
|
else /* Not a duplicated name */
|
|
{
|
|
PUT2(code, 2+LINK_SIZE, recno);
|
|
}
|
|
}
|
|
|
|
/* If terminator == CHAR_NULL it means that the name followed directly
|
|
after the opening parenthesis [e.g. (?(abc)...] and in this case there
|
|
are some further alternatives to try. For the cases where terminator !=
|
|
CHAR_NULL [things like (?(<name>... or (?('name')... or (?(R&name)... ]
|
|
we have now checked all the possibilities, so give an error. */
|
|
|
|
else if (terminator != CHAR_NULL)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Check for (?(R) for recursion. Allow digits after R to specify a
|
|
specific group number. */
|
|
|
|
else if (*name == CHAR_R)
|
|
{
|
|
recno = 0;
|
|
for (i = 1; i < namelen; i++)
|
|
{
|
|
if (!IS_DIGIT(name[i]))
|
|
{
|
|
*errorcodeptr = ERR15; /* Non-existent subpattern */
|
|
goto FAILED;
|
|
}
|
|
if (recno > INT_MAX / 10 - 1) /* Integer overflow */
|
|
{
|
|
*errorcodeptr = ERR61;
|
|
goto FAILED;
|
|
}
|
|
recno = recno * 10 + name[i] - CHAR_0;
|
|
}
|
|
if (recno == 0) recno = RREF_ANY;
|
|
code[1+LINK_SIZE] = OP_RREF; /* Change test type */
|
|
PUT2(code, 2+LINK_SIZE, recno);
|
|
}
|
|
|
|
/* Similarly, check for the (?(DEFINE) "condition", which is always
|
|
false. During compilation we set OP_DEFINE to distinguish this from
|
|
other OP_FALSE conditions so that it can be checked for having only one
|
|
branch, but after that the opcode is changed to OP_FALSE. */
|
|
|
|
else if (namelen == 6 && PRIV(strncmp_c8)(name, STRING_DEFINE, 6) == 0)
|
|
{
|
|
code[1+LINK_SIZE] = OP_DEFINE;
|
|
skipunits = 1;
|
|
}
|
|
|
|
/* Reference to an unidentified subpattern. */
|
|
|
|
else
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
break;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_EQUALS_SIGN: /* Positive lookahead */
|
|
bravalue = OP_ASSERT;
|
|
cb->assert_depth += 1;
|
|
ptr++;
|
|
break;
|
|
|
|
/* Optimize (?!) to (*FAIL) unless it is quantified - which is a weird
|
|
thing to do, but Perl allows all assertions to be quantified, and when
|
|
they contain capturing parentheses there may be a potential use for
|
|
this feature. Not that that applies to a quantified (?!) but we allow
|
|
it for uniformity. */
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_EXCLAMATION_MARK: /* Negative lookahead */
|
|
ptr++;
|
|
if (*ptr == CHAR_RIGHT_PARENTHESIS && ptr[1] != CHAR_ASTERISK &&
|
|
ptr[1] != CHAR_PLUS && ptr[1] != CHAR_QUESTION_MARK &&
|
|
(ptr[1] != CHAR_LEFT_CURLY_BRACKET || !is_counted_repeat(ptr+2)))
|
|
{
|
|
*code++ = OP_FAIL;
|
|
previous = NULL;
|
|
continue;
|
|
}
|
|
bravalue = OP_ASSERT_NOT;
|
|
cb->assert_depth += 1;
|
|
break;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_LESS_THAN_SIGN: /* Lookbehind or named define */
|
|
switch (ptr[1])
|
|
{
|
|
case CHAR_EQUALS_SIGN: /* Positive lookbehind */
|
|
bravalue = OP_ASSERTBACK;
|
|
cb->assert_depth += 1;
|
|
ptr += 2;
|
|
break;
|
|
|
|
case CHAR_EXCLAMATION_MARK: /* Negative lookbehind */
|
|
bravalue = OP_ASSERTBACK_NOT;
|
|
cb->assert_depth += 1;
|
|
ptr += 2;
|
|
break;
|
|
|
|
/* Must be a name definition - as the syntax was checked in the
|
|
pre-pass, we can assume here that it is valid. Skip over the name
|
|
and go to handle the numbered group. */
|
|
|
|
default:
|
|
while (*(++ptr) != CHAR_GREATER_THAN_SIGN);
|
|
ptr++;
|
|
goto NUMBERED_GROUP;
|
|
}
|
|
break;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_GREATER_THAN_SIGN: /* One-time brackets */
|
|
bravalue = OP_ONCE;
|
|
ptr++;
|
|
break;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_C: /* Callout */
|
|
previous_callout = code; /* Save for later completion */
|
|
after_manual_callout = 1; /* Skip one item before completing */
|
|
ptr++; /* Character after (?C */
|
|
|
|
/* A callout may have a string argument, delimited by one of a fixed
|
|
number of characters, or an undelimited numerical argument, or no
|
|
argument, which is the same as (?C0). Different opcodes are used for
|
|
the two cases. */
|
|
|
|
if (*ptr != CHAR_RIGHT_PARENTHESIS && !IS_DIGIT(*ptr))
|
|
{
|
|
uint32_t delimiter = 0;
|
|
|
|
for (i = 0; PRIV(callout_start_delims)[i] != 0; i++)
|
|
{
|
|
if (*ptr == PRIV(callout_start_delims)[i])
|
|
{
|
|
delimiter = PRIV(callout_end_delims)[i];
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (delimiter == 0)
|
|
{
|
|
*errorcodeptr = ERR82;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* During the pre-compile phase, we parse the string and update the
|
|
length. There is no need to generate any code. (In fact, the string
|
|
has already been parsed in the pre-pass that looks for named
|
|
parentheses, but it does no harm to leave this code in.) */
|
|
|
|
if (lengthptr != NULL) /* Only check the string */
|
|
{
|
|
PCRE2_SPTR start = ptr;
|
|
do
|
|
{
|
|
if (++ptr >= cb->end_pattern)
|
|
{
|
|
*errorcodeptr = ERR81;
|
|
ptr = start; /* To give a more useful message */
|
|
goto FAILED;
|
|
}
|
|
if (ptr[0] == delimiter && ptr[1] == delimiter) ptr += 2;
|
|
}
|
|
while (ptr[0] != delimiter);
|
|
|
|
/* Start points to the opening delimiter, ptr points to the
|
|
closing delimiter. We must allow for including the delimiter and
|
|
for the terminating zero. Any doubled delimiters within the string
|
|
make this an overestimate, but it is not worth bothering about. */
|
|
|
|
(*lengthptr) += (ptr - start) + 2 + (1 + 4*LINK_SIZE);
|
|
}
|
|
|
|
/* In the real compile we can copy the string, knowing that it is
|
|
syntactically OK. The starting delimiter is included so that the
|
|
client can discover it if they want. We also pass the start offset to
|
|
help a script language give better error messages. */
|
|
|
|
else
|
|
{
|
|
PCRE2_UCHAR *callout_string = code + (1 + 4*LINK_SIZE);
|
|
*callout_string++ = *ptr++;
|
|
PUT(code, 1 + 3*LINK_SIZE, (int)(ptr - cb->start_pattern)); /* Start offset */
|
|
for(;;)
|
|
{
|
|
if (*ptr == delimiter)
|
|
{
|
|
if (ptr[1] == delimiter) ptr++; else break;
|
|
}
|
|
*callout_string++ = *ptr++;
|
|
}
|
|
*callout_string++ = CHAR_NULL;
|
|
code[0] = OP_CALLOUT_STR;
|
|
PUT(code, 1, (int)(ptr + 2 - cb->start_pattern)); /* Next offset */
|
|
PUT(code, 1 + LINK_SIZE, 0); /* Default length */
|
|
PUT(code, 1 + 2*LINK_SIZE, /* Compute size */
|
|
(int)(callout_string - code));
|
|
code = callout_string;
|
|
}
|
|
|
|
/* Advance to what should be the closing parenthesis, which is
|
|
checked below. */
|
|
|
|
ptr++;
|
|
}
|
|
|
|
/* Handle a callout with an optional numerical argument, which must be
|
|
less than or equal to 255. A missing argument gives 0. */
|
|
|
|
else
|
|
{
|
|
int n = 0;
|
|
code[0] = OP_CALLOUT; /* Numerical callout */
|
|
while (IS_DIGIT(*ptr))
|
|
{
|
|
n = n * 10 + *ptr++ - CHAR_0;
|
|
if (n > 255)
|
|
{
|
|
*errorcodeptr = ERR38;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
PUT(code, 1, (int)(ptr - cb->start_pattern + 1)); /* Next offset */
|
|
PUT(code, 1 + LINK_SIZE, 0); /* Default length */
|
|
code[1 + 2*LINK_SIZE] = n; /* Callout number */
|
|
code += PRIV(OP_lengths)[OP_CALLOUT];
|
|
}
|
|
|
|
/* Both formats must have a closing parenthesis */
|
|
|
|
if (*ptr != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
*errorcodeptr = ERR39;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Callouts cannot be quantified. */
|
|
|
|
previous = NULL;
|
|
continue;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_P: /* Python-style named subpattern handling */
|
|
if (*(++ptr) == CHAR_EQUALS_SIGN ||
|
|
*ptr == CHAR_GREATER_THAN_SIGN) /* Reference or recursion */
|
|
{
|
|
is_recurse = *ptr == CHAR_GREATER_THAN_SIGN;
|
|
terminator = CHAR_RIGHT_PARENTHESIS;
|
|
goto NAMED_REF_OR_RECURSE;
|
|
}
|
|
else if (*ptr != CHAR_LESS_THAN_SIGN) /* Test for Python-style defn */
|
|
{
|
|
*errorcodeptr = ERR41;
|
|
goto FAILED;
|
|
}
|
|
/* Fall through to handle (?P< as (?< is handled */
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_APOSTROPHE: /* Define a name - note fall through above */
|
|
|
|
/* The syntax was checked and the list of names was set up in the
|
|
pre-pass, so there is nothing to be done now except to skip over the
|
|
name. */
|
|
|
|
terminator = (*ptr == CHAR_LESS_THAN_SIGN)?
|
|
CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
|
|
while (*(++ptr) != (unsigned int)terminator);
|
|
ptr++;
|
|
goto NUMBERED_GROUP; /* Set up numbered group */
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_AMPERSAND: /* Perl recursion/subroutine syntax */
|
|
terminator = CHAR_RIGHT_PARENTHESIS;
|
|
is_recurse = TRUE;
|
|
/* Fall through */
|
|
|
|
/* We come here from the Python syntax above that handles both
|
|
references (?P=name) and recursion (?P>name), as well as falling
|
|
through from the Perl recursion syntax (?&name). We also come here from
|
|
the Perl \k<name> or \k'name' back reference syntax and the \k{name}
|
|
.NET syntax, and the Oniguruma \g<...> and \g'...' subroutine syntax. */
|
|
|
|
NAMED_REF_OR_RECURSE:
|
|
name = ++ptr;
|
|
if (IS_DIGIT(*ptr))
|
|
{
|
|
*errorcodeptr = ERR44; /* Group name must start with non-digit */
|
|
goto FAILED;
|
|
}
|
|
/* Increment ptr, set namelen, check length */
|
|
READ_NAME(ctype_word, ERR48, *errorcodeptr);
|
|
|
|
/* In the pre-compile phase, do a syntax check. */
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
if (namelen == 0)
|
|
{
|
|
*errorcodeptr = ERR62;
|
|
goto FAILED;
|
|
}
|
|
if (*ptr != (PCRE2_UCHAR)terminator)
|
|
{
|
|
*errorcodeptr = ERR42;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
/* Scan the list of names generated in the pre-pass in order to get
|
|
a number and whether or not this name is duplicated. */
|
|
|
|
recno = 0;
|
|
is_dupname = FALSE;
|
|
ng = cb->named_groups;
|
|
|
|
for (i = 0; i < cb->names_found; i++, ng++)
|
|
{
|
|
if (namelen == ng->length &&
|
|
PRIV(strncmp)(name, ng->name, namelen) == 0)
|
|
{
|
|
open_capitem *oc;
|
|
is_dupname = ng->isdup;
|
|
recno = ng->number;
|
|
|
|
/* For a recursion, that's all that is needed. We can now go to the
|
|
code that handles numerical recursion. */
|
|
|
|
if (is_recurse) goto HANDLE_RECURSION;
|
|
|
|
/* For a back reference, update the back reference map and the
|
|
maximum back reference. Then for each group we must check to see if
|
|
it is recursive, that is, it is inside the group that it
|
|
references. A flag is set so that the group can be made atomic. */
|
|
|
|
cb->backref_map |= (recno < 32)? (1u << recno) : 1;
|
|
if ((uint32_t)recno > cb->top_backref) cb->top_backref = recno;
|
|
|
|
for (oc = cb->open_caps; oc != NULL; oc = oc->next)
|
|
{
|
|
if (oc->number == recno)
|
|
{
|
|
oc->flag = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
/* If the name was not found we have a bad reference. */
|
|
|
|
if (recno == 0)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* If a back reference name is not duplicated, we can handle it as a
|
|
numerical reference. */
|
|
|
|
if (!is_dupname) goto HANDLE_REFERENCE;
|
|
|
|
/* If a back reference name is duplicated, we generate a different
|
|
opcode to a numerical back reference. In the second pass we must search
|
|
for the index and count in the final name table. */
|
|
|
|
count = 0;
|
|
index = 0;
|
|
|
|
if (lengthptr == NULL)
|
|
{
|
|
slot = cb->name_table;
|
|
for (i = 0; i < cb->names_found; i++)
|
|
{
|
|
if (PRIV(strncmp)(name, slot+IMM2_SIZE, namelen) == 0 &&
|
|
slot[IMM2_SIZE+namelen] == 0)
|
|
{
|
|
if (count == 0) index = i;
|
|
count++;
|
|
}
|
|
slot += cb->name_entry_size;
|
|
}
|
|
|
|
if (count == 0)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE;
|
|
previous = code;
|
|
*code++ = ((options & PCRE2_CASELESS) != 0)? OP_DNREFI : OP_DNREF;
|
|
PUT2INC(code, 0, index);
|
|
PUT2INC(code, 0, count);
|
|
continue; /* End of back ref handling */
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_R: /* Recursion, same as (?0) */
|
|
recno = 0;
|
|
if (*(++ptr) != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
*errorcodeptr = ERR29;
|
|
goto FAILED;
|
|
}
|
|
goto HANDLE_RECURSION;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
case CHAR_MINUS: case CHAR_PLUS: /* Recursion or subroutine */
|
|
case CHAR_0: case CHAR_1: case CHAR_2: case CHAR_3: case CHAR_4:
|
|
case CHAR_5: case CHAR_6: case CHAR_7: case CHAR_8: case CHAR_9:
|
|
{
|
|
terminator = CHAR_RIGHT_PARENTHESIS;
|
|
|
|
/* Come here from the \g<...> and \g'...' code (Oniguruma
|
|
compatibility). However, the syntax has been checked to ensure that
|
|
the ... are a (signed) number, so that neither ERR63 nor ERR29 will
|
|
be called on this path, nor with the jump to OTHER_CHAR_AFTER_QUERY
|
|
ever be taken. */
|
|
|
|
HANDLE_NUMERICAL_RECURSION:
|
|
|
|
if ((refsign = *ptr) == CHAR_PLUS)
|
|
{
|
|
ptr++;
|
|
if (!IS_DIGIT(*ptr))
|
|
{
|
|
*errorcodeptr = ERR63;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
else if (refsign == CHAR_MINUS)
|
|
{
|
|
if (!IS_DIGIT(ptr[1]))
|
|
goto OTHER_CHAR_AFTER_QUERY;
|
|
ptr++;
|
|
}
|
|
|
|
recno = 0;
|
|
while (IS_DIGIT(*ptr))
|
|
{
|
|
if (recno > INT_MAX / 10 - 1) /* Integer overflow */
|
|
{
|
|
while (IS_DIGIT(*ptr)) ptr++;
|
|
*errorcodeptr = ERR61;
|
|
goto FAILED;
|
|
}
|
|
recno = recno * 10 + *ptr++ - CHAR_0;
|
|
}
|
|
|
|
if (*ptr != (PCRE2_UCHAR)terminator)
|
|
{
|
|
*errorcodeptr = ERR29;
|
|
goto FAILED;
|
|
}
|
|
|
|
if (refsign == CHAR_MINUS)
|
|
{
|
|
if (recno == 0)
|
|
{
|
|
*errorcodeptr = ERR58;
|
|
goto FAILED;
|
|
}
|
|
recno = (int)(cb->bracount + 1) - recno;
|
|
if (recno <= 0)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
}
|
|
else if (refsign == CHAR_PLUS)
|
|
{
|
|
if (recno == 0)
|
|
{
|
|
*errorcodeptr = ERR58;
|
|
goto FAILED;
|
|
}
|
|
recno += cb->bracount;
|
|
}
|
|
|
|
if ((uint32_t)recno > cb->final_bracount)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* Come here from code above that handles a named recursion.
|
|
We insert the number of the called group after OP_RECURSE. At the
|
|
end of compiling the pattern is scanned and these numbers are
|
|
replaced by offsets within the pattern. It is done like this to avoid
|
|
problems with forward references and adjusting offsets when groups
|
|
are duplicated and moved (as discovered in previous implementations).
|
|
Note that a recursion does not have a set first character (relevant
|
|
if it is repeated, because it will then be wrapped with ONCE
|
|
brackets). */
|
|
|
|
HANDLE_RECURSION:
|
|
previous = code;
|
|
*code = OP_RECURSE;
|
|
PUT(code, 1, recno);
|
|
code += 1 + LINK_SIZE;
|
|
groupsetfirstcu = FALSE;
|
|
cb->had_recurse = TRUE;
|
|
}
|
|
|
|
/* Can't determine a first byte now */
|
|
|
|
if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE;
|
|
continue;
|
|
|
|
|
|
/* ------------------------------------------------------------ */
|
|
default: /* Other characters: check option setting */
|
|
OTHER_CHAR_AFTER_QUERY:
|
|
set = unset = 0;
|
|
optset = &set;
|
|
|
|
while (*ptr != CHAR_RIGHT_PARENTHESIS && *ptr != CHAR_COLON)
|
|
{
|
|
switch (*ptr++)
|
|
{
|
|
case CHAR_MINUS: optset = &unset; break;
|
|
|
|
case CHAR_J: /* Record that it changed in the external options */
|
|
*optset |= PCRE2_DUPNAMES;
|
|
cb->external_flags |= PCRE2_JCHANGED;
|
|
break;
|
|
|
|
case CHAR_i: *optset |= PCRE2_CASELESS; break;
|
|
case CHAR_m: *optset |= PCRE2_MULTILINE; break;
|
|
case CHAR_s: *optset |= PCRE2_DOTALL; break;
|
|
case CHAR_x: *optset |= PCRE2_EXTENDED; break;
|
|
case CHAR_U: *optset |= PCRE2_UNGREEDY; break;
|
|
|
|
default: *errorcodeptr = ERR11;
|
|
ptr--; /* Correct the offset */
|
|
goto FAILED;
|
|
}
|
|
}
|
|
|
|
/* Set up the changed option bits, but don't change anything yet. */
|
|
|
|
newoptions = (options | set) & (~unset);
|
|
|
|
/* If the options ended with ')' this is not the start of a nested
|
|
group with option changes, so the options change at this level. They
|
|
must also be passed back for use in subsequent branches. Reset the
|
|
greedy defaults and the case value for firstcu and reqcu. */
|
|
|
|
if (*ptr == CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
*optionsptr = options = newoptions;
|
|
greedy_default = ((newoptions & PCRE2_UNGREEDY) != 0);
|
|
greedy_non_default = greedy_default ^ 1;
|
|
req_caseopt = ((newoptions & PCRE2_CASELESS) != 0)? REQ_CASELESS:0;
|
|
previous = NULL; /* This item can't be repeated */
|
|
continue; /* It is complete */
|
|
}
|
|
|
|
/* If the options ended with ':' we are heading into a nested group
|
|
with possible change of options. Such groups are non-capturing and are
|
|
not assertions of any kind. All we need to do is skip over the ':';
|
|
the newoptions value is handled below. */
|
|
|
|
bravalue = OP_BRA;
|
|
ptr++;
|
|
} /* End of switch for character following (? */
|
|
} /* End of (? handling */
|
|
|
|
/* Opening parenthesis not followed by '*' or '?'. If PCRE2_NO_AUTO_CAPTURE
|
|
is set, all unadorned brackets become non-capturing and behave like (?:...)
|
|
brackets. */
|
|
|
|
else if ((options & PCRE2_NO_AUTO_CAPTURE) != 0)
|
|
{
|
|
bravalue = OP_BRA;
|
|
}
|
|
|
|
/* Else we have a capturing group. */
|
|
|
|
else
|
|
{
|
|
NUMBERED_GROUP:
|
|
cb->bracount += 1;
|
|
PUT2(code, 1+LINK_SIZE, cb->bracount);
|
|
skipunits = IMM2_SIZE;
|
|
}
|
|
|
|
/* Process nested bracketed regex. First check for parentheses nested too
|
|
deeply. */
|
|
|
|
if ((cb->parens_depth += 1) > (int)(cb->cx->parens_nest_limit))
|
|
{
|
|
*errorcodeptr = ERR19;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* All assertions used not to be repeatable, but this was changed for Perl
|
|
compatibility. All kinds can now be repeated except for assertions that are
|
|
conditions (Perl also forbids these to be repeated). We copy code into a
|
|
non-register variable (tempcode) in order to be able to pass its address
|
|
because some compilers complain otherwise. At the start of a conditional
|
|
group whose condition is an assertion, cb->iscondassert is set. We unset it
|
|
here so as to allow assertions later in the group to be quantified. */
|
|
|
|
if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT &&
|
|
cb->iscondassert)
|
|
{
|
|
previous = NULL;
|
|
cb->iscondassert = FALSE;
|
|
}
|
|
else
|
|
{
|
|
previous = code;
|
|
}
|
|
|
|
*code = bravalue;
|
|
tempcode = code;
|
|
tempreqvary = cb->req_varyopt; /* Save value before bracket */
|
|
tempbracount = cb->bracount; /* Save value before bracket */
|
|
length_prevgroup = 0; /* Initialize for pre-compile phase */
|
|
|
|
if (!compile_regex(
|
|
newoptions, /* The complete new option state */
|
|
&tempcode, /* Where to put code (updated) */
|
|
&ptr, /* Input pointer (updated) */
|
|
errorcodeptr, /* Where to put an error message */
|
|
(bravalue == OP_ASSERTBACK ||
|
|
bravalue == OP_ASSERTBACK_NOT), /* TRUE if back assert */
|
|
reset_bracount, /* True if (?| group */
|
|
skipunits, /* Skip over bracket number */
|
|
cond_depth +
|
|
((bravalue == OP_COND)?1:0), /* Depth of condition subpatterns */
|
|
&subfirstcu, /* For possible first char */
|
|
&subfirstcuflags,
|
|
&subreqcu, /* For possible last char */
|
|
&subreqcuflags,
|
|
bcptr, /* Current branch chain */
|
|
cb, /* Compile data block */
|
|
(lengthptr == NULL)? NULL : /* Actual compile phase */
|
|
&length_prevgroup /* Pre-compile phase */
|
|
))
|
|
goto FAILED;
|
|
|
|
cb->parens_depth -= 1;
|
|
|
|
/* If this was an atomic group and there are no capturing groups within it,
|
|
generate OP_ONCE_NC instead of OP_ONCE. */
|
|
|
|
if (bravalue == OP_ONCE && cb->bracount <= tempbracount)
|
|
*code = OP_ONCE_NC;
|
|
|
|
if (bravalue >= OP_ASSERT && bravalue <= OP_ASSERTBACK_NOT)
|
|
cb->assert_depth -= 1;
|
|
|
|
/* At the end of compiling, code is still pointing to the start of the
|
|
group, while tempcode has been updated to point past the end of the group.
|
|
The pattern pointer (ptr) is on the bracket.
|
|
|
|
If this is a conditional bracket, check that there are no more than
|
|
two branches in the group, or just one if it's a DEFINE group. We do this
|
|
in the real compile phase, not in the pre-pass, where the whole group may
|
|
not be available. */
|
|
|
|
if (bravalue == OP_COND && lengthptr == NULL)
|
|
{
|
|
PCRE2_UCHAR *tc = code;
|
|
int condcount = 0;
|
|
|
|
do {
|
|
condcount++;
|
|
tc += GET(tc,1);
|
|
}
|
|
while (*tc != OP_KET);
|
|
|
|
/* A DEFINE group is never obeyed inline (the "condition" is always
|
|
false). It must have only one branch. Having checked this, change the
|
|
opcode to OP_FALSE. */
|
|
|
|
if (code[LINK_SIZE+1] == OP_DEFINE)
|
|
{
|
|
if (condcount > 1)
|
|
{
|
|
*errorcodeptr = ERR54;
|
|
goto FAILED;
|
|
}
|
|
code[LINK_SIZE+1] = OP_FALSE;
|
|
bravalue = OP_DEFINE; /* Just a flag to suppress char handling below */
|
|
}
|
|
|
|
/* A "normal" conditional group. If there is just one branch, we must not
|
|
make use of its firstcu or reqcu, because this is equivalent to an
|
|
empty second branch. */
|
|
|
|
else
|
|
{
|
|
if (condcount > 2)
|
|
{
|
|
*errorcodeptr = ERR27;
|
|
goto FAILED;
|
|
}
|
|
if (condcount == 1) subfirstcuflags = subreqcuflags = REQ_NONE;
|
|
}
|
|
}
|
|
|
|
/* Error if hit end of pattern */
|
|
|
|
if (*ptr != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
*errorcodeptr = ERR14;
|
|
goto FAILED;
|
|
}
|
|
|
|
/* In the pre-compile phase, update the length by the length of the group,
|
|
less the brackets at either end. Then reduce the compiled code to just a
|
|
set of non-capturing brackets so that it doesn't use much memory if it is
|
|
duplicated by a quantifier.*/
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
if (OFLOW_MAX - *lengthptr < length_prevgroup - 2 - 2*LINK_SIZE)
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
goto FAILED;
|
|
}
|
|
*lengthptr += length_prevgroup - 2 - 2*LINK_SIZE;
|
|
code++; /* This already contains bravalue */
|
|
PUTINC(code, 0, 1 + LINK_SIZE);
|
|
*code++ = OP_KET;
|
|
PUTINC(code, 0, 1 + LINK_SIZE);
|
|
break; /* No need to waste time with special character handling */
|
|
}
|
|
|
|
/* Otherwise update the main code pointer to the end of the group. */
|
|
|
|
code = tempcode;
|
|
|
|
/* For a DEFINE group, required and first character settings are not
|
|
relevant. */
|
|
|
|
if (bravalue == OP_DEFINE) break;
|
|
|
|
/* Handle updating of the required and first characters for other types of
|
|
group. Update for normal brackets of all kinds, and conditions with two
|
|
branches (see code above). If the bracket is followed by a quantifier with
|
|
zero repeat, we have to back off. Hence the definition of zeroreqcu and
|
|
zerofirstcu outside the main loop so that they can be accessed for the
|
|
back off. */
|
|
|
|
zeroreqcu = reqcu;
|
|
zeroreqcuflags = reqcuflags;
|
|
zerofirstcu = firstcu;
|
|
zerofirstcuflags = firstcuflags;
|
|
groupsetfirstcu = FALSE;
|
|
|
|
if (bravalue >= OP_ONCE)
|
|
{
|
|
/* If we have not yet set a firstcu in this branch, take it from the
|
|
subpattern, remembering that it was set here so that a repeat of more
|
|
than one can replicate it as reqcu if necessary. If the subpattern has
|
|
no firstcu, set "none" for the whole branch. In both cases, a zero
|
|
repeat forces firstcu to "none". */
|
|
|
|
if (firstcuflags == REQ_UNSET && subfirstcuflags != REQ_UNSET)
|
|
{
|
|
if (subfirstcuflags >= 0)
|
|
{
|
|
firstcu = subfirstcu;
|
|
firstcuflags = subfirstcuflags;
|
|
groupsetfirstcu = TRUE;
|
|
}
|
|
else firstcuflags = REQ_NONE;
|
|
zerofirstcuflags = REQ_NONE;
|
|
}
|
|
|
|
/* If firstcu was previously set, convert the subpattern's firstcu
|
|
into reqcu if there wasn't one, using the vary flag that was in
|
|
existence beforehand. */
|
|
|
|
else if (subfirstcuflags >= 0 && subreqcuflags < 0)
|
|
{
|
|
subreqcu = subfirstcu;
|
|
subreqcuflags = subfirstcuflags | tempreqvary;
|
|
}
|
|
|
|
/* If the subpattern set a required byte (or set a first byte that isn't
|
|
really the first byte - see above), set it. */
|
|
|
|
if (subreqcuflags >= 0)
|
|
{
|
|
reqcu = subreqcu;
|
|
reqcuflags = subreqcuflags;
|
|
}
|
|
}
|
|
|
|
/* For a forward assertion, we take the reqcu, if set. This can be
|
|
helpful if the pattern that follows the assertion doesn't set a different
|
|
char. For example, it's useful for /(?=abcde).+/. We can't set firstcu
|
|
for an assertion, however because it leads to incorrect effect for patterns
|
|
such as /(?=a)a.+/ when the "real" "a" would then become a reqcu instead
|
|
of a firstcu. This is overcome by a scan at the end if there's no
|
|
firstcu, looking for an asserted first char. */
|
|
|
|
else if (bravalue == OP_ASSERT && subreqcuflags >= 0)
|
|
{
|
|
reqcu = subreqcu;
|
|
reqcuflags = subreqcuflags;
|
|
}
|
|
break; /* End of processing '(' */
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Handle metasequences introduced by \. For ones like \d, the ESC_ values
|
|
are arranged to be the negation of the corresponding OP_values in the
|
|
default case when PCRE2_UCP is not set. For the back references, the values
|
|
are negative the reference number. Only back references and those types
|
|
that consume a character may be repeated. We can test for values between
|
|
ESC_b and ESC_Z for the latter; this may have to change if any new ones are
|
|
ever created.
|
|
|
|
Note: \Q and \E are handled at the start of the character-processing loop,
|
|
not here. */
|
|
|
|
case CHAR_BACKSLASH:
|
|
tempptr = ptr;
|
|
escape = PRIV(check_escape)(&ptr, cb->end_pattern, &ec, errorcodeptr,
|
|
options, FALSE, cb);
|
|
if (*errorcodeptr != 0) goto FAILED;
|
|
|
|
if (escape == 0) /* The escape coded a single character */
|
|
c = ec;
|
|
else
|
|
{
|
|
/* For metasequences that actually match a character, we disable the
|
|
setting of a first character if it hasn't already been set. */
|
|
|
|
if (firstcuflags == REQ_UNSET && escape > ESC_b && escape < ESC_Z)
|
|
firstcuflags = REQ_NONE;
|
|
|
|
/* Set values to reset to if this is followed by a zero repeat. */
|
|
|
|
zerofirstcu = firstcu;
|
|
zerofirstcuflags = firstcuflags;
|
|
zeroreqcu = reqcu;
|
|
zeroreqcuflags = reqcuflags;
|
|
|
|
/* \g<name> or \g'name' is a subroutine call by name and \g<n> or \g'n'
|
|
is a subroutine call by number (Oniguruma syntax). In fact, the value
|
|
ESC_g is returned only for these cases. So we don't need to check for <
|
|
or ' if the value is ESC_g. For the Perl syntax \g{n} the value is
|
|
-n, and for the Perl syntax \g{name} the result is ESC_k (as
|
|
that is a synonym for a named back reference). */
|
|
|
|
if (escape == ESC_g)
|
|
{
|
|
PCRE2_SPTR p;
|
|
uint32_t cf;
|
|
|
|
terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
|
|
CHAR_GREATER_THAN_SIGN : CHAR_APOSTROPHE;
|
|
|
|
/* These two statements stop the compiler for warning about possibly
|
|
unset variables caused by the jump to HANDLE_NUMERICAL_RECURSION. In
|
|
fact, because we do the check for a number below, the paths that
|
|
would actually be in error are never taken. */
|
|
|
|
skipunits = 0;
|
|
reset_bracount = FALSE;
|
|
|
|
/* If it's not a signed or unsigned number, treat it as a name. */
|
|
|
|
cf = ptr[1];
|
|
if (cf != CHAR_PLUS && cf != CHAR_MINUS && !IS_DIGIT(cf))
|
|
{
|
|
is_recurse = TRUE;
|
|
goto NAMED_REF_OR_RECURSE;
|
|
}
|
|
|
|
/* Signed or unsigned number (cf = ptr[1]) is known to be plus or minus
|
|
or a digit. */
|
|
|
|
p = ptr + 2;
|
|
while (IS_DIGIT(*p)) p++;
|
|
if (*p != (PCRE2_UCHAR)terminator)
|
|
{
|
|
*errorcodeptr = ERR57;
|
|
goto FAILED;
|
|
}
|
|
ptr++;
|
|
goto HANDLE_NUMERICAL_RECURSION;
|
|
}
|
|
|
|
/* \k<name> or \k'name' is a back reference by name (Perl syntax).
|
|
We also support \k{name} (.NET syntax). */
|
|
|
|
if (escape == ESC_k)
|
|
{
|
|
if ((ptr[1] != CHAR_LESS_THAN_SIGN &&
|
|
ptr[1] != CHAR_APOSTROPHE && ptr[1] != CHAR_LEFT_CURLY_BRACKET))
|
|
{
|
|
*errorcodeptr = ERR69;
|
|
goto FAILED;
|
|
}
|
|
is_recurse = FALSE;
|
|
terminator = (*(++ptr) == CHAR_LESS_THAN_SIGN)?
|
|
CHAR_GREATER_THAN_SIGN : (*ptr == CHAR_APOSTROPHE)?
|
|
CHAR_APOSTROPHE : CHAR_RIGHT_CURLY_BRACKET;
|
|
goto NAMED_REF_OR_RECURSE;
|
|
}
|
|
|
|
/* Back references are handled specially; must disable firstcu if
|
|
not set to cope with cases like (?=(\w+))\1: which would otherwise set
|
|
':' later. */
|
|
|
|
if (escape < 0)
|
|
{
|
|
open_capitem *oc;
|
|
recno = -escape;
|
|
|
|
/* Come here from named backref handling when the reference is to a
|
|
single group (i.e. not to a duplicated name). */
|
|
|
|
HANDLE_REFERENCE:
|
|
if (recno > (int)cb->final_bracount)
|
|
{
|
|
*errorcodeptr = ERR15;
|
|
goto FAILED;
|
|
}
|
|
if (firstcuflags == REQ_UNSET) firstcuflags = REQ_NONE;
|
|
previous = code;
|
|
*code++ = ((options & PCRE2_CASELESS) != 0)? OP_REFI : OP_REF;
|
|
PUT2INC(code, 0, recno);
|
|
cb->backref_map |= (recno < 32)? (1u << recno) : 1;
|
|
if ((uint32_t)recno > cb->top_backref) cb->top_backref = recno;
|
|
|
|
/* Check to see if this back reference is recursive, that it, it
|
|
is inside the group that it references. A flag is set so that the
|
|
group can be made atomic. */
|
|
|
|
for (oc = cb->open_caps; oc != NULL; oc = oc->next)
|
|
{
|
|
if (oc->number == recno)
|
|
{
|
|
oc->flag = TRUE;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
/* So are Unicode property matches, if supported. */
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
else if (escape == ESC_P || escape == ESC_p)
|
|
{
|
|
BOOL negated;
|
|
unsigned int ptype = 0, pdata = 0;
|
|
if (!get_ucp(&ptr, &negated, &ptype, &pdata, errorcodeptr, cb))
|
|
goto FAILED;
|
|
previous = code;
|
|
*code++ = ((escape == ESC_p) != negated)? OP_PROP : OP_NOTPROP;
|
|
*code++ = ptype;
|
|
*code++ = pdata;
|
|
}
|
|
#else
|
|
|
|
/* If Unicode properties are not supported, \X, \P, and \p are not
|
|
allowed. */
|
|
|
|
else if (escape == ESC_X || escape == ESC_P || escape == ESC_p)
|
|
{
|
|
*errorcodeptr = ERR45;
|
|
goto FAILED;
|
|
}
|
|
#endif
|
|
|
|
/* The use of \C can be locked out. */
|
|
|
|
#ifdef NEVER_BACKSLASH_C
|
|
else if (escape == ESC_C)
|
|
{
|
|
*errorcodeptr = ERR85;
|
|
goto FAILED;
|
|
}
|
|
#else
|
|
else if (escape == ESC_C && (options & PCRE2_NEVER_BACKSLASH_C) != 0)
|
|
{
|
|
*errorcodeptr = ERR83;
|
|
goto FAILED;
|
|
}
|
|
#endif
|
|
|
|
/* For the rest (including \X when Unicode properties are supported), we
|
|
can obtain the OP value by negating the escape value in the default
|
|
situation when PCRE2_UCP is not set. When it *is* set, we substitute
|
|
Unicode property tests. Note that \b and \B do a one-character
|
|
lookbehind, and \A also behaves as if it does. */
|
|
|
|
else
|
|
{
|
|
if (escape == ESC_C) cb->external_flags |= PCRE2_HASBKC; /* Record */
|
|
if ((escape == ESC_b || escape == ESC_B || escape == ESC_A) &&
|
|
cb->max_lookbehind == 0)
|
|
cb->max_lookbehind = 1;
|
|
#ifdef SUPPORT_UNICODE
|
|
if (escape >= ESC_DU && escape <= ESC_wu)
|
|
{
|
|
cb->nestptr[1] = cb->nestptr[0]; /* Back up if at 2nd level */
|
|
cb->nestptr[0] = ptr + 1; /* Where to resume */
|
|
ptr = substitutes[escape - ESC_DU] - 1; /* Just before substitute */
|
|
}
|
|
else
|
|
#endif
|
|
/* In non-UTF mode, we turn \C into OP_ALLANY instead of OP_ANYBYTE
|
|
so that it works in DFA mode and in lookbehinds. */
|
|
|
|
{
|
|
previous = (escape > ESC_b && escape < ESC_Z)? code : NULL;
|
|
*code++ = (!utf && escape == ESC_C)? OP_ALLANY : escape;
|
|
}
|
|
}
|
|
continue;
|
|
}
|
|
|
|
/* We have a data character whose value is in c. In UTF-8 mode it may have
|
|
a value > 127. We set its representation in the length/buffer, and then
|
|
handle it as a data character. */
|
|
|
|
mclength = PUTCHAR(c, mcbuffer);
|
|
goto ONE_CHAR;
|
|
|
|
|
|
/* ===================================================================*/
|
|
/* Handle a literal character. It is guaranteed not to be whitespace or #
|
|
when the extended flag is set. If we are in a UTF mode, it may be a
|
|
multi-unit literal character. */
|
|
|
|
default:
|
|
NORMAL_CHAR:
|
|
mclength = 1;
|
|
mcbuffer[0] = c;
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf && HAS_EXTRALEN(c))
|
|
ACROSSCHAR(TRUE, ptr[1], mcbuffer[mclength++] = *(++ptr));
|
|
#endif
|
|
|
|
/* At this point we have the character's bytes in mcbuffer, and the length
|
|
in mclength. When not in UTF mode, the length is always 1. */
|
|
|
|
ONE_CHAR:
|
|
previous = code;
|
|
|
|
/* For caseless UTF mode, check whether this character has more than one
|
|
other case. If so, generate a special OP_PROP item instead of OP_CHARI. */
|
|
|
|
#ifdef SUPPORT_UNICODE
|
|
if (utf && (options & PCRE2_CASELESS) != 0)
|
|
{
|
|
GETCHAR(c, mcbuffer);
|
|
if ((c = UCD_CASESET(c)) != 0)
|
|
{
|
|
*code++ = OP_PROP;
|
|
*code++ = PT_CLIST;
|
|
*code++ = c;
|
|
if (firstcuflags == REQ_UNSET)
|
|
firstcuflags = zerofirstcuflags = REQ_NONE;
|
|
break;
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Caseful matches, or not one of the multicase characters. */
|
|
|
|
*code++ = ((options & PCRE2_CASELESS) != 0)? OP_CHARI : OP_CHAR;
|
|
for (c = 0; c < mclength; c++) *code++ = mcbuffer[c];
|
|
|
|
/* Remember if \r or \n were seen */
|
|
|
|
if (mcbuffer[0] == CHAR_CR || mcbuffer[0] == CHAR_NL)
|
|
cb->external_flags |= PCRE2_HASCRORLF;
|
|
|
|
/* Set the first and required bytes appropriately. If no previous first
|
|
byte, set it from this character, but revert to none on a zero repeat.
|
|
Otherwise, leave the firstcu value alone, and don't change it on a zero
|
|
repeat. */
|
|
|
|
if (firstcuflags == REQ_UNSET)
|
|
{
|
|
zerofirstcuflags = REQ_NONE;
|
|
zeroreqcu = reqcu;
|
|
zeroreqcuflags = reqcuflags;
|
|
|
|
/* If the character is more than one byte long, we can set firstcu
|
|
only if it is not to be matched caselessly. */
|
|
|
|
if (mclength == 1 || req_caseopt == 0)
|
|
{
|
|
firstcu = mcbuffer[0] | req_caseopt;
|
|
firstcu = mcbuffer[0];
|
|
firstcuflags = req_caseopt;
|
|
|
|
if (mclength != 1)
|
|
{
|
|
reqcu = code[-1];
|
|
reqcuflags = cb->req_varyopt;
|
|
}
|
|
}
|
|
else firstcuflags = reqcuflags = REQ_NONE;
|
|
}
|
|
|
|
/* firstcu was previously set; we can set reqcu only if the length is
|
|
1 or the matching is caseful. */
|
|
|
|
else
|
|
{
|
|
zerofirstcu = firstcu;
|
|
zerofirstcuflags = firstcuflags;
|
|
zeroreqcu = reqcu;
|
|
zeroreqcuflags = reqcuflags;
|
|
if (mclength == 1 || req_caseopt == 0)
|
|
{
|
|
reqcu = code[-1];
|
|
reqcuflags = req_caseopt | cb->req_varyopt;
|
|
}
|
|
}
|
|
|
|
break; /* End of literal character handling */
|
|
}
|
|
} /* end of big loop */
|
|
|
|
/* Control never reaches here by falling through, only by a goto for all the
|
|
error states. Pass back the position in the pattern so that it can be displayed
|
|
to the user for diagnosing the error. */
|
|
|
|
FAILED:
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Compile regex: a sequence of alternatives *
|
|
*************************************************/
|
|
|
|
/* On entry, ptr is pointing past the bracket character, but on return it
|
|
points to the closing bracket, or vertical bar, or end of string. The code
|
|
variable is pointing at the byte into which the BRA operator has been stored.
|
|
This function is used during the pre-compile phase when we are trying to find
|
|
out the amount of memory needed, as well as during the real compile phase. The
|
|
value of lengthptr distinguishes the two phases.
|
|
|
|
Arguments:
|
|
options option bits, including any changes for this subpattern
|
|
codeptr -> the address of the current code pointer
|
|
ptrptr -> the address of the current pattern pointer
|
|
errorcodeptr -> pointer to error code variable
|
|
lookbehind TRUE if this is a lookbehind assertion
|
|
reset_bracount TRUE to reset the count for each branch
|
|
skipunits skip this many code units at start (for brackets and OP_COND)
|
|
cond_depth depth of nesting for conditional subpatterns
|
|
firstcuptr place to put the first required code unit
|
|
firstcuflagsptr place to put the first code unit flags, or a negative number
|
|
reqcuptr place to put the last required code unit
|
|
reqcuflagsptr place to put the last required code unit flags, or a negative number
|
|
bcptr pointer to the chain of currently open branches
|
|
cb points to the data block with tables pointers etc.
|
|
lengthptr NULL during the real compile phase
|
|
points to length accumulator during pre-compile phase
|
|
|
|
Returns: TRUE on success
|
|
*/
|
|
|
|
static BOOL
|
|
compile_regex(uint32_t options, PCRE2_UCHAR **codeptr, PCRE2_SPTR *ptrptr,
|
|
int *errorcodeptr, BOOL lookbehind, BOOL reset_bracount, uint32_t skipunits,
|
|
int cond_depth, uint32_t *firstcuptr, int32_t *firstcuflagsptr,
|
|
uint32_t *reqcuptr, int32_t *reqcuflagsptr, branch_chain *bcptr,
|
|
compile_block *cb, size_t *lengthptr)
|
|
{
|
|
PCRE2_SPTR ptr = *ptrptr;
|
|
PCRE2_UCHAR *code = *codeptr;
|
|
PCRE2_UCHAR *last_branch = code;
|
|
PCRE2_UCHAR *start_bracket = code;
|
|
PCRE2_UCHAR *reverse_count = NULL;
|
|
open_capitem capitem;
|
|
int capnumber = 0;
|
|
uint32_t firstcu, reqcu;
|
|
int32_t firstcuflags, reqcuflags;
|
|
uint32_t branchfirstcu, branchreqcu;
|
|
int32_t branchfirstcuflags, branchreqcuflags;
|
|
size_t length;
|
|
unsigned int orig_bracount;
|
|
unsigned int max_bracount;
|
|
branch_chain bc;
|
|
|
|
/* If set, call the external function that checks for stack availability. */
|
|
|
|
if (cb->cx->stack_guard != NULL &&
|
|
cb->cx->stack_guard(cb->parens_depth, cb->cx->stack_guard_data))
|
|
{
|
|
*errorcodeptr= ERR33;
|
|
return FALSE;
|
|
}
|
|
|
|
/* Miscellaneous initialization */
|
|
|
|
bc.outer = bcptr;
|
|
bc.current_branch = code;
|
|
|
|
firstcu = reqcu = 0;
|
|
firstcuflags = reqcuflags = REQ_UNSET;
|
|
|
|
/* Accumulate the length for use in the pre-compile phase. Start with the
|
|
length of the BRA and KET and any extra code units that are required at the
|
|
beginning. We accumulate in a local variable to save frequent testing of
|
|
lengthptr for NULL. We cannot do this by looking at the value of 'code' at the
|
|
start and end of each alternative, because compiled items are discarded during
|
|
the pre-compile phase so that the work space is not exceeded. */
|
|
|
|
length = 2 + 2*LINK_SIZE + skipunits;
|
|
|
|
/* WARNING: If the above line is changed for any reason, you must also change
|
|
the code that abstracts option settings at the start of the pattern and makes
|
|
them global. It tests the value of length for (2 + 2*LINK_SIZE) in the
|
|
pre-compile phase to find out whether or not anything has yet been compiled.
|
|
|
|
If this is a capturing subpattern, add to the chain of open capturing items
|
|
so that we can detect them if (*ACCEPT) is encountered. This is also used to
|
|
detect groups that contain recursive back references to themselves. Note that
|
|
only OP_CBRA need be tested here; changing this opcode to one of its variants,
|
|
e.g. OP_SCBRAPOS, happens later, after the group has been compiled. */
|
|
|
|
if (*code == OP_CBRA)
|
|
{
|
|
capnumber = GET2(code, 1 + LINK_SIZE);
|
|
capitem.number = capnumber;
|
|
capitem.next = cb->open_caps;
|
|
capitem.flag = FALSE;
|
|
cb->open_caps = &capitem;
|
|
}
|
|
|
|
/* Offset is set zero to mark that this bracket is still open */
|
|
|
|
PUT(code, 1, 0);
|
|
code += 1 + LINK_SIZE + skipunits;
|
|
|
|
/* Loop for each alternative branch */
|
|
|
|
orig_bracount = max_bracount = cb->bracount;
|
|
|
|
for (;;)
|
|
{
|
|
/* For a (?| group, reset the capturing bracket count so that each branch
|
|
uses the same numbers. */
|
|
|
|
if (reset_bracount) cb->bracount = orig_bracount;
|
|
|
|
/* Set up dummy OP_REVERSE if lookbehind assertion */
|
|
|
|
if (lookbehind)
|
|
{
|
|
*code++ = OP_REVERSE;
|
|
reverse_count = code;
|
|
PUTINC(code, 0, 0);
|
|
length += 1 + LINK_SIZE;
|
|
}
|
|
|
|
/* Now compile the branch; in the pre-compile phase its length gets added
|
|
into the length. */
|
|
|
|
if (!compile_branch(&options, &code, &ptr, errorcodeptr, &branchfirstcu,
|
|
&branchfirstcuflags, &branchreqcu, &branchreqcuflags, &bc,
|
|
cond_depth, cb, (lengthptr == NULL)? NULL : &length))
|
|
{
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
|
|
/* Keep the highest bracket count in case (?| was used and some branch
|
|
has fewer than the rest. */
|
|
|
|
if (cb->bracount > max_bracount) max_bracount = cb->bracount;
|
|
|
|
/* In the real compile phase, there is some post-processing to be done. */
|
|
|
|
if (lengthptr == NULL)
|
|
{
|
|
/* If this is the first branch, the firstcu and reqcu values for the
|
|
branch become the values for the regex. */
|
|
|
|
if (*last_branch != OP_ALT)
|
|
{
|
|
firstcu = branchfirstcu;
|
|
firstcuflags = branchfirstcuflags;
|
|
reqcu = branchreqcu;
|
|
reqcuflags = branchreqcuflags;
|
|
}
|
|
|
|
/* If this is not the first branch, the first char and reqcu have to
|
|
match the values from all the previous branches, except that if the
|
|
previous value for reqcu didn't have REQ_VARY set, it can still match,
|
|
and we set REQ_VARY for the regex. */
|
|
|
|
else
|
|
{
|
|
/* If we previously had a firstcu, but it doesn't match the new branch,
|
|
we have to abandon the firstcu for the regex, but if there was
|
|
previously no reqcu, it takes on the value of the old firstcu. */
|
|
|
|
if (firstcuflags != branchfirstcuflags || firstcu != branchfirstcu)
|
|
{
|
|
if (firstcuflags >= 0)
|
|
{
|
|
if (reqcuflags < 0)
|
|
{
|
|
reqcu = firstcu;
|
|
reqcuflags = firstcuflags;
|
|
}
|
|
}
|
|
firstcuflags = REQ_NONE;
|
|
}
|
|
|
|
/* If we (now or from before) have no firstcu, a firstcu from the
|
|
branch becomes a reqcu if there isn't a branch reqcu. */
|
|
|
|
if (firstcuflags < 0 && branchfirstcuflags >= 0 &&
|
|
branchreqcuflags < 0)
|
|
{
|
|
branchreqcu = branchfirstcu;
|
|
branchreqcuflags = branchfirstcuflags;
|
|
}
|
|
|
|
/* Now ensure that the reqcus match */
|
|
|
|
if (((reqcuflags & ~REQ_VARY) != (branchreqcuflags & ~REQ_VARY)) ||
|
|
reqcu != branchreqcu)
|
|
reqcuflags = REQ_NONE;
|
|
else
|
|
{
|
|
reqcu = branchreqcu;
|
|
reqcuflags |= branchreqcuflags; /* To "or" REQ_VARY */
|
|
}
|
|
}
|
|
|
|
/* If lookbehind, check that this branch matches a fixed-length string, and
|
|
put the length into the OP_REVERSE item. Temporarily mark the end of the
|
|
branch with OP_END. If the branch contains OP_RECURSE, the result is
|
|
FFL_LATER (a negative value) because there may be forward references that
|
|
we can't check here. Set a flag to cause another lookbehind check at the
|
|
end. Why not do it all at the end? Because common errors can be picked up
|
|
here and the offset of the problem can be shown. */
|
|
|
|
if (lookbehind)
|
|
{
|
|
int fixed_length;
|
|
int count = 0;
|
|
*code = OP_END;
|
|
fixed_length = find_fixedlength(last_branch, (options & PCRE2_UTF) != 0,
|
|
FALSE, cb, NULL, &count);
|
|
if (fixed_length == FFL_LATER)
|
|
{
|
|
cb->check_lookbehind = TRUE;
|
|
}
|
|
else if (fixed_length < 0)
|
|
{
|
|
*errorcodeptr = fixed_length_errors[-fixed_length];
|
|
*ptrptr = ptr;
|
|
return FALSE;
|
|
}
|
|
else
|
|
{
|
|
if (fixed_length > cb->max_lookbehind)
|
|
cb->max_lookbehind = fixed_length;
|
|
PUT(reverse_count, 0, fixed_length);
|
|
}
|
|
}
|
|
}
|
|
|
|
/* Reached end of expression, either ')' or end of pattern. In the real
|
|
compile phase, go back through the alternative branches and reverse the chain
|
|
of offsets, with the field in the BRA item now becoming an offset to the
|
|
first alternative. If there are no alternatives, it points to the end of the
|
|
group. The length in the terminating ket is always the length of the whole
|
|
bracketed item. Return leaving the pointer at the terminating char. */
|
|
|
|
if (*ptr != CHAR_VERTICAL_LINE)
|
|
{
|
|
if (lengthptr == NULL)
|
|
{
|
|
size_t branch_length = code - last_branch;
|
|
do
|
|
{
|
|
size_t prev_length = GET(last_branch, 1);
|
|
PUT(last_branch, 1, branch_length);
|
|
branch_length = prev_length;
|
|
last_branch -= branch_length;
|
|
}
|
|
while (branch_length > 0);
|
|
}
|
|
|
|
/* Fill in the ket */
|
|
|
|
*code = OP_KET;
|
|
PUT(code, 1, (int)(code - start_bracket));
|
|
code += 1 + LINK_SIZE;
|
|
|
|
/* If it was a capturing subpattern, check to see if it contained any
|
|
recursive back references. If so, we must wrap it in atomic brackets. In
|
|
any event, remove the block from the chain. */
|
|
|
|
if (capnumber > 0)
|
|
{
|
|
if (cb->open_caps->flag)
|
|
{
|
|
memmove(start_bracket + 1 + LINK_SIZE, start_bracket,
|
|
CU2BYTES(code - start_bracket));
|
|
*start_bracket = OP_ONCE;
|
|
code += 1 + LINK_SIZE;
|
|
PUT(start_bracket, 1, (int)(code - start_bracket));
|
|
*code = OP_KET;
|
|
PUT(code, 1, (int)(code - start_bracket));
|
|
code += 1 + LINK_SIZE;
|
|
length += 2 + 2*LINK_SIZE;
|
|
}
|
|
cb->open_caps = cb->open_caps->next;
|
|
}
|
|
|
|
/* Retain the highest bracket number, in case resetting was used. */
|
|
|
|
cb->bracount = max_bracount;
|
|
|
|
/* Set values to pass back */
|
|
|
|
*codeptr = code;
|
|
*ptrptr = ptr;
|
|
*firstcuptr = firstcu;
|
|
*firstcuflagsptr = firstcuflags;
|
|
*reqcuptr = reqcu;
|
|
*reqcuflagsptr = reqcuflags;
|
|
if (lengthptr != NULL)
|
|
{
|
|
if (OFLOW_MAX - *lengthptr < length)
|
|
{
|
|
*errorcodeptr = ERR20;
|
|
return FALSE;
|
|
}
|
|
*lengthptr += length;
|
|
}
|
|
return TRUE;
|
|
}
|
|
|
|
/* Another branch follows. In the pre-compile phase, we can move the code
|
|
pointer back to where it was for the start of the first branch. (That is,
|
|
pretend that each branch is the only one.)
|
|
|
|
In the real compile phase, insert an ALT node. Its length field points back
|
|
to the previous branch while the bracket remains open. At the end the chain
|
|
is reversed. It's done like this so that the start of the bracket has a
|
|
zero offset until it is closed, making it possible to detect recursion. */
|
|
|
|
if (lengthptr != NULL)
|
|
{
|
|
code = *codeptr + 1 + LINK_SIZE + skipunits;
|
|
length += 1 + LINK_SIZE;
|
|
}
|
|
else
|
|
{
|
|
*code = OP_ALT;
|
|
PUT(code, 1, (int)(code - last_branch));
|
|
bc.current_branch = last_branch = code;
|
|
code += 1 + LINK_SIZE;
|
|
}
|
|
|
|
/* Advance past the vertical bar */
|
|
|
|
ptr++;
|
|
}
|
|
/* Control never reaches here */
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for anchored pattern *
|
|
*************************************************/
|
|
|
|
/* Try to find out if this is an anchored regular expression. Consider each
|
|
alternative branch. If they all start with OP_SOD or OP_CIRC, or with a bracket
|
|
all of whose alternatives start with OP_SOD or OP_CIRC (recurse ad lib), then
|
|
it's anchored. However, if this is a multiline pattern, then only OP_SOD will
|
|
be found, because ^ generates OP_CIRCM in that mode.
|
|
|
|
We can also consider a regex to be anchored if OP_SOM starts all its branches.
|
|
This is the code for \G, which means "match at start of match position, taking
|
|
into account the match offset".
|
|
|
|
A branch is also implicitly anchored if it starts with .* and DOTALL is set,
|
|
because that will try the rest of the pattern at all possible matching points,
|
|
so there is no point trying again.... er ....
|
|
|
|
.... except when the .* appears inside capturing parentheses, and there is a
|
|
subsequent back reference to those parentheses. We haven't enough information
|
|
to catch that case precisely.
|
|
|
|
At first, the best we could do was to detect when .* was in capturing brackets
|
|
and the highest back reference was greater than or equal to that level.
|
|
However, by keeping a bitmap of the first 31 back references, we can catch some
|
|
of the more common cases more precisely.
|
|
|
|
... A second exception is when the .* appears inside an atomic group, because
|
|
this prevents the number of characters it matches from being adjusted.
|
|
|
|
Arguments:
|
|
code points to start of the compiled pattern
|
|
bracket_map a bitmap of which brackets we are inside while testing; this
|
|
handles up to substring 31; after that we just have to take
|
|
the less precise approach
|
|
cb points to the compile data block
|
|
atomcount atomic group level
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
is_anchored(register PCRE2_SPTR code, unsigned int bracket_map,
|
|
compile_block *cb, int atomcount)
|
|
{
|
|
do {
|
|
PCRE2_SPTR scode = first_significant_code(
|
|
code + PRIV(OP_lengths)[*code], FALSE);
|
|
register int op = *scode;
|
|
|
|
/* Non-capturing brackets */
|
|
|
|
if (op == OP_BRA || op == OP_BRAPOS ||
|
|
op == OP_SBRA || op == OP_SBRAPOS)
|
|
{
|
|
if (!is_anchored(scode, bracket_map, cb, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Capturing brackets */
|
|
|
|
else if (op == OP_CBRA || op == OP_CBRAPOS ||
|
|
op == OP_SCBRA || op == OP_SCBRAPOS)
|
|
{
|
|
int n = GET2(scode, 1+LINK_SIZE);
|
|
int new_map = bracket_map | ((n < 32)? (1u << n) : 1);
|
|
if (!is_anchored(scode, new_map, cb, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Positive forward assertions and conditions */
|
|
|
|
else if (op == OP_ASSERT || op == OP_COND)
|
|
{
|
|
if (!is_anchored(scode, bracket_map, cb, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Atomic groups */
|
|
|
|
else if (op == OP_ONCE || op == OP_ONCE_NC)
|
|
{
|
|
if (!is_anchored(scode, bracket_map, cb, atomcount + 1))
|
|
return FALSE;
|
|
}
|
|
|
|
/* .* is not anchored unless DOTALL is set (which generates OP_ALLANY) and
|
|
it isn't in brackets that are or may be referenced or inside an atomic
|
|
group. There is also an option that disables auto-anchoring. */
|
|
|
|
else if ((op == OP_TYPESTAR || op == OP_TYPEMINSTAR ||
|
|
op == OP_TYPEPOSSTAR))
|
|
{
|
|
if (scode[1] != OP_ALLANY || (bracket_map & cb->backref_map) != 0 ||
|
|
atomcount > 0 || cb->had_pruneorskip ||
|
|
(cb->external_options & PCRE2_NO_DOTSTAR_ANCHOR) != 0)
|
|
return FALSE;
|
|
}
|
|
|
|
/* Check for explicit anchoring */
|
|
|
|
else if (op != OP_SOD && op != OP_SOM && op != OP_CIRC) return FALSE;
|
|
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT); /* Loop for each alternative */
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for starting with ^ or .* *
|
|
*************************************************/
|
|
|
|
/* This is called to find out if every branch starts with ^ or .* so that
|
|
"first char" processing can be done to speed things up in multiline
|
|
matching and for non-DOTALL patterns that start with .* (which must start at
|
|
the beginning or after \n). As in the case of is_anchored() (see above), we
|
|
have to take account of back references to capturing brackets that contain .*
|
|
because in that case we can't make the assumption. Also, the appearance of .*
|
|
inside atomic brackets or in a pattern that contains *PRUNE or *SKIP does not
|
|
count, because once again the assumption no longer holds.
|
|
|
|
Arguments:
|
|
code points to start of the compiled pattern or a group
|
|
bracket_map a bitmap of which brackets we are inside while testing; this
|
|
handles up to substring 31; after that we just have to take
|
|
the less precise approach
|
|
cb points to the compile data
|
|
atomcount atomic group level
|
|
|
|
Returns: TRUE or FALSE
|
|
*/
|
|
|
|
static BOOL
|
|
is_startline(PCRE2_SPTR code, unsigned int bracket_map, compile_block *cb,
|
|
int atomcount)
|
|
{
|
|
do {
|
|
PCRE2_SPTR scode = first_significant_code(
|
|
code + PRIV(OP_lengths)[*code], FALSE);
|
|
register int op = *scode;
|
|
|
|
/* If we are at the start of a conditional assertion group, *both* the
|
|
conditional assertion *and* what follows the condition must satisfy the test
|
|
for start of line. Other kinds of condition fail. Note that there may be an
|
|
auto-callout at the start of a condition. */
|
|
|
|
if (op == OP_COND)
|
|
{
|
|
scode += 1 + LINK_SIZE;
|
|
|
|
if (*scode == OP_CALLOUT) scode += PRIV(OP_lengths)[OP_CALLOUT];
|
|
else if (*scode == OP_CALLOUT_STR) scode += GET(scode, 1 + 2*LINK_SIZE);
|
|
|
|
switch (*scode)
|
|
{
|
|
case OP_CREF:
|
|
case OP_DNCREF:
|
|
case OP_RREF:
|
|
case OP_DNRREF:
|
|
case OP_FAIL:
|
|
case OP_FALSE:
|
|
case OP_TRUE:
|
|
return FALSE;
|
|
|
|
default: /* Assertion */
|
|
if (!is_startline(scode, bracket_map, cb, atomcount)) return FALSE;
|
|
do scode += GET(scode, 1); while (*scode == OP_ALT);
|
|
scode += 1 + LINK_SIZE;
|
|
break;
|
|
}
|
|
scode = first_significant_code(scode, FALSE);
|
|
op = *scode;
|
|
}
|
|
|
|
/* Non-capturing brackets */
|
|
|
|
if (op == OP_BRA || op == OP_BRAPOS ||
|
|
op == OP_SBRA || op == OP_SBRAPOS)
|
|
{
|
|
if (!is_startline(scode, bracket_map, cb, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Capturing brackets */
|
|
|
|
else if (op == OP_CBRA || op == OP_CBRAPOS ||
|
|
op == OP_SCBRA || op == OP_SCBRAPOS)
|
|
{
|
|
int n = GET2(scode, 1+LINK_SIZE);
|
|
int new_map = bracket_map | ((n < 32)? (1u << n) : 1);
|
|
if (!is_startline(scode, new_map, cb, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Positive forward assertions */
|
|
|
|
else if (op == OP_ASSERT)
|
|
{
|
|
if (!is_startline(scode, bracket_map, cb, atomcount)) return FALSE;
|
|
}
|
|
|
|
/* Atomic brackets */
|
|
|
|
else if (op == OP_ONCE || op == OP_ONCE_NC)
|
|
{
|
|
if (!is_startline(scode, bracket_map, cb, atomcount + 1)) return FALSE;
|
|
}
|
|
|
|
/* .* means "start at start or after \n" if it isn't in atomic brackets or
|
|
brackets that may be referenced, as long as the pattern does not contain
|
|
*PRUNE or *SKIP, because these break the feature. Consider, for example,
|
|
/.*?a(*PRUNE)b/ with the subject "aab", which matches "ab", i.e. not at the
|
|
start of a line. There is also an option that disables this optimization. */
|
|
|
|
else if (op == OP_TYPESTAR || op == OP_TYPEMINSTAR || op == OP_TYPEPOSSTAR)
|
|
{
|
|
if (scode[1] != OP_ANY || (bracket_map & cb->backref_map) != 0 ||
|
|
atomcount > 0 || cb->had_pruneorskip ||
|
|
(cb->external_options & PCRE2_NO_DOTSTAR_ANCHOR) != 0)
|
|
return FALSE;
|
|
}
|
|
|
|
/* Check for explicit circumflex; anything else gives a FALSE result. Note
|
|
in particular that this includes atomic brackets OP_ONCE and OP_ONCE_NC
|
|
because the number of characters matched by .* cannot be adjusted inside
|
|
them. */
|
|
|
|
else if (op != OP_CIRC && op != OP_CIRCM) return FALSE;
|
|
|
|
/* Move on to the next alternative */
|
|
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT); /* Loop for each alternative */
|
|
return TRUE;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Check for asserted fixed first code unit *
|
|
*************************************************/
|
|
|
|
/* During compilation, the "first code unit" settings from forward assertions
|
|
are discarded, because they can cause conflicts with actual literals that
|
|
follow. However, if we end up without a first code unit setting for an
|
|
unanchored pattern, it is worth scanning the regex to see if there is an
|
|
initial asserted first code unit. If all branches start with the same asserted
|
|
code unit, or with a non-conditional bracket all of whose alternatives start
|
|
with the same asserted code unit (recurse ad lib), then we return that code
|
|
unit, with the flags set to zero or REQ_CASELESS; otherwise return zero with
|
|
REQ_NONE in the flags.
|
|
|
|
Arguments:
|
|
code points to start of compiled pattern
|
|
flags points to the first code unit flags
|
|
inassert TRUE if in an assertion
|
|
|
|
Returns: the fixed first code unit, or 0 with REQ_NONE in flags
|
|
*/
|
|
|
|
static uint32_t
|
|
find_firstassertedcu(PCRE2_SPTR code, int32_t *flags, BOOL inassert)
|
|
{
|
|
register uint32_t c = 0;
|
|
int cflags = REQ_NONE;
|
|
|
|
*flags = REQ_NONE;
|
|
do {
|
|
uint32_t d;
|
|
int dflags;
|
|
int xl = (*code == OP_CBRA || *code == OP_SCBRA ||
|
|
*code == OP_CBRAPOS || *code == OP_SCBRAPOS)? IMM2_SIZE:0;
|
|
PCRE2_SPTR scode = first_significant_code(code + 1+LINK_SIZE + xl, TRUE);
|
|
register PCRE2_UCHAR op = *scode;
|
|
|
|
switch(op)
|
|
{
|
|
default:
|
|
return 0;
|
|
|
|
case OP_BRA:
|
|
case OP_BRAPOS:
|
|
case OP_CBRA:
|
|
case OP_SCBRA:
|
|
case OP_CBRAPOS:
|
|
case OP_SCBRAPOS:
|
|
case OP_ASSERT:
|
|
case OP_ONCE:
|
|
case OP_ONCE_NC:
|
|
d = find_firstassertedcu(scode, &dflags, op == OP_ASSERT);
|
|
if (dflags < 0)
|
|
return 0;
|
|
if (cflags < 0) { c = d; cflags = dflags; }
|
|
else if (c != d || cflags != dflags) return 0;
|
|
break;
|
|
|
|
case OP_EXACT:
|
|
scode += IMM2_SIZE;
|
|
/* Fall through */
|
|
|
|
case OP_CHAR:
|
|
case OP_PLUS:
|
|
case OP_MINPLUS:
|
|
case OP_POSPLUS:
|
|
if (!inassert) return 0;
|
|
if (cflags < 0) { c = scode[1]; cflags = 0; }
|
|
else if (c != scode[1]) return 0;
|
|
break;
|
|
|
|
case OP_EXACTI:
|
|
scode += IMM2_SIZE;
|
|
/* Fall through */
|
|
|
|
case OP_CHARI:
|
|
case OP_PLUSI:
|
|
case OP_MINPLUSI:
|
|
case OP_POSPLUSI:
|
|
if (!inassert) return 0;
|
|
if (cflags < 0) { c = scode[1]; cflags = REQ_CASELESS; }
|
|
else if (c != scode[1]) return 0;
|
|
break;
|
|
}
|
|
|
|
code += GET(code, 1);
|
|
}
|
|
while (*code == OP_ALT);
|
|
|
|
*flags = cflags;
|
|
return c;
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* Add an entry to the name/number table *
|
|
*************************************************/
|
|
|
|
/* This function is called between compiling passes to add an entry to the
|
|
name/number table, maintaining alphabetical order. Checking for permitted
|
|
and forbidden duplicates has already been done.
|
|
|
|
Arguments:
|
|
cb the compile data block
|
|
name the name to add
|
|
length the length of the name
|
|
groupno the group number
|
|
|
|
Returns: nothing
|
|
*/
|
|
|
|
static void
|
|
add_name_to_table(compile_block *cb, PCRE2_SPTR name, int length,
|
|
unsigned int groupno)
|
|
{
|
|
int i;
|
|
PCRE2_UCHAR *slot = cb->name_table;
|
|
|
|
for (i = 0; i < cb->names_found; i++)
|
|
{
|
|
int crc = memcmp(name, slot+IMM2_SIZE, CU2BYTES(length));
|
|
if (crc == 0 && slot[IMM2_SIZE+length] != 0)
|
|
crc = -1; /* Current name is a substring */
|
|
|
|
/* Make space in the table and break the loop for an earlier name. For a
|
|
duplicate or later name, carry on. We do this for duplicates so that in the
|
|
simple case (when ?(| is not used) they are in order of their numbers. In all
|
|
cases they are in the order in which they appear in the pattern. */
|
|
|
|
if (crc < 0)
|
|
{
|
|
memmove(slot + cb->name_entry_size, slot,
|
|
CU2BYTES((cb->names_found - i) * cb->name_entry_size));
|
|
break;
|
|
}
|
|
|
|
/* Continue the loop for a later or duplicate name */
|
|
|
|
slot += cb->name_entry_size;
|
|
}
|
|
|
|
PUT2(slot, 0, groupno);
|
|
memcpy(slot + IMM2_SIZE, name, CU2BYTES(length));
|
|
cb->names_found++;
|
|
|
|
/* Add a terminating zero and fill the rest of the slot with zeroes so that
|
|
the memory is all initialized. Otherwise valgrind moans about uninitialized
|
|
memory when saving serialized compiled patterns. */
|
|
|
|
memset(slot + IMM2_SIZE + length, 0,
|
|
CU2BYTES(cb->name_entry_size - length - IMM2_SIZE));
|
|
}
|
|
|
|
|
|
|
|
/*************************************************
|
|
* External function to compile a pattern *
|
|
*************************************************/
|
|
|
|
/* This function reads a regular expression in the form of a string and returns
|
|
a pointer to a block of store holding a compiled version of the expression.
|
|
|
|
Arguments:
|
|
pattern the regular expression
|
|
patlen the length of the pattern, or PCRE2_ZERO_TERMINATED
|
|
options option bits
|
|
errorptr pointer to errorcode
|
|
erroroffset pointer to error offset
|
|
ccontext points to a compile context or is NULL
|
|
|
|
Returns: pointer to compiled data block, or NULL on error,
|
|
with errorcode and erroroffset set
|
|
*/
|
|
|
|
PCRE2_EXP_DEFN pcre2_code * PCRE2_CALL_CONVENTION
|
|
pcre2_compile(PCRE2_SPTR pattern, PCRE2_SIZE patlen, uint32_t options,
|
|
int *errorptr, PCRE2_SIZE *erroroffset, pcre2_compile_context *ccontext)
|
|
{
|
|
BOOL utf; /* Set TRUE for UTF mode */
|
|
pcre2_real_code *re = NULL; /* What we will return */
|
|
compile_block cb; /* "Static" compile-time data */
|
|
const uint8_t *tables; /* Char tables base pointer */
|
|
|
|
PCRE2_UCHAR *code; /* Current pointer in compiled code */
|
|
PCRE2_SPTR codestart; /* Start of compiled code */
|
|
PCRE2_SPTR ptr; /* Current pointer in pattern */
|
|
|
|
size_t length = 1; /* Allow or final END opcode */
|
|
size_t usedlength; /* Actual length used */
|
|
size_t re_blocksize; /* Size of memory block */
|
|
|
|
int32_t firstcuflags, reqcuflags; /* Type of first/req code unit */
|
|
uint32_t firstcu, reqcu; /* Value of first/req code unit */
|
|
uint32_t setflags = 0; /* NL and BSR set flags */
|
|
|
|
uint32_t skipatstart; /* When checking (*UTF) etc */
|
|
uint32_t limit_match = UINT32_MAX; /* Unset match limits */
|
|
uint32_t limit_recursion = UINT32_MAX;
|
|
|
|
int newline = 0; /* Unset; can be set by the pattern */
|
|
int bsr = 0; /* Unset; can be set by the pattern */
|
|
int errorcode = 0; /* Initialize to avoid compiler warn */
|
|
|
|
/* Comments at the head of this file explain about these variables. */
|
|
|
|
PCRE2_UCHAR *copied_pattern = NULL;
|
|
PCRE2_UCHAR stack_copied_pattern[COPIED_PATTERN_SIZE];
|
|
named_group named_groups[NAMED_GROUP_LIST_SIZE];
|
|
|
|
/* The workspace is used in different ways in the different compiling phases.
|
|
It needs to be 16-bit aligned for the preliminary group scan, and 32-bit
|
|
aligned for the group information cache. */
|
|
|
|
uint32_t c32workspace[C32_WORK_SIZE];
|
|
PCRE2_UCHAR *cworkspace = (PCRE2_UCHAR *)c32workspace;
|
|
|
|
|
|
/* -------------- Check arguments and set up the pattern ----------------- */
|
|
|
|
/* There must be error code and offset pointers. */
|
|
|
|
if (errorptr == NULL || erroroffset == NULL) return NULL;
|
|
*errorptr = ERR0;
|
|
*erroroffset = 0;
|
|
|
|
/* There must be a pattern! */
|
|
|
|
if (pattern == NULL)
|
|
{
|
|
*errorptr = ERR16;
|
|
return NULL;
|
|
}
|
|
|
|
/* Check that all undefined public option bits are zero. */
|
|
|
|
if ((options & ~PUBLIC_COMPILE_OPTIONS) != 0)
|
|
{
|
|
*errorptr = ERR17;
|
|
return NULL;
|
|
}
|
|
|
|
/* A NULL compile context means "use a default context" */
|
|
|
|
if (ccontext == NULL)
|
|
ccontext = (pcre2_compile_context *)(&PRIV(default_compile_context));
|
|
|
|
/* A zero-terminated pattern is indicated by the special length value
|
|
PCRE2_ZERO_TERMINATED. Otherwise, we make a copy of the pattern and add a zero,
|
|
to ensure that it is always possible to look one code unit beyond the end of
|
|
the pattern's characters. In both cases, check that the pattern is overlong. */
|
|
|
|
if (patlen == PCRE2_ZERO_TERMINATED)
|
|
{
|
|
patlen = PRIV(strlen)(pattern);
|
|
if (patlen > ccontext->max_pattern_length)
|
|
{
|
|
*errorptr = ERR88;
|
|
return NULL;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
if (patlen > ccontext->max_pattern_length)
|
|
{
|
|
*errorptr = ERR88;
|
|
return NULL;
|
|
}
|
|
if (patlen < COPIED_PATTERN_SIZE)
|
|
copied_pattern = stack_copied_pattern;
|
|
else
|
|
{
|
|
copied_pattern = ccontext->memctl.malloc(CU2BYTES(patlen + 1),
|
|
ccontext->memctl.memory_data);
|
|
if (copied_pattern == NULL)
|
|
{
|
|
*errorptr = ERR21;
|
|
return NULL;
|
|
}
|
|
}
|
|
memcpy(copied_pattern, pattern, CU2BYTES(patlen));
|
|
copied_pattern[patlen] = 0;
|
|
pattern = copied_pattern;
|
|
}
|
|
|
|
/* ------------ Initialize the "static" compile data -------------- */
|
|
|
|
tables = (ccontext->tables != NULL)? ccontext->tables : PRIV(default_tables);
|
|
|
|
cb.lcc = tables + lcc_offset; /* Individual */
|
|
cb.fcc = tables + fcc_offset; /* character */
|
|
cb.cbits = tables + cbits_offset; /* tables */
|
|
cb.ctypes = tables + ctypes_offset;
|
|
|
|
cb.assert_depth = 0;
|
|
cb.bracount = cb.final_bracount = 0;
|
|
cb.cx = ccontext;
|
|
cb.dupnames = FALSE;
|
|
cb.end_pattern = pattern + patlen;
|
|
cb.nestptr[0] = cb.nestptr[1] = NULL;
|
|
cb.external_flags = 0;
|
|
cb.external_options = options;
|
|
cb.groupinfo = c32workspace;
|
|
cb.had_recurse = FALSE;
|
|
cb.iscondassert = FALSE;
|
|
cb.max_lookbehind = 0;
|
|
cb.name_entry_size = 0;
|
|
cb.name_table = NULL;
|
|
cb.named_groups = named_groups;
|
|
cb.named_group_list_size = NAMED_GROUP_LIST_SIZE;
|
|
cb.names_found = 0;
|
|
cb.open_caps = NULL;
|
|
cb.parens_depth = 0;
|
|
cb.req_varyopt = 0;
|
|
cb.start_code = cworkspace;
|
|
cb.start_pattern = pattern;
|
|
cb.start_workspace = cworkspace;
|
|
cb.workspace_size = COMPILE_WORK_SIZE;
|
|
|
|
/* Maximum back reference and backref bitmap. The bitmap records up to 31 back
|
|
references to help in deciding whether (.*) can be treated as anchored or not.
|
|
*/
|
|
|
|
cb.top_backref = 0;
|
|
cb.backref_map = 0;
|
|
|
|
/* --------------- Start looking at the pattern --------------- */
|
|
|
|
/* Check for global one-time option settings at the start of the pattern, and
|
|
remember the offset to the actual regex. */
|
|
|
|
ptr = pattern;
|
|
skipatstart = 0;
|
|
|
|
while (ptr[skipatstart] == CHAR_LEFT_PARENTHESIS &&
|
|
ptr[skipatstart+1] == CHAR_ASTERISK)
|
|
{
|
|
unsigned int i;
|
|
for (i = 0; i < sizeof(pso_list)/sizeof(pso); i++)
|
|
{
|
|
pso *p = pso_list + i;
|
|
|
|
if (PRIV(strncmp_c8)(ptr+skipatstart+2, (char *)(p->name), p->length) == 0)
|
|
{
|
|
uint32_t c, pp;
|
|
|
|
skipatstart += p->length + 2;
|
|
switch(p->type)
|
|
{
|
|
case PSO_OPT:
|
|
cb.external_options |= p->value;
|
|
break;
|
|
|
|
case PSO_FLG:
|
|
setflags |= p->value;
|
|
break;
|
|
|
|
case PSO_NL:
|
|
newline = p->value;
|
|
setflags |= PCRE2_NL_SET;
|
|
break;
|
|
|
|
case PSO_BSR:
|
|
bsr = p->value;
|
|
setflags |= PCRE2_BSR_SET;
|
|
break;
|
|
|
|
case PSO_LIMM:
|
|
case PSO_LIMR:
|
|
c = 0;
|
|
pp = skipatstart;
|
|
if (!IS_DIGIT(ptr[pp]))
|
|
{
|
|
errorcode = ERR60;
|
|
ptr += pp;
|
|
goto HAD_ERROR;
|
|
}
|
|
while (IS_DIGIT(ptr[pp]))
|
|
{
|
|
if (c > UINT32_MAX / 10 - 1) break; /* Integer overflow */
|
|
c = c*10 + (ptr[pp++] - CHAR_0);
|
|
}
|
|
if (ptr[pp++] != CHAR_RIGHT_PARENTHESIS)
|
|
{
|
|
errorcode = ERR60;
|
|
ptr += pp;
|
|
goto HAD_ERROR;
|
|
}
|
|
if (p->type == PSO_LIMM) limit_match = c;
|
|
else limit_recursion = c;
|
|
skipatstart += pp - skipatstart;
|
|
break;
|
|
}
|
|
break; /* Out of the table scan loop */
|
|
}
|
|
}
|
|
if (i >= sizeof(pso_list)/sizeof(pso)) break; /* Out of pso loop */
|
|
}
|
|
|
|
/* End of pattern-start options; advance to start of real regex. */
|
|
|
|
ptr += skipatstart;
|
|
|
|
/* Can't support UTF or UCP unless PCRE2 has been compiled with UTF support. */
|
|
|
|
#ifndef SUPPORT_UNICODE
|
|
if ((cb.external_options & (PCRE2_UTF|PCRE2_UCP)) != 0)
|
|
{
|
|
errorcode = ERR32;
|
|
goto HAD_ERROR;
|
|
}
|
|
#endif
|
|
|
|
/* Check UTF. We have the original options in 'options', with that value as
|
|
modified by (*UTF) etc in cb->external_options. */
|
|
|
|
utf = (cb.external_options & PCRE2_UTF) != 0;
|
|
if (utf)
|
|
{
|
|
if ((options & PCRE2_NEVER_UTF) != 0)
|
|
{
|
|
errorcode = ERR74;
|
|
goto HAD_ERROR;
|
|
}
|
|
if ((options & PCRE2_NO_UTF_CHECK) == 0 &&
|
|
(errorcode = PRIV(valid_utf)(pattern, patlen, erroroffset)) != 0)
|
|
goto HAD_UTF_ERROR;
|
|
}
|
|
|
|
/* Check UCP lockout. */
|
|
|
|
if ((cb.external_options & (PCRE2_UCP|PCRE2_NEVER_UCP)) ==
|
|
(PCRE2_UCP|PCRE2_NEVER_UCP))
|
|
{
|
|
errorcode = ERR75;
|
|
goto HAD_ERROR;
|
|
}
|
|
|
|
/* Process the BSR setting. */
|
|
|
|
if (bsr == 0) bsr = ccontext->bsr_convention;
|
|
|
|
/* Process the newline setting. */
|
|
|
|
if (newline == 0) newline = ccontext->newline_convention;
|
|
cb.nltype = NLTYPE_FIXED;
|
|
switch(newline)
|
|
{
|
|
case PCRE2_NEWLINE_CR:
|
|
cb.nllen = 1;
|
|
cb.nl[0] = CHAR_CR;
|
|
break;
|
|
|
|
case PCRE2_NEWLINE_LF:
|
|
cb.nllen = 1;
|
|
cb.nl[0] = CHAR_NL;
|
|
break;
|
|
|
|
case PCRE2_NEWLINE_CRLF:
|
|
cb.nllen = 2;
|
|
cb.nl[0] = CHAR_CR;
|
|
cb.nl[1] = CHAR_NL;
|
|
break;
|
|
|
|
case PCRE2_NEWLINE_ANY:
|
|
cb.nltype = NLTYPE_ANY;
|
|
break;
|
|
|
|
case PCRE2_NEWLINE_ANYCRLF:
|
|
cb.nltype = NLTYPE_ANYCRLF;
|
|
break;
|
|
|
|
default:
|
|
errorcode = ERR56;
|
|
goto HAD_ERROR;
|
|
}
|
|
|
|
/* Before we do anything else, do a pre-scan of the pattern in order to
|
|
discover the named groups and their numerical equivalents, so that this
|
|
information is always available for the remaining processing. */
|
|
|
|
errorcode = scan_for_captures(&ptr, cb.external_options, &cb);
|
|
if (errorcode != 0) goto HAD_ERROR;
|
|
|
|
/* For obscure debugging this code can be enabled. */
|
|
|
|
#if 0
|
|
{
|
|
int i;
|
|
named_group *ng = cb.named_groups;
|
|
fprintf(stderr, "+++Captures: %d\n", cb.final_bracount);
|
|
for (i = 0; i < cb.names_found; i++, ng++)
|
|
{
|
|
fprintf(stderr, "+++%3d %.*s\n", ng->number, ng->length, ng->name);
|
|
}
|
|
}
|
|
#endif
|
|
|
|
/* Reset current bracket count to zero and current pointer to the start of the
|
|
pattern. */
|
|
|
|
cb.bracount = 0;
|
|
ptr = pattern + skipatstart;
|
|
|
|
/* Pretend to compile the pattern while actually just accumulating the amount
|
|
of memory required in the 'length' variable. This behaviour is triggered by
|
|
passing a non-NULL final argument to compile_regex(). We pass a block of
|
|
workspace (cworkspace) for it to compile parts of the pattern into; the
|
|
compiled code is discarded when it is no longer needed, so hopefully this
|
|
workspace will never overflow, though there is a test for its doing so.
|
|
|
|
On error, errorcode will be set non-zero, so we don't need to look at the
|
|
result of the function. The initial options have been put into the cb block so
|
|
that they can be changed if an option setting is found within the regex right
|
|
at the beginning. Bringing initial option settings outside can help speed up
|
|
starting point checks. We still have to pass a separate options variable (the
|
|
first argument) because that may change as the pattern is processed. */
|
|
|
|
code = cworkspace;
|
|
*code = OP_BRA;
|
|
|
|
(void)compile_regex(cb.external_options, &code, &ptr, &errorcode, FALSE,
|
|
FALSE, 0, 0, &firstcu, &firstcuflags, &reqcu, &reqcuflags, NULL,
|
|
&cb, &length);
|
|
|
|
if (errorcode != 0) goto HAD_ERROR;
|
|
if (length > MAX_PATTERN_SIZE)
|
|
{
|
|
errorcode = ERR20;
|
|
goto HAD_ERROR;
|
|
}
|
|
|
|
/* Compute the size of, and then get and initialize, the data block for storing
|
|
the compiled pattern and names table. Integer overflow should no longer be
|
|
possible because nowadays we limit the maximum value of cb.names_found and
|
|
cb.name_entry_size. */
|
|
|
|
re_blocksize = sizeof(pcre2_real_code) +
|
|
CU2BYTES(length + cb.names_found * cb.name_entry_size);
|
|
re = (pcre2_real_code *)
|
|
ccontext->memctl.malloc(re_blocksize, ccontext->memctl.memory_data);
|
|
if (re == NULL)
|
|
{
|
|
errorcode = ERR21;
|
|
goto HAD_ERROR;
|
|
}
|
|
|
|
re->memctl = ccontext->memctl;
|
|
re->tables = tables;
|
|
re->executable_jit = NULL;
|
|
memset(re->start_bitmap, 0, 32 * sizeof(uint8_t));
|
|
re->blocksize = re_blocksize;
|
|
re->magic_number = MAGIC_NUMBER;
|
|
re->compile_options = options;
|
|
re->overall_options = cb.external_options;
|
|
re->flags = PCRE2_CODE_UNIT_WIDTH/8 | cb.external_flags | setflags;
|
|
re->limit_match = limit_match;
|
|
re->limit_recursion = limit_recursion;
|
|
re->first_codeunit = 0;
|
|
re->last_codeunit = 0;
|
|
re->bsr_convention = bsr;
|
|
re->newline_convention = newline;
|
|
re->max_lookbehind = 0;
|
|
re->minlength = 0;
|
|
re->top_bracket = 0;
|
|
re->top_backref = 0;
|
|
re->name_entry_size = cb.name_entry_size;
|
|
re->name_count = cb.names_found;
|
|
|
|
/* The basic block is immediately followed by the name table, and the compiled
|
|
code follows after that. */
|
|
|
|
codestart = (PCRE2_SPTR)((uint8_t *)re + sizeof(pcre2_real_code)) +
|
|
re->name_entry_size * re->name_count;
|
|
|
|
/* Workspace is needed to remember information about numbered groups: whether a
|
|
group can match an empty string and what its fixed length is. This is done to
|
|
avoid the possibility of recursive references causing very long compile times
|
|
when checking these features. Unnumbered groups do not have this exposure since
|
|
they cannot be referenced. We use an indexed vector for this purpose. If there
|
|
are sufficiently few groups, it can be the c32workspace vector, as set up
|
|
above. Otherwise we have to get/free a special vector. The vector must be
|
|
initialized to zero. */
|
|
|
|
if (cb.final_bracount >= C32_WORK_SIZE)
|
|
{
|
|
cb.groupinfo = ccontext->memctl.malloc(
|
|
(cb.final_bracount + 1)*sizeof(uint32_t), ccontext->memctl.memory_data);
|
|
if (cb.groupinfo == NULL)
|
|
{
|
|
errorcode = ERR21;
|
|
goto HAD_ERROR;
|
|
}
|
|
}
|
|
memset(cb.groupinfo, 0, (cb.final_bracount + 1) * sizeof(uint32_t));
|
|
|
|
/* Update the compile data block for the actual compile. The starting points of
|
|
the name/number translation table and of the code are passed around in the
|
|
compile data block. The start/end pattern and initial options are already set
|
|
from the pre-compile phase, as is the name_entry_size field. Reset the bracket
|
|
count and the names_found field. */
|
|
|
|
cb.parens_depth = 0;
|
|
cb.assert_depth = 0;
|
|
cb.bracount = 0;
|
|
cb.max_lookbehind = 0;
|
|
cb.name_table = (PCRE2_UCHAR *)((uint8_t *)re + sizeof(pcre2_real_code));
|
|
cb.start_code = codestart;
|
|
cb.iscondassert = FALSE;
|
|
cb.req_varyopt = 0;
|
|
cb.had_accept = FALSE;
|
|
cb.had_pruneorskip = FALSE;
|
|
cb.check_lookbehind = FALSE;
|
|
cb.open_caps = NULL;
|
|
|
|
/* If any named groups were found, create the name/number table from the list
|
|
created in the pre-pass. */
|
|
|
|
if (cb.names_found > 0)
|
|
{
|
|
int i = cb.names_found;
|
|
named_group *ng = cb.named_groups;
|
|
cb.names_found = 0;
|
|
for (; i > 0; i--, ng++)
|
|
add_name_to_table(&cb, ng->name, ng->length, ng->number);
|
|
}
|
|
|
|
/* Set up a starting, non-extracting bracket, then compile the expression. On
|
|
error, errorcode will be set non-zero, so we don't need to look at the result
|
|
of the function here. */
|
|
|
|
ptr = pattern + skipatstart;
|
|
code = (PCRE2_UCHAR *)codestart;
|
|
*code = OP_BRA;
|
|
(void)compile_regex(re->overall_options, &code, &ptr, &errorcode, FALSE, FALSE,
|
|
0, 0, &firstcu, &firstcuflags, &reqcu, &reqcuflags, NULL, &cb, NULL);
|
|
|
|
re->top_bracket = cb.bracount;
|
|
re->top_backref = cb.top_backref;
|
|
re->max_lookbehind = cb.max_lookbehind;
|
|
|
|
if (cb.had_accept)
|
|
{
|
|
reqcu = 0; /* Must disable after (*ACCEPT) */
|
|
reqcuflags = REQ_NONE;
|
|
}
|
|
|
|
/* If we have not reached end of pattern after a successful compile, there's an
|
|
excess bracket. Fill in the final opcode and check for disastrous overflow.
|
|
If no overflow, but the estimated length exceeds the really used length, adjust
|
|
the value of re->blocksize, and if valgrind support is configured, mark the
|
|
extra allocated memory as unaddressable, so that any out-of-bound reads can be
|
|
detected. */
|
|
|
|
if (errorcode == 0 && ptr < cb.end_pattern) errorcode = ERR22;
|
|
*code++ = OP_END;
|
|
usedlength = code - codestart;
|
|
if (usedlength > length) errorcode = ERR23; else
|
|
{
|
|
re->blocksize -= CU2BYTES(length - usedlength);
|
|
#ifdef SUPPORT_VALGRIND
|
|
VALGRIND_MAKE_MEM_NOACCESS(code, CU2BYTES(length - usedlength));
|
|
#endif
|
|
}
|
|
|
|
/* Scan the pattern for recursion/subroutine calls and convert the group
|
|
numbers into offsets. Maintain a small cache so that repeated groups containing
|
|
recursions are efficiently handled. */
|
|
|
|
#define RSCAN_CACHE_SIZE 8
|
|
|
|
if (errorcode == 0 && cb.had_recurse)
|
|
{
|
|
PCRE2_UCHAR *rcode;
|
|
PCRE2_SPTR rgroup;
|
|
int ccount = 0;
|
|
int start = RSCAN_CACHE_SIZE;
|
|
recurse_cache rc[RSCAN_CACHE_SIZE];
|
|
|
|
for (rcode = (PCRE2_UCHAR *)find_recurse(codestart, utf);
|
|
rcode != NULL;
|
|
rcode = (PCRE2_UCHAR *)find_recurse(rcode + 1 + LINK_SIZE, utf))
|
|
{
|
|
int i, p, recno;
|
|
|
|
recno = (int)GET(rcode, 1);
|
|
if (recno == 0) rgroup = codestart; else
|
|
{
|
|
PCRE2_SPTR search_from = codestart;
|
|
rgroup = NULL;
|
|
for (i = 0, p = start; i < ccount; i++, p = (p + 1) & 7)
|
|
{
|
|
if (recno == rc[p].recno)
|
|
{
|
|
rgroup = rc[p].group;
|
|
break;
|
|
}
|
|
|
|
/* Group n+1 must always start to the right of group n, so we can save
|
|
search time below when the new group number is greater than any of the
|
|
previously found groups. */
|
|
|
|
if (recno > rc[p].recno) search_from = rc[p].group;
|
|
}
|
|
|
|
if (rgroup == NULL)
|
|
{
|
|
rgroup = PRIV(find_bracket)(search_from, utf, recno);
|
|
if (rgroup == NULL)
|
|
{
|
|
errorcode = ERR53;
|
|
break;
|
|
}
|
|
if (--start < 0) start = RSCAN_CACHE_SIZE - 1;
|
|
rc[start].recno = recno;
|
|
rc[start].group = rgroup;
|
|
if (ccount < RSCAN_CACHE_SIZE) ccount++;
|
|
}
|
|
}
|
|
|
|
PUT(rcode, 1, rgroup - codestart);
|
|
}
|
|
}
|
|
|
|
/* In rare debugging situations we sometimes need to look at the compiled code
|
|
at this stage. */
|
|
|
|
#ifdef CALL_PRINTINT
|
|
pcre2_printint(re, stderr, TRUE);
|
|
fprintf(stderr, "Length=%lu Used=%lu\n", length, usedlength);
|
|
#endif
|
|
|
|
/* After a successful compile, give an error if there's back reference to a
|
|
non-existent capturing subpattern. Then, unless disabled, check whether any
|
|
single character iterators can be auto-possessified. The function overwrites
|
|
the appropriate opcode values, so the type of the pointer must be cast. NOTE:
|
|
the intermediate variable "temp" is used in this code because at least one
|
|
compiler gives a warning about loss of "const" attribute if the cast
|
|
(PCRE2_UCHAR *)codestart is used directly in the function call. */
|
|
|
|
if (errorcode == 0)
|
|
{
|
|
if (re->top_backref > re->top_bracket) errorcode = ERR15;
|
|
else if ((re->overall_options & PCRE2_NO_AUTO_POSSESS) == 0)
|
|
{
|
|
PCRE2_UCHAR *temp = (PCRE2_UCHAR *)codestart;
|
|
if (PRIV(auto_possessify)(temp, utf, &cb) != 0) errorcode = ERR80;
|
|
}
|
|
}
|
|
|
|
/* If there were any lookbehind assertions that contained OP_RECURSE
|
|
(recursions or subroutine calls), a flag is set for them to be checked here,
|
|
because they may contain forward references. Actual recursions cannot be fixed
|
|
length, but subroutine calls can. It is done like this so that those without
|
|
OP_RECURSE that are not fixed length get a diagnosic with a useful offset. The
|
|
exceptional ones forgo this. We scan the pattern to check that they are fixed
|
|
length, and set their lengths. */
|
|
|
|
if (errorcode == 0 && cb.check_lookbehind)
|
|
{
|
|
PCRE2_UCHAR *cc = (PCRE2_UCHAR *)codestart;
|
|
|
|
/* Loop, searching for OP_REVERSE items, and process those that do not have
|
|
their length set. (Actually, it will also re-process any that have a length
|
|
of zero, but that is a pathological case, and it does no harm.) When we find
|
|
one, we temporarily terminate the branch it is in while we scan it. Note that
|
|
calling find_bracket() with a negative group number returns a pointer to the
|
|
OP_REVERSE item, not the actual lookbehind. */
|
|
|
|
for (cc = (PCRE2_UCHAR *)PRIV(find_bracket)(codestart, utf, -1);
|
|
cc != NULL;
|
|
cc = (PCRE2_UCHAR *)PRIV(find_bracket)(cc, utf, -1))
|
|
{
|
|
if (GET(cc, 1) == 0)
|
|
{
|
|
int fixed_length;
|
|
int count = 0;
|
|
PCRE2_UCHAR *be = cc - 1 - LINK_SIZE + GET(cc, -LINK_SIZE);
|
|
int end_op = *be;
|
|
*be = OP_END;
|
|
fixed_length = find_fixedlength(cc, utf, TRUE, &cb, NULL, &count);
|
|
*be = end_op;
|
|
if (fixed_length < 0)
|
|
{
|
|
errorcode = fixed_length_errors[-fixed_length];
|
|
break;
|
|
}
|
|
if (fixed_length > cb.max_lookbehind) cb.max_lookbehind = fixed_length;
|
|
PUT(cc, 1, fixed_length);
|
|
}
|
|
cc += 1 + LINK_SIZE;
|
|
}
|
|
|
|
/* The previous value of the maximum lookbehind was transferred to the
|
|
compiled regex block above. We could have updated this value in the loop
|
|
above, but keep the two values in step, just in case some later code below
|
|
uses the cb value. */
|
|
|
|
re->max_lookbehind = cb.max_lookbehind;
|
|
}
|
|
|
|
/* Failed to compile, or error while post-processing. Earlier errors get here
|
|
via the dreaded goto. */
|
|
|
|
if (errorcode != 0)
|
|
{
|
|
HAD_ERROR:
|
|
*erroroffset = (int)(ptr - pattern);
|
|
HAD_UTF_ERROR:
|
|
*errorptr = errorcode;
|
|
pcre2_code_free(re);
|
|
re = NULL;
|
|
goto EXIT;
|
|
}
|
|
|
|
/* Successful compile. If the anchored option was not passed, set it if
|
|
we can determine that the pattern is anchored by virtue of ^ characters or \A
|
|
or anything else, such as starting with non-atomic .* when DOTALL is set and
|
|
there are no occurrences of *PRUNE or *SKIP (though there is an option to
|
|
disable this case). */
|
|
|
|
if ((re->overall_options & PCRE2_ANCHORED) == 0 &&
|
|
is_anchored(codestart, 0, &cb, 0))
|
|
re->overall_options |= PCRE2_ANCHORED;
|
|
|
|
/* If the pattern is still not anchored and we do not have a first code unit,
|
|
see if there is one that is asserted (these are not saved during the compile
|
|
because they can cause conflicts with actual literals that follow). This code
|
|
need not be obeyed if PCRE2_NO_START_OPTIMIZE is set, as the data it would
|
|
create will not be used. */
|
|
|
|
if ((re->overall_options & (PCRE2_ANCHORED|PCRE2_NO_START_OPTIMIZE)) == 0)
|
|
{
|
|
if (firstcuflags < 0)
|
|
firstcu = find_firstassertedcu(codestart, &firstcuflags, FALSE);
|
|
|
|
/* Save the data for a first code unit. */
|
|
|
|
if (firstcuflags >= 0)
|
|
{
|
|
re->first_codeunit = firstcu;
|
|
re->flags |= PCRE2_FIRSTSET;
|
|
|
|
/* Handle caseless first code units. */
|
|
|
|
if ((firstcuflags & REQ_CASELESS) != 0)
|
|
{
|
|
if (firstcu < 128 || (!utf && firstcu < 255))
|
|
{
|
|
if (cb.fcc[firstcu] != firstcu) re->flags |= PCRE2_FIRSTCASELESS;
|
|
}
|
|
|
|
/* The first code unit is > 128 in UTF mode, or > 255 otherwise. In
|
|
8-bit UTF mode, codepoints in the range 128-255 are introductory code
|
|
points and cannot have another case. In 16-bit and 32-bit modes, we can
|
|
check wide characters when UTF (and therefore UCP) is supported. */
|
|
|
|
#if defined SUPPORT_UNICODE && PCRE2_CODE_UNIT_WIDTH != 8
|
|
else if (firstcu <= MAX_UTF_CODE_POINT &&
|
|
UCD_OTHERCASE(firstcu) != firstcu)
|
|
re->flags |= PCRE2_FIRSTCASELESS;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* When there is no first code unit, see if we can set the PCRE2_STARTLINE
|
|
flag. This is helpful for multiline matches when all branches start with ^
|
|
and also when all branches start with non-atomic .* for non-DOTALL matches
|
|
when *PRUNE and SKIP are not present. (There is an option that disables this
|
|
case.) */
|
|
|
|
else if (is_startline(codestart, 0, &cb, 0)) re->flags |= PCRE2_STARTLINE;
|
|
}
|
|
|
|
/* Handle the "required code unit", if one is set. In the case of an anchored
|
|
pattern, do this only if it follows a variable length item in the pattern.
|
|
Again, skip this if PCRE2_NO_START_OPTIMIZE is set. */
|
|
|
|
if (reqcuflags >= 0 &&
|
|
((re->overall_options & (PCRE2_ANCHORED|PCRE2_NO_START_OPTIMIZE)) == 0 ||
|
|
(reqcuflags & REQ_VARY) != 0))
|
|
{
|
|
re->last_codeunit = reqcu;
|
|
re->flags |= PCRE2_LASTSET;
|
|
|
|
/* Handle caseless required code units as for first code units (above). */
|
|
|
|
if ((reqcuflags & REQ_CASELESS) != 0)
|
|
{
|
|
if (reqcu < 128 || (!utf && reqcu < 255))
|
|
{
|
|
if (cb.fcc[reqcu] != reqcu) re->flags |= PCRE2_LASTCASELESS;
|
|
}
|
|
#if defined SUPPORT_UNICODE && PCRE2_CODE_UNIT_WIDTH != 8
|
|
else if (reqcu <= MAX_UTF_CODE_POINT && UCD_OTHERCASE(reqcu) != reqcu)
|
|
re->flags |= PCRE2_LASTCASELESS;
|
|
#endif
|
|
}
|
|
}
|
|
|
|
/* Check for a pattern than can match an empty string, so that this information
|
|
can be provided to applications. */
|
|
|
|
do
|
|
{
|
|
int count = 0;
|
|
int rc = could_be_empty_branch(codestart, code, utf, &cb, TRUE, NULL, &count);
|
|
if (rc < 0)
|
|
{
|
|
errorcode = ERR86;
|
|
goto HAD_ERROR;
|
|
}
|
|
if (rc > 0)
|
|
{
|
|
re->flags |= PCRE2_MATCH_EMPTY;
|
|
break;
|
|
}
|
|
codestart += GET(codestart, 1);
|
|
}
|
|
while (*codestart == OP_ALT);
|
|
|
|
/* Finally, unless PCRE2_NO_START_OPTIMIZE is set, study the compiled pattern
|
|
to set up information such as a bitmap of starting code units and a minimum
|
|
matching length. */
|
|
|
|
if ((re->overall_options & PCRE2_NO_START_OPTIMIZE) == 0 &&
|
|
PRIV(study)(re) != 0)
|
|
{
|
|
errorcode = ERR31;
|
|
goto HAD_ERROR;
|
|
}
|
|
|
|
/* Control ends up here in all cases. If memory was obtained for a
|
|
zero-terminated copy of the pattern, remember to free it before returning. Also
|
|
free the list of named groups if a larger one had to be obtained, and likewise
|
|
the group information vector. */
|
|
|
|
EXIT:
|
|
if (copied_pattern != stack_copied_pattern)
|
|
ccontext->memctl.free(copied_pattern, ccontext->memctl.memory_data);
|
|
if (cb.named_group_list_size > NAMED_GROUP_LIST_SIZE)
|
|
ccontext->memctl.free((void *)cb.named_groups, ccontext->memctl.memory_data);
|
|
if (cb.groupinfo != c32workspace)
|
|
ccontext->memctl.free((void *)cb.groupinfo, ccontext->memctl.memory_data);
|
|
|
|
return re; /* Will be NULL after an error */
|
|
}
|
|
|
|
/* End of pcre2_compile.c */
|