mirror of
https://github.com/fish-shell/fish-shell
synced 2024-12-28 13:53:10 +00:00
a928517e95
The existing code is inconsistent, and in a couple of cases wrong, about dealing with strings that are not valid ints. For example, there are locations that call wcstol() and check errno without first setting errno to zero. Normalize the code to a consistent pattern. This is mostly to deal with inconsistencies between BSD, GNU, and other UNIXes. This does make some syntax more liberal. For example `echo $PATH[1 .. 3]` is now valid due to uniformly allowing leading and trailing whitespace around numbers. Whereas prior to this change you would get a "Invalid index value" error. Contrast this with `echo $PATH[ 1.. 3 ]` which was valid and still is.
1790 lines
64 KiB
C++
1790 lines
64 KiB
C++
// History functions, part of the user interface.
|
|
//
|
|
#include "config.h" // IWYU pragma: keep
|
|
|
|
#include <assert.h>
|
|
#include <ctype.h>
|
|
#include <errno.h>
|
|
#include <fcntl.h>
|
|
#include <pthread.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/stat.h>
|
|
#include <time.h>
|
|
#include <unistd.h>
|
|
#include <wchar.h>
|
|
#include <wctype.h>
|
|
#include <algorithm>
|
|
#include <iterator>
|
|
#include <map>
|
|
|
|
#include "common.h"
|
|
#include "env.h"
|
|
#include "fallback.h" // IWYU pragma: keep
|
|
#include "history.h"
|
|
#include "io.h"
|
|
#include "iothread.h"
|
|
#include "lru.h"
|
|
#include "parse_constants.h"
|
|
#include "parse_tree.h"
|
|
#include "path.h"
|
|
#include "reader.h"
|
|
#include "signal.h"
|
|
#include "wutil.h" // IWYU pragma: keep
|
|
|
|
// Our history format is intended to be valid YAML. Here it is:
|
|
//
|
|
// - cmd: ssh blah blah blah
|
|
// when: 2348237
|
|
// paths:
|
|
// - /path/to/something
|
|
// - /path/to/something_else
|
|
//
|
|
// Newlines are replaced by \n. Backslashes are replaced by \\.
|
|
|
|
// When we rewrite the history, the number of items we keep.
|
|
#define HISTORY_SAVE_MAX (1024 * 256)
|
|
|
|
// Default buffer size for flushing to the history file.
|
|
#define HISTORY_OUTPUT_BUFFER_SIZE (16 * 1024)
|
|
|
|
namespace {
|
|
|
|
/// Helper class for certain output. This is basically a string that allows us to ensure we only
|
|
/// flush at record boundaries, and avoids the copying of ostringstream. Have you ever tried to
|
|
/// implement your own streambuf? Total insanity.
|
|
static size_t safe_strlen(const char *s) { return s ? strlen(s) : 0; }
|
|
class history_output_buffer_t {
|
|
// A null-terminated C string.
|
|
std::vector<char> buffer;
|
|
// Offset is the offset of the null terminator.
|
|
size_t offset;
|
|
|
|
public:
|
|
/// Add a bit more to HISTORY_OUTPUT_BUFFER_SIZE because we flush once we've exceeded that size.
|
|
history_output_buffer_t() : buffer(HISTORY_OUTPUT_BUFFER_SIZE + 128, '\0'), offset(0) {}
|
|
|
|
/// Append one or more strings.
|
|
void append(const char *s1, const char *s2 = NULL, const char *s3 = NULL) {
|
|
const char *ptrs[4] = {s1, s2, s3, NULL};
|
|
const size_t lengths[4] = {safe_strlen(s1), safe_strlen(s2), safe_strlen(s3), 0};
|
|
|
|
// Determine the additional size we'll need.
|
|
size_t additional_length = 0;
|
|
for (size_t i = 0; i < sizeof lengths / sizeof *lengths; i++) {
|
|
additional_length += lengths[i];
|
|
}
|
|
|
|
// Allocate that much, plus a null terminator.
|
|
size_t required_size = offset + additional_length + 1;
|
|
if (required_size > buffer.size()) {
|
|
buffer.resize(required_size, '\0');
|
|
}
|
|
|
|
// Copy.
|
|
for (size_t i = 0; ptrs[i] != NULL; i++) {
|
|
memmove(&buffer.at(offset), ptrs[i], lengths[i]);
|
|
offset += lengths[i];
|
|
}
|
|
|
|
// Null terminator was appended by virtue of the resize() above (or in a previous
|
|
// invocation).
|
|
assert(buffer.at(buffer.size() - 1) == '\0');
|
|
}
|
|
|
|
/// Output to a given fd, resetting our buffer. Returns true on success, false on error.
|
|
bool flush_to_fd(int fd) {
|
|
bool result = write_loop(fd, &buffer.at(0), offset) >= 0;
|
|
offset = 0;
|
|
return result;
|
|
}
|
|
|
|
/// Return how much data we've accumulated.
|
|
size_t output_size() const { return offset; }
|
|
};
|
|
|
|
class time_profiler_t {
|
|
const char *what;
|
|
double start;
|
|
|
|
public:
|
|
explicit time_profiler_t(const char *w) {
|
|
what = w;
|
|
start = timef();
|
|
}
|
|
|
|
~time_profiler_t() {
|
|
double end = timef();
|
|
debug(2, "%s: %.0f ms", what, (end - start) * 1000);
|
|
}
|
|
};
|
|
|
|
/// Lock a file via fcntl; returns true on success, false on failure.
|
|
static bool history_file_lock(int fd, short type) {
|
|
assert(type == F_RDLCK || type == F_WRLCK);
|
|
struct flock flk = {};
|
|
flk.l_type = type;
|
|
flk.l_whence = SEEK_SET;
|
|
int ret = fcntl(fd, F_SETLKW, (void *)&flk);
|
|
return ret != -1;
|
|
}
|
|
|
|
/// Our LRU cache is used for restricting the amount of history we have, and limiting how long we
|
|
/// order it.
|
|
class history_lru_node_t : public lru_node_t {
|
|
public:
|
|
time_t timestamp;
|
|
path_list_t required_paths;
|
|
explicit history_lru_node_t(const history_item_t &item)
|
|
: lru_node_t(item.str()),
|
|
timestamp(item.timestamp()),
|
|
required_paths(item.get_required_paths()) {}
|
|
};
|
|
|
|
class history_lru_cache_t : public lru_cache_t<history_lru_node_t> {
|
|
protected:
|
|
/// Override to delete evicted nodes.
|
|
virtual void node_was_evicted(history_lru_node_t *node) { delete node; }
|
|
|
|
public:
|
|
explicit history_lru_cache_t(size_t max) : lru_cache_t<history_lru_node_t>(max) {}
|
|
|
|
/// Function to add a history item.
|
|
void add_item(const history_item_t &item) {
|
|
// Skip empty items.
|
|
if (item.empty()) return;
|
|
|
|
// See if it's in the cache. If it is, update the timestamp. If not, we create a new node
|
|
// and add it. Note that calling get_node promotes the node to the front.
|
|
history_lru_node_t *node = this->get_node(item.str());
|
|
if (node == NULL) {
|
|
node = new history_lru_node_t(item);
|
|
this->add_node(node);
|
|
} else {
|
|
node->timestamp = std::max(node->timestamp, item.timestamp());
|
|
// What to do about paths here? Let's just ignore them.
|
|
}
|
|
}
|
|
};
|
|
|
|
class history_collection_t {
|
|
pthread_mutex_t m_lock;
|
|
std::map<wcstring, history_t *> m_histories;
|
|
|
|
public:
|
|
history_collection_t() { VOMIT_ON_FAILURE_NO_ERRNO(pthread_mutex_init(&m_lock, NULL)); }
|
|
~history_collection_t() {
|
|
for (std::map<wcstring, history_t *>::const_iterator i = m_histories.begin();
|
|
i != m_histories.end(); ++i) {
|
|
delete i->second;
|
|
}
|
|
pthread_mutex_destroy(&m_lock);
|
|
}
|
|
history_t &alloc(const wcstring &name);
|
|
void save();
|
|
};
|
|
|
|
} // anonymous namespace
|
|
|
|
static history_collection_t histories;
|
|
|
|
static wcstring history_filename(const wcstring &name, const wcstring &suffix);
|
|
|
|
/// Replaces newlines with a literal backslash followed by an n, and replaces backslashes with two
|
|
/// backslashes.
|
|
static void escape_yaml(std::string *str);
|
|
|
|
/// Inverse of escape_yaml.
|
|
static void unescape_yaml(std::string *str);
|
|
|
|
/// Read one line, stripping off any newline, and updating cursor. Note that our input string is NOT
|
|
/// null terminated; it's just a memory mapped file.
|
|
static size_t read_line(const char *base, size_t cursor, size_t len, std::string &result) {
|
|
// Locate the newline.
|
|
assert(cursor <= len);
|
|
const char *start = base + cursor;
|
|
const char *a_newline = (char *)memchr(start, '\n', len - cursor);
|
|
if (a_newline != NULL) { // we found a newline
|
|
result.assign(start, a_newline - start);
|
|
// Return the amount to advance the cursor; skip over the newline.
|
|
return a_newline - start + 1;
|
|
}
|
|
|
|
// We ran off the end.
|
|
result.clear();
|
|
return len - cursor;
|
|
}
|
|
|
|
/// Trims leading spaces in the given string, returning how many there were.
|
|
static size_t trim_leading_spaces(std::string &str) {
|
|
size_t i = 0, max = str.size();
|
|
while (i < max && str[i] == ' ') i++;
|
|
str.erase(0, i);
|
|
return i;
|
|
}
|
|
|
|
static bool extract_prefix_and_unescape_yaml(std::string *key, std::string *value,
|
|
const std::string &line) {
|
|
size_t where = line.find(":");
|
|
if (where != std::string::npos) {
|
|
key->assign(line, 0, where);
|
|
|
|
// Skip a space after the : if necessary.
|
|
size_t val_start = where + 1;
|
|
if (val_start < line.size() && line.at(val_start) == ' ') val_start++;
|
|
value->assign(line, val_start, line.size() - val_start);
|
|
|
|
unescape_yaml(key);
|
|
unescape_yaml(value);
|
|
}
|
|
return where != std::string::npos;
|
|
}
|
|
|
|
/// Remove backslashes from all newlines. This makes a string from the history file better formated
|
|
/// for on screen display.
|
|
static wcstring history_unescape_newlines_fish_1_x(const wcstring &in_str) {
|
|
wcstring out;
|
|
for (const wchar_t *in = in_str.c_str(); *in; in++) {
|
|
if (*in == L'\\') {
|
|
if (*(in + 1) != L'\n') {
|
|
out.push_back(*in);
|
|
}
|
|
} else {
|
|
out.push_back(*in);
|
|
}
|
|
}
|
|
return out;
|
|
}
|
|
|
|
/// Try to infer the history file type based on inspecting the data.
|
|
static history_file_type_t infer_file_type(const char *data, size_t len) {
|
|
history_file_type_t result = history_type_unknown;
|
|
if (len > 0) { // old fish started with a #
|
|
if (data[0] == '#') {
|
|
result = history_type_fish_1_x;
|
|
} else { // assume new fish
|
|
result = history_type_fish_2_0;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
/// Decode an item via the fish 1.x format. Adapted from fish 1.x's item_get().
|
|
static history_item_t decode_item_fish_1_x(const char *begin, size_t length) {
|
|
const char *end = begin + length;
|
|
const char *pos = begin;
|
|
wcstring out;
|
|
bool was_backslash = false;
|
|
bool first_char = true;
|
|
bool timestamp_mode = false;
|
|
time_t timestamp = 0;
|
|
|
|
while (1) {
|
|
wchar_t c;
|
|
size_t res;
|
|
mbstate_t state = {};
|
|
|
|
if (MB_CUR_MAX == 1) { // single-byte locale
|
|
c = (unsigned char)*pos;
|
|
res = 1;
|
|
} else {
|
|
res = mbrtowc(&c, pos, end - pos, &state);
|
|
}
|
|
|
|
if (res == (size_t)-1) {
|
|
pos++;
|
|
continue;
|
|
} else if (res == (size_t)-2) {
|
|
break;
|
|
} else if (res == (size_t)0) {
|
|
pos++;
|
|
continue;
|
|
}
|
|
pos += res;
|
|
|
|
if (c == L'\n') {
|
|
if (timestamp_mode) {
|
|
const wchar_t *time_string = out.c_str();
|
|
while (*time_string && !iswdigit(*time_string)) time_string++;
|
|
|
|
if (*time_string) {
|
|
time_t tm = (time_t)fish_wcstol(time_string);
|
|
if (!errno && tm >= 0) {
|
|
timestamp = tm;
|
|
}
|
|
}
|
|
|
|
out.clear();
|
|
timestamp_mode = false;
|
|
continue;
|
|
}
|
|
if (!was_backslash) break;
|
|
}
|
|
|
|
if (first_char) {
|
|
first_char = false;
|
|
if (c == L'#') timestamp_mode = true;
|
|
}
|
|
|
|
out.push_back(c);
|
|
was_backslash = (c == L'\\') && !was_backslash;
|
|
}
|
|
|
|
out = history_unescape_newlines_fish_1_x(out);
|
|
return history_item_t(out, timestamp);
|
|
}
|
|
|
|
/// Decode an item via the fish 2.0 format.
|
|
static history_item_t decode_item_fish_2_0(const char *base, size_t len) {
|
|
wcstring cmd;
|
|
time_t when = 0;
|
|
path_list_t paths;
|
|
|
|
size_t indent = 0, cursor = 0;
|
|
std::string key, value, line;
|
|
|
|
// Read the "- cmd:" line.
|
|
size_t advance = read_line(base, cursor, len, line);
|
|
trim_leading_spaces(line);
|
|
if (!extract_prefix_and_unescape_yaml(&key, &value, line) || key != "- cmd") {
|
|
goto done; //!OCLINT(goto is the cleanest way to handle bad input)
|
|
}
|
|
|
|
cursor += advance;
|
|
cmd = str2wcstring(value);
|
|
|
|
// Read the remaining lines.
|
|
for (;;) {
|
|
size_t advance = read_line(base, cursor, len, line);
|
|
|
|
size_t this_indent = trim_leading_spaces(line);
|
|
if (indent == 0) indent = this_indent;
|
|
|
|
if (this_indent == 0 || indent != this_indent) break;
|
|
|
|
if (!extract_prefix_and_unescape_yaml(&key, &value, line)) break;
|
|
|
|
// We are definitely going to consume this line.
|
|
cursor += advance;
|
|
|
|
if (key == "when") {
|
|
// Parse an int from the timestamp. Should this fail, strtol returns 0; that's
|
|
// acceptable.
|
|
char *end = NULL;
|
|
long tmp = strtol(value.c_str(), &end, 0);
|
|
when = tmp;
|
|
} else if (key == "paths") {
|
|
// Read lines starting with " - " until we can't read any more.
|
|
for (;;) {
|
|
size_t advance = read_line(base, cursor, len, line);
|
|
if (trim_leading_spaces(line) <= indent) break;
|
|
|
|
if (strncmp(line.c_str(), "- ", 2)) break;
|
|
|
|
// We're going to consume this line.
|
|
cursor += advance;
|
|
|
|
// Skip the leading dash-space and then store this path it.
|
|
line.erase(0, 2);
|
|
unescape_yaml(&line);
|
|
paths.push_back(str2wcstring(line));
|
|
}
|
|
}
|
|
}
|
|
|
|
done:
|
|
history_item_t result(cmd, when);
|
|
result.set_required_paths(paths);
|
|
return result;
|
|
}
|
|
|
|
static history_item_t decode_item(const char *base, size_t len, history_file_type_t type) {
|
|
if (type == history_type_fish_2_0) return decode_item_fish_2_0(base, len);
|
|
if (type == history_type_fish_1_x) return decode_item_fish_1_x(base, len);
|
|
return history_item_t(L"");
|
|
}
|
|
|
|
/// We can merge two items if they are the same command. We use the more recent timestamp, more
|
|
/// recent identifier, and the longer list of required paths.
|
|
bool history_item_t::merge(const history_item_t &item) {
|
|
bool result = false;
|
|
if (this->contents == item.contents) {
|
|
this->creation_timestamp = std::max(this->creation_timestamp, item.creation_timestamp);
|
|
if (this->required_paths.size() < item.required_paths.size()) {
|
|
this->required_paths = item.required_paths;
|
|
}
|
|
if (this->identifier < item.identifier) {
|
|
this->identifier = item.identifier;
|
|
}
|
|
result = true;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
#if 0
|
|
history_item_t::history_item_t(const wcstring &str)
|
|
: contents(str), contents_lower(L""), creation_timestamp(time(NULL)), identifier(0) {
|
|
for (wcstring::const_iterator it = str.begin(); it != str.end(); ++it) {
|
|
contents_lower.push_back(towlower(*it));
|
|
}
|
|
}
|
|
#endif
|
|
|
|
history_item_t::history_item_t(const wcstring &str, time_t when, history_identifier_t ident)
|
|
: contents(str), contents_lower(L""), creation_timestamp(when), identifier(ident) {
|
|
for (wcstring::const_iterator it = str.begin(); it != str.end(); ++it) {
|
|
contents_lower.push_back(towlower(*it));
|
|
}
|
|
}
|
|
|
|
bool history_item_t::matches_search(const wcstring &term, enum history_search_type_t type,
|
|
bool case_sensitive) const {
|
|
// We don't use a switch below because there are only three cases and if the strings are the
|
|
// same length we can use the faster HISTORY_SEARCH_TYPE_EXACT for the other two cases.
|
|
//
|
|
// Too, we consider equal strings to match a prefix search, so that autosuggest will allow
|
|
// suggesting what you've typed.
|
|
if (case_sensitive) {
|
|
if (type == HISTORY_SEARCH_TYPE_EXACT || term.size() == contents.size()) {
|
|
return term == contents;
|
|
} else if (type == HISTORY_SEARCH_TYPE_CONTAINS) {
|
|
return contents.find(term) != wcstring::npos;
|
|
} else if (type == HISTORY_SEARCH_TYPE_PREFIX) {
|
|
return string_prefixes_string(term, contents);
|
|
}
|
|
} else {
|
|
wcstring lterm(L"");
|
|
for (wcstring::const_iterator it = term.begin(); it != term.end(); ++it) {
|
|
lterm.push_back(towlower(*it));
|
|
}
|
|
|
|
if (type == HISTORY_SEARCH_TYPE_EXACT || lterm.size() == contents.size()) {
|
|
return lterm == contents_lower;
|
|
} else if (type == HISTORY_SEARCH_TYPE_CONTAINS) {
|
|
return contents_lower.find(lterm) != wcstring::npos;
|
|
} else if (type == HISTORY_SEARCH_TYPE_PREFIX) {
|
|
return string_prefixes_string(lterm, contents_lower);
|
|
}
|
|
}
|
|
DIE("unexpected history_search_type_t value");
|
|
}
|
|
|
|
/// Append our YAML history format to the provided vector at the given offset, updating the offset.
|
|
static void append_yaml_to_buffer(const wcstring &wcmd, time_t timestamp,
|
|
const path_list_t &required_paths,
|
|
history_output_buffer_t *buffer) {
|
|
std::string cmd = wcs2string(wcmd);
|
|
escape_yaml(&cmd);
|
|
buffer->append("- cmd: ", cmd.c_str(), "\n");
|
|
|
|
char timestamp_str[96];
|
|
snprintf(timestamp_str, sizeof timestamp_str, "%ld", (long)timestamp);
|
|
buffer->append(" when: ", timestamp_str, "\n");
|
|
|
|
if (!required_paths.empty()) {
|
|
buffer->append(" paths:\n");
|
|
|
|
for (path_list_t::const_iterator iter = required_paths.begin();
|
|
iter != required_paths.end(); ++iter) {
|
|
std::string path = wcs2string(*iter);
|
|
escape_yaml(&path);
|
|
buffer->append(" - ", path.c_str(), "\n");
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Parse a timestamp line that looks like this: spaces, "when:", spaces, timestamp, newline
|
|
/// The string is NOT null terminated; however we do know it contains a newline, so stop when we
|
|
/// reach it.
|
|
static bool parse_timestamp(const char *str, time_t *out_when) {
|
|
const char *cursor = str;
|
|
// Advance past spaces.
|
|
while (*cursor == ' ') cursor++;
|
|
|
|
// Look for "when:".
|
|
size_t when_len = 5;
|
|
if (strncmp(cursor, "when:", when_len) != 0) return false;
|
|
cursor += when_len;
|
|
|
|
// Advance past spaces.
|
|
while (*cursor == ' ') cursor++;
|
|
|
|
// Try to parse a timestamp.
|
|
long timestamp = 0;
|
|
if (isdigit(*cursor) && (timestamp = strtol(cursor, NULL, 0)) > 0) {
|
|
*out_when = (time_t)timestamp;
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns a pointer to the start of the next line, or NULL. The next line must itself end with a
|
|
/// newline. Note that the string is not null terminated.
|
|
static const char *next_line(const char *start, size_t length) {
|
|
// Handle the hopeless case.
|
|
if (length < 1) return NULL;
|
|
|
|
// Get a pointer to the end, that we must not pass.
|
|
const char *const end = start + length;
|
|
|
|
// Skip past the next newline.
|
|
const char *nextline = (const char *)memchr(start, '\n', length);
|
|
if (!nextline || nextline >= end) {
|
|
return NULL;
|
|
}
|
|
// Skip past the newline character itself.
|
|
if (++nextline >= end) {
|
|
return NULL;
|
|
}
|
|
|
|
// Make sure this new line is itself "newline terminated". If it's not, return NULL.
|
|
const char *next_newline = (const char *)memchr(nextline, '\n', end - nextline);
|
|
if (!next_newline) {
|
|
return NULL;
|
|
}
|
|
|
|
return nextline;
|
|
}
|
|
|
|
/// Support for iteratively locating the offsets of history items.
|
|
/// Pass the address and length of a mapped region.
|
|
/// Pass a pointer to a cursor size_t, initially 0.
|
|
/// If custoff_timestamp is nonzero, skip items created at or after that timestamp.
|
|
/// Returns (size_t)-1 when done.
|
|
static size_t offset_of_next_item_fish_2_0(const char *begin, size_t mmap_length,
|
|
size_t *inout_cursor, time_t cutoff_timestamp) {
|
|
size_t cursor = *inout_cursor;
|
|
size_t result = (size_t)-1;
|
|
while (cursor < mmap_length) {
|
|
const char *line_start = begin + cursor;
|
|
|
|
// Advance the cursor to the next line.
|
|
const char *a_newline = (const char *)memchr(line_start, '\n', mmap_length - cursor);
|
|
if (a_newline == NULL) break;
|
|
|
|
// Advance the cursor past this line. +1 is for the newline.
|
|
cursor = a_newline - begin + 1;
|
|
|
|
// Skip lines with a leading space, since these are in the interior of one of our items.
|
|
if (line_start[0] == ' ') continue;
|
|
|
|
// Skip very short lines to make one of the checks below easier.
|
|
if (a_newline - line_start < 3) continue;
|
|
|
|
// Try to be a little YAML compatible. Skip lines with leading %, ---, or ...
|
|
if (!memcmp(line_start, "%", 1) || !memcmp(line_start, "---", 3) ||
|
|
!memcmp(line_start, "...", 3))
|
|
continue;
|
|
|
|
// Hackish: fish 1.x rewriting a fish 2.0 history file can produce lines with lots of
|
|
// leading "- cmd: - cmd: - cmd:". Trim all but one leading "- cmd:".
|
|
const char *double_cmd = "- cmd: - cmd: ";
|
|
const size_t double_cmd_len = strlen(double_cmd);
|
|
while ((size_t)(a_newline - line_start) > double_cmd_len &&
|
|
!memcmp(line_start, double_cmd, double_cmd_len)) {
|
|
// Skip over just one of the - cmd. In the end there will be just one left.
|
|
line_start += strlen("- cmd: ");
|
|
}
|
|
|
|
// Hackish: fish 1.x rewriting a fish 2.0 history file can produce commands like "when:
|
|
// 123456". Ignore those.
|
|
const char *cmd_when = "- cmd: when:";
|
|
const size_t cmd_when_len = strlen(cmd_when);
|
|
if ((size_t)(a_newline - line_start) >= cmd_when_len &&
|
|
!memcmp(line_start, cmd_when, cmd_when_len)) {
|
|
continue;
|
|
}
|
|
|
|
// At this point, we know line_start is at the beginning of an item. But maybe we want to
|
|
// skip this item because of timestamps. A 0 cutoff means we don't care; if we do care, then
|
|
// try parsing out a timestamp.
|
|
if (cutoff_timestamp != 0) {
|
|
// Hackish fast way to skip items created after our timestamp. This is the mechanism by
|
|
// which we avoid "seeing" commands from other sessions that started after we started.
|
|
// We try hard to ensure that our items are sorted by their timestamps, so in theory we
|
|
// could just break, but I don't think that works well if (for example) the clock
|
|
// changes. So we'll read all subsequent items.
|
|
const char *const end = begin + mmap_length;
|
|
|
|
// Walk over lines that we think are interior. These lines are not null terminated, but
|
|
// are guaranteed to contain a newline.
|
|
bool has_timestamp = false;
|
|
time_t timestamp = 0;
|
|
const char *interior_line;
|
|
|
|
for (interior_line = next_line(line_start, end - line_start);
|
|
interior_line != NULL && !has_timestamp;
|
|
interior_line = next_line(interior_line, end - interior_line)) {
|
|
// If the first character is not a space, it's not an interior line, so we're done.
|
|
if (interior_line[0] != ' ') break;
|
|
|
|
// Hackish optimization: since we just stepped over some interior line, update the
|
|
// cursor so we don't have to look at these lines next time.
|
|
cursor = interior_line - begin;
|
|
|
|
// Try parsing a timestamp from this line. If we succeed, the loop will break.
|
|
has_timestamp = parse_timestamp(interior_line, ×tamp);
|
|
}
|
|
|
|
// Skip this item if the timestamp is past our cutoff.
|
|
if (has_timestamp && timestamp > cutoff_timestamp) {
|
|
continue;
|
|
}
|
|
}
|
|
|
|
// We made it through the gauntlet.
|
|
result = line_start - begin;
|
|
break; //!OCLINT(avoid branching statement as last in loop)
|
|
}
|
|
|
|
*inout_cursor = cursor;
|
|
return result;
|
|
}
|
|
|
|
/// Same as offset_of_next_item_fish_2_0, but for fish 1.x (pre fishfish).
|
|
/// Adapted from history_populate_from_mmap in history.c
|
|
static size_t offset_of_next_item_fish_1_x(const char *begin, size_t mmap_length,
|
|
size_t *inout_cursor) {
|
|
if (mmap_length == 0 || *inout_cursor >= mmap_length) return (size_t)-1;
|
|
|
|
const char *end = begin + mmap_length;
|
|
const char *pos;
|
|
bool ignore_newline = false;
|
|
bool do_push = true;
|
|
bool all_done = false;
|
|
size_t result = *inout_cursor;
|
|
|
|
for (pos = begin + *inout_cursor; pos < end && !all_done; pos++) {
|
|
if (do_push) {
|
|
ignore_newline = (*pos == '#');
|
|
do_push = false;
|
|
}
|
|
|
|
if (*pos == '\\') {
|
|
pos++;
|
|
} else if (*pos == '\n') {
|
|
if (!ignore_newline) {
|
|
// pos will be left pointing just after this newline, because of the ++ in the loop.
|
|
all_done = true;
|
|
}
|
|
ignore_newline = false;
|
|
}
|
|
}
|
|
|
|
*inout_cursor = (pos - begin);
|
|
return result;
|
|
}
|
|
|
|
/// Returns the offset of the next item based on the given history type, or -1.
|
|
static size_t offset_of_next_item(const char *begin, size_t mmap_length,
|
|
history_file_type_t mmap_type, size_t *inout_cursor,
|
|
time_t cutoff_timestamp) {
|
|
size_t result = (size_t)-1;
|
|
if (mmap_type == history_type_fish_2_0) {
|
|
result = offset_of_next_item_fish_2_0(begin, mmap_length, inout_cursor, cutoff_timestamp);
|
|
} else if (mmap_type == history_type_fish_1_x) {
|
|
result = offset_of_next_item_fish_1_x(begin, mmap_length, inout_cursor);
|
|
}
|
|
return result;
|
|
}
|
|
|
|
history_t &history_collection_t::alloc(const wcstring &name) {
|
|
// Note that histories are currently never deleted, so we can return a reference to them without
|
|
// using something like shared_ptr.
|
|
scoped_lock locker(m_lock);
|
|
history_t *¤t = m_histories[name];
|
|
if (current == NULL) current = new history_t(name);
|
|
return *current;
|
|
}
|
|
|
|
history_t &history_t::history_with_name(const wcstring &name) { return histories.alloc(name); }
|
|
|
|
history_t::history_t(const wcstring &pname)
|
|
: name(pname),
|
|
first_unwritten_new_item_index(0),
|
|
has_pending_item(false),
|
|
disable_automatic_save_counter(0),
|
|
mmap_start(NULL),
|
|
mmap_length(0),
|
|
mmap_type(history_file_type_t(-1)),
|
|
mmap_file_id(kInvalidFileID),
|
|
boundary_timestamp(time(NULL)),
|
|
countdown_to_vacuum(-1),
|
|
loaded_old(false),
|
|
chaos_mode(false) {
|
|
pthread_mutex_init(&lock, NULL);
|
|
}
|
|
|
|
history_t::~history_t() { pthread_mutex_destroy(&lock); }
|
|
|
|
void history_t::add(const history_item_t &item, bool pending) {
|
|
scoped_lock locker(lock);
|
|
|
|
// Try merging with the last item.
|
|
if (!new_items.empty() && new_items.back().merge(item)) {
|
|
// We merged, so we don't have to add anything. Maybe this item was pending, but it just got
|
|
// merged with an item that is not pending, so pending just becomes false.
|
|
this->has_pending_item = false;
|
|
} else {
|
|
// We have to add a new item.
|
|
new_items.push_back(item);
|
|
this->has_pending_item = pending;
|
|
save_internal_unless_disabled();
|
|
}
|
|
}
|
|
|
|
void history_t::save_internal_unless_disabled() {
|
|
// This must be called while locked.
|
|
ASSERT_IS_LOCKED(lock);
|
|
|
|
// Respect disable_automatic_save_counter.
|
|
if (disable_automatic_save_counter > 0) {
|
|
return;
|
|
}
|
|
|
|
// We may or may not vacuum. We try to vacuum every kVacuumFrequency items, but start the
|
|
// countdown at a random number so that even if the user never runs more than 25 commands, we'll
|
|
// eventually vacuum. If countdown_to_vacuum is -1, it means we haven't yet picked a value for
|
|
// the counter.
|
|
const int kVacuumFrequency = 25;
|
|
if (countdown_to_vacuum < 0) {
|
|
static unsigned int seed = (unsigned int)time(NULL);
|
|
// Generate a number in the range [0, kVacuumFrequency).
|
|
countdown_to_vacuum = rand_r(&seed) / (RAND_MAX / kVacuumFrequency + 1);
|
|
}
|
|
|
|
// Determine if we're going to vacuum.
|
|
bool vacuum = false;
|
|
if (countdown_to_vacuum == 0) {
|
|
countdown_to_vacuum = kVacuumFrequency;
|
|
vacuum = true;
|
|
}
|
|
|
|
// This might be a good candidate for moving to a background thread.
|
|
time_profiler_t profiler(vacuum ? "save_internal vacuum" //!OCLINT(unused var)
|
|
: "save_internal no vacuum"); //!OCLINT(side-effect)
|
|
this->save_internal(vacuum);
|
|
|
|
// Update our countdown.
|
|
assert(countdown_to_vacuum > 0);
|
|
countdown_to_vacuum--;
|
|
}
|
|
|
|
void history_t::add(const wcstring &str, history_identifier_t ident, bool pending) {
|
|
time_t when = time(NULL);
|
|
// Big hack: do not allow timestamps equal to our boundary date. This is because we include
|
|
// items whose timestamps are equal to our boundary when reading old history, so we can catch
|
|
// "just closed" items. But this means that we may interpret our own items, that we just wrote,
|
|
// as old items, if we wrote them in the same second as our birthdate.
|
|
if (when == this->boundary_timestamp) {
|
|
when++;
|
|
}
|
|
|
|
this->add(history_item_t(str, when, ident), pending);
|
|
}
|
|
|
|
// Remove matching history entries from our list of new items. This only supports literal,
|
|
// case-sensitive, matches.
|
|
void history_t::remove(const wcstring &str_to_remove) {
|
|
// Add to our list of deleted items.
|
|
deleted_items.insert(str_to_remove);
|
|
|
|
size_t idx = new_items.size();
|
|
while (idx--) {
|
|
bool matched = new_items.at(idx).str() == str_to_remove;
|
|
if (matched) {
|
|
new_items.erase(new_items.begin() + idx);
|
|
// If this index is before our first_unwritten_new_item_index, then subtract one from
|
|
// that index so it stays pointing at the same item. If it is equal to or larger, then
|
|
// we have not yet writen this item, so we don't have to adjust the index.
|
|
if (idx < first_unwritten_new_item_index) {
|
|
first_unwritten_new_item_index--;
|
|
}
|
|
}
|
|
}
|
|
assert(first_unwritten_new_item_index <= new_items.size());
|
|
}
|
|
|
|
void history_t::set_valid_file_paths(const wcstring_list_t &valid_file_paths,
|
|
history_identifier_t ident) {
|
|
// 0 identifier is used to mean "not necessary".
|
|
if (ident == 0) {
|
|
return;
|
|
}
|
|
|
|
scoped_lock locker(lock);
|
|
|
|
// Look for an item with the given identifier. It is likely to be at the end of new_items.
|
|
for (history_item_list_t::reverse_iterator iter = new_items.rbegin(); iter != new_items.rend();
|
|
++iter) {
|
|
if (iter->identifier == ident) { // found it
|
|
iter->required_paths = valid_file_paths;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void history_t::get_string_representation(wcstring *result, const wcstring &separator) {
|
|
scoped_lock locker(lock);
|
|
|
|
bool first = true;
|
|
|
|
std::set<wcstring> seen;
|
|
|
|
// If we have a pending item, we skip the first encountered (i.e. last) new item.
|
|
bool next_is_pending = this->has_pending_item;
|
|
|
|
// Append new items. Note that in principle we could use const_reverse_iterator, but we do not
|
|
// because reverse_iterator is not convertible to const_reverse_iterator. See
|
|
// http://github.com/fish-shell/fish-shell/issues/431.
|
|
for (history_item_list_t::reverse_iterator iter = new_items.rbegin(); iter < new_items.rend();
|
|
++iter) {
|
|
// Skip a pending item if we have one.
|
|
if (next_is_pending) {
|
|
next_is_pending = false;
|
|
continue;
|
|
}
|
|
|
|
// Skip duplicates.
|
|
if (!seen.insert(iter->str()).second) continue;
|
|
|
|
if (!first) result->append(separator);
|
|
result->append(iter->str());
|
|
first = false;
|
|
}
|
|
|
|
// Append old items.
|
|
load_old_if_needed();
|
|
for (std::deque<size_t>::reverse_iterator iter = old_item_offsets.rbegin();
|
|
iter != old_item_offsets.rend(); ++iter) {
|
|
size_t offset = *iter;
|
|
const history_item_t item =
|
|
decode_item(mmap_start + offset, mmap_length - offset, mmap_type);
|
|
|
|
// Skip duplicates.
|
|
if (!seen.insert(item.str()).second) continue;
|
|
|
|
if (!first) result->append(separator);
|
|
result->append(item.str());
|
|
first = false;
|
|
}
|
|
}
|
|
|
|
history_item_t history_t::item_at_index(size_t idx) {
|
|
scoped_lock locker(lock);
|
|
|
|
// 0 is considered an invalid index.
|
|
assert(idx > 0);
|
|
idx--;
|
|
|
|
// Determine how many "resolved" (non-pending) items we have. We can have at most one pending
|
|
// item, and it's always the last one.
|
|
size_t resolved_new_item_count = new_items.size();
|
|
if (this->has_pending_item && resolved_new_item_count > 0) {
|
|
resolved_new_item_count -= 1;
|
|
}
|
|
|
|
// idx == 0 corresponds to the last resolved item.
|
|
if (idx < resolved_new_item_count) {
|
|
return new_items.at(resolved_new_item_count - idx - 1);
|
|
}
|
|
|
|
// Now look in our old items.
|
|
idx -= resolved_new_item_count;
|
|
load_old_if_needed();
|
|
size_t old_item_count = old_item_offsets.size();
|
|
if (idx < old_item_count) {
|
|
// idx == 0 corresponds to last item in old_item_offsets.
|
|
size_t offset = old_item_offsets.at(old_item_count - idx - 1);
|
|
return decode_item(mmap_start + offset, mmap_length - offset, mmap_type);
|
|
}
|
|
|
|
// Index past the valid range, so return an empty history item.
|
|
return history_item_t(wcstring(), 0);
|
|
}
|
|
|
|
void history_t::populate_from_mmap(void) {
|
|
mmap_type = infer_file_type(mmap_start, mmap_length);
|
|
size_t cursor = 0;
|
|
for (;;) {
|
|
size_t offset =
|
|
offset_of_next_item(mmap_start, mmap_length, mmap_type, &cursor, boundary_timestamp);
|
|
// If we get back -1, we're done.
|
|
if (offset == (size_t)-1) break;
|
|
|
|
// Remember this item.
|
|
old_item_offsets.push_back(offset);
|
|
}
|
|
}
|
|
|
|
/// Do a private, read-only map of the entirety of a history file with the given name. Returns true
|
|
/// if successful. Returns the mapped memory region by reference.
|
|
bool history_t::map_file(const wcstring &name, const char **out_map_start, size_t *out_map_len,
|
|
file_id_t *file_id) {
|
|
wcstring filename = history_filename(name, L"");
|
|
if (filename.empty()) {
|
|
return false;
|
|
}
|
|
|
|
int fd = wopen_cloexec(filename, O_RDONLY);
|
|
if (fd == -1) {
|
|
return false;
|
|
}
|
|
|
|
bool result = false;
|
|
// Get the file ID if requested.
|
|
if (file_id != NULL) *file_id = file_id_for_fd(fd);
|
|
|
|
// Take a read lock to guard against someone else appending. This is released when the file
|
|
// is closed (below). We will read the file after releasing the lock, but that's not a
|
|
// problem, because we never modify already written data. In short, the purpose of this lock
|
|
// is to ensure we don't see the file size change mid-update.
|
|
//
|
|
// We may fail to lock (e.g. on lockless NFS - see issue #685. In that case, we proceed as
|
|
// if it did not fail. The risk is that we may get an incomplete history item; this is
|
|
// unlikely because we only treat an item as valid if it has a terminating newline.
|
|
//
|
|
// Simulate a failing lock in chaos_mode.
|
|
if (!chaos_mode) history_file_lock(fd, F_RDLCK);
|
|
off_t len = lseek(fd, 0, SEEK_END);
|
|
if (len != (off_t)-1) {
|
|
size_t mmap_length = (size_t)len;
|
|
if (lseek(fd, 0, SEEK_SET) == 0) {
|
|
char *mmap_start;
|
|
if ((mmap_start = (char *)mmap(0, mmap_length, PROT_READ, MAP_PRIVATE, fd, 0)) !=
|
|
MAP_FAILED) {
|
|
result = true;
|
|
*out_map_start = mmap_start;
|
|
*out_map_len = mmap_length;
|
|
}
|
|
}
|
|
}
|
|
close(fd);
|
|
return result;
|
|
}
|
|
|
|
bool history_t::load_old_if_needed(void) {
|
|
if (loaded_old) return true;
|
|
loaded_old = true;
|
|
|
|
// PCA not sure why signals were blocked here
|
|
// signal_block();
|
|
|
|
bool ok = false;
|
|
if (map_file(name, &mmap_start, &mmap_length, &mmap_file_id)) {
|
|
// Here we've mapped the file.
|
|
ok = true;
|
|
time_profiler_t profiler("populate_from_mmap"); //!OCLINT(side-effect)
|
|
this->populate_from_mmap();
|
|
}
|
|
|
|
// signal_unblock();
|
|
return ok;
|
|
}
|
|
|
|
void history_search_t::skip_matches(const wcstring_list_t &skips) {
|
|
external_skips = skips;
|
|
std::sort(external_skips.begin(), external_skips.end());
|
|
}
|
|
|
|
bool history_search_t::should_skip_match(const wcstring &str) const {
|
|
return std::binary_search(external_skips.begin(), external_skips.end(), str);
|
|
}
|
|
|
|
bool history_search_t::go_forwards() {
|
|
// Pop the top index (if more than one) and return if we have any left.
|
|
if (prev_matches.size() > 1) {
|
|
prev_matches.pop_back();
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
bool history_search_t::go_backwards() {
|
|
// Backwards means increasing our index.
|
|
const size_t max_idx = (size_t)-1;
|
|
|
|
size_t idx = 0;
|
|
if (!prev_matches.empty()) idx = prev_matches.back().first;
|
|
|
|
if (idx == max_idx) return false;
|
|
|
|
const bool main_thread = is_main_thread();
|
|
|
|
while (++idx < max_idx) {
|
|
if (main_thread ? reader_interrupted() : reader_thread_job_is_stale()) {
|
|
return false;
|
|
}
|
|
|
|
const history_item_t item = history->item_at_index(idx);
|
|
// We're done if it's empty or we cancelled.
|
|
if (item.empty()) {
|
|
return false;
|
|
}
|
|
|
|
// Look for a term that matches and that we haven't seen before.
|
|
const wcstring &str = item.str();
|
|
if (item.matches_search(term, search_type, case_sensitive) && !match_already_made(str) &&
|
|
!should_skip_match(str)) {
|
|
prev_matches.push_back(prev_match_t(idx, item));
|
|
return true;
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Goes to the end (forwards).
|
|
void history_search_t::go_to_end(void) { prev_matches.clear(); }
|
|
|
|
/// Returns if we are at the end, which is where we start.
|
|
bool history_search_t::is_at_end(void) const { return prev_matches.empty(); }
|
|
|
|
/// Goes to the beginning (backwards).
|
|
void history_search_t::go_to_beginning(void) {
|
|
// Go backwards as far as we can.
|
|
while (go_backwards()) { //!OCLINT(empty while statement)
|
|
// Do nothing.
|
|
}
|
|
}
|
|
|
|
history_item_t history_search_t::current_item() const {
|
|
assert(!prev_matches.empty()); //!OCLINT(double negative)
|
|
return prev_matches.back().second;
|
|
}
|
|
|
|
wcstring history_search_t::current_string() const {
|
|
history_item_t item = this->current_item();
|
|
return item.str();
|
|
}
|
|
|
|
bool history_search_t::match_already_made(const wcstring &match) const {
|
|
for (std::vector<prev_match_t>::const_iterator iter = prev_matches.begin();
|
|
iter != prev_matches.end(); ++iter) {
|
|
if (iter->second.str() == match) return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void replace_all(std::string *str, const char *needle, const char *replacement) {
|
|
size_t needle_len = strlen(needle), replacement_len = strlen(replacement);
|
|
size_t offset = 0;
|
|
while ((offset = str->find(needle, offset)) != std::string::npos) {
|
|
str->replace(offset, needle_len, replacement);
|
|
offset += replacement_len;
|
|
}
|
|
}
|
|
|
|
static void escape_yaml(std::string *str) {
|
|
replace_all(str, "\\", "\\\\"); // replace one backslash with two
|
|
replace_all(str, "\n", "\\n"); // replace newline with backslash + literal n
|
|
}
|
|
|
|
/// This function is called frequently, so it ought to be fast.
|
|
static void unescape_yaml(std::string *str) {
|
|
size_t cursor = 0, size = str->size();
|
|
while (cursor < size) {
|
|
// Operate on a const version of str, to avoid needless COWs that at() does.
|
|
const std::string &const_str = *str;
|
|
|
|
// Look for a backslash.
|
|
size_t backslash = const_str.find('\\', cursor);
|
|
if (backslash == std::string::npos || backslash + 1 >= size) {
|
|
// Either not found, or found as the last character.
|
|
break;
|
|
} else {
|
|
// Backslash found. Maybe we'll do something about it. Be sure to invoke the const
|
|
// version of at().
|
|
char escaped_char = const_str.at(backslash + 1);
|
|
if (escaped_char == '\\') {
|
|
// Two backslashes in a row. Delete the second one.
|
|
str->erase(backslash + 1, 1);
|
|
size--;
|
|
} else if (escaped_char == 'n') {
|
|
// Backslash + n. Replace with a newline.
|
|
str->replace(backslash, 2, "\n");
|
|
size--;
|
|
}
|
|
// The character at index backslash has now been made whole; start at the next
|
|
// character.
|
|
cursor = backslash + 1;
|
|
}
|
|
}
|
|
}
|
|
|
|
static wcstring history_filename(const wcstring &name, const wcstring &suffix) {
|
|
wcstring path;
|
|
if (!path_get_data(path)) return L"";
|
|
|
|
wcstring result = path;
|
|
result.append(L"/");
|
|
result.append(name);
|
|
result.append(L"_history");
|
|
result.append(suffix);
|
|
return result;
|
|
}
|
|
|
|
void history_t::clear_file_state() {
|
|
ASSERT_IS_LOCKED(lock);
|
|
// Erase everything we know about our file.
|
|
if (mmap_start != NULL && mmap_start != MAP_FAILED) {
|
|
munmap((void *)mmap_start, mmap_length);
|
|
}
|
|
mmap_start = NULL;
|
|
mmap_length = 0;
|
|
loaded_old = false;
|
|
old_item_offsets.clear();
|
|
}
|
|
|
|
void history_t::compact_new_items() {
|
|
// Keep only the most recent items with the given contents. This algorithm could be made more
|
|
// efficient, but likely would consume more memory too.
|
|
std::set<wcstring> seen;
|
|
size_t idx = new_items.size();
|
|
while (idx--) {
|
|
const history_item_t &item = new_items[idx];
|
|
if (!seen.insert(item.contents).second) {
|
|
// This item was not inserted because it was already in the set, so delete the item at
|
|
// this index.
|
|
new_items.erase(new_items.begin() + idx);
|
|
|
|
if (idx < first_unwritten_new_item_index) {
|
|
// Decrement first_unwritten_new_item_index if we are deleting a previously written
|
|
// item.
|
|
first_unwritten_new_item_index--;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
bool history_t::save_internal_via_rewrite() {
|
|
// This must be called while locked.
|
|
ASSERT_IS_LOCKED(lock);
|
|
bool ok = false;
|
|
|
|
wcstring tmp_name_template = history_filename(name, L".XXXXXX");
|
|
if (!tmp_name_template.empty()) {
|
|
// Make an LRU cache to save only the last N elements.
|
|
history_lru_cache_t lru(HISTORY_SAVE_MAX);
|
|
|
|
// Insert old items in, from old to new. Merge them with our new items, inserting items with
|
|
// earlier timestamps first.
|
|
history_item_list_t::const_iterator new_item_iter = new_items.begin();
|
|
|
|
// Map in existing items (which may have changed out from underneath us, so don't trust our
|
|
// old mmap'd data).
|
|
const char *local_mmap_start = NULL;
|
|
size_t local_mmap_size = 0;
|
|
if (map_file(name, &local_mmap_start, &local_mmap_size, NULL)) {
|
|
const history_file_type_t local_mmap_type =
|
|
infer_file_type(local_mmap_start, local_mmap_size);
|
|
size_t cursor = 0;
|
|
for (;;) {
|
|
size_t offset = offset_of_next_item(local_mmap_start, local_mmap_size,
|
|
local_mmap_type, &cursor, 0);
|
|
// If we get back -1, we're done.
|
|
if (offset == (size_t)-1) break;
|
|
|
|
// Try decoding an old item.
|
|
const history_item_t old_item = decode_item(
|
|
local_mmap_start + offset, local_mmap_size - offset, local_mmap_type);
|
|
if (old_item.empty() || deleted_items.count(old_item.str()) > 0) {
|
|
// debug(0, L"Item is deleted : %s\n",
|
|
// old_item.str().c_str());
|
|
continue;
|
|
}
|
|
// The old item may actually be more recent than our new item, if it came from
|
|
// another session. Insert all new items at the given index with an earlier
|
|
// timestamp.
|
|
for (; new_item_iter != new_items.end(); ++new_item_iter) {
|
|
if (new_item_iter->timestamp() < old_item.timestamp()) {
|
|
// This "new item" is in fact older.
|
|
lru.add_item(*new_item_iter);
|
|
} else {
|
|
// The new item is not older.
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Now add this old item.
|
|
lru.add_item(old_item);
|
|
}
|
|
munmap((void *)local_mmap_start, local_mmap_size);
|
|
}
|
|
|
|
// Insert any remaining new items.
|
|
for (; new_item_iter != new_items.end(); ++new_item_iter) {
|
|
lru.add_item(*new_item_iter);
|
|
}
|
|
|
|
signal_block();
|
|
|
|
// Try to create a temporary file, up to 10 times. We don't use mkstemps because we want to
|
|
// open it CLO_EXEC. This should almost always succeed on the first try.
|
|
int out_fd = -1;
|
|
wcstring tmp_name;
|
|
for (size_t attempt = 0; attempt < 10 && out_fd == -1; attempt++) {
|
|
char *narrow_str = wcs2str(tmp_name_template.c_str());
|
|
#if HAVE_MKOSTEMP
|
|
out_fd = mkostemp(narrow_str, O_CLOEXEC);
|
|
if (out_fd >= 0) {
|
|
tmp_name = str2wcstring(narrow_str);
|
|
}
|
|
#else
|
|
if (narrow_str && mktemp(narrow_str)) {
|
|
// It was successfully templated; try opening it atomically.
|
|
tmp_name = str2wcstring(narrow_str);
|
|
out_fd = wopen_cloexec(tmp_name, O_WRONLY | O_CREAT | O_EXCL | O_TRUNC, 0600);
|
|
}
|
|
#endif
|
|
free(narrow_str);
|
|
}
|
|
|
|
if (out_fd >= 0) {
|
|
// Write them out.
|
|
bool errored = false;
|
|
history_output_buffer_t buffer;
|
|
for (history_lru_cache_t::iterator iter = lru.begin(); iter != lru.end(); ++iter) {
|
|
const history_lru_node_t *node = *iter;
|
|
append_yaml_to_buffer(node->key, node->timestamp, node->required_paths, &buffer);
|
|
if (buffer.output_size() >= HISTORY_OUTPUT_BUFFER_SIZE &&
|
|
!buffer.flush_to_fd(out_fd)) {
|
|
errored = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (!errored && buffer.flush_to_fd(out_fd)) {
|
|
ok = true;
|
|
}
|
|
|
|
if (!ok) {
|
|
// This message does not have high enough priority to be shown by default.
|
|
debug(2, L"Error when writing history file");
|
|
} else {
|
|
wcstring new_name = history_filename(name, wcstring());
|
|
|
|
// Ensure we maintain the ownership and permissions of the original (#2355). If the
|
|
// stat fails, we assume (hope) our default permissions are correct. This
|
|
// corresponds to e.g. someone running sudo -E as the very first command. If they
|
|
// did, it would be tricky to set the permissions correctly. (bash doesn't get this
|
|
// case right either).
|
|
struct stat sbuf;
|
|
if (wstat(new_name, &sbuf) >= 0) { // success
|
|
if (fchown(out_fd, sbuf.st_uid, sbuf.st_gid) == -1) {
|
|
debug(2, L"Error %d when changing ownership of history file", errno);
|
|
}
|
|
if (fchmod(out_fd, sbuf.st_mode) == -1) {
|
|
debug(2, L"Error %d when changing mode of history file", errno);
|
|
}
|
|
}
|
|
|
|
if (wrename(tmp_name, new_name) == -1) {
|
|
debug(2, L"Error %d when renaming history file", errno);
|
|
}
|
|
}
|
|
close(out_fd);
|
|
}
|
|
|
|
signal_unblock();
|
|
|
|
// Make sure we clear all nodes, since this doesn't happen automatically.
|
|
lru.evict_all_nodes();
|
|
}
|
|
|
|
if (ok) {
|
|
// We've saved everything, so we have no more unsaved items.
|
|
this->first_unwritten_new_item_index = new_items.size();
|
|
|
|
// We deleted our deleted items.
|
|
this->deleted_items.clear();
|
|
|
|
// Our history has been written to the file, so clear our state so we can re-reference the
|
|
// file.
|
|
this->clear_file_state();
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
bool history_t::save_internal_via_appending() {
|
|
// This must be called while locked.
|
|
ASSERT_IS_LOCKED(lock);
|
|
|
|
// No deleting allowed.
|
|
assert(deleted_items.empty());
|
|
|
|
bool ok = false;
|
|
|
|
// If the file is different (someone vacuumed it) then we need to update our mmap.
|
|
bool file_changed = false;
|
|
|
|
// Get the path to the real history file.
|
|
wcstring history_path = history_filename(name, wcstring());
|
|
|
|
signal_block();
|
|
|
|
// Open the file.
|
|
int out_fd = wopen_cloexec(history_path, O_WRONLY | O_APPEND);
|
|
if (out_fd >= 0) {
|
|
// Check to see if the file changed.
|
|
if (file_id_for_fd(out_fd) != mmap_file_id) file_changed = true;
|
|
|
|
// Exclusive lock on the entire file. This is released when we close the file (below). This
|
|
// may fail on (e.g.) lockless NFS. If so, proceed as if it did not fail; the risk is that
|
|
// we may get interleaved history items, which is considered better than no history, or
|
|
// forcing everything through the slow copy-move mode. We try to minimize this possibility
|
|
// by writing with O_APPEND.
|
|
//
|
|
// Simulate a failing lock in chaos_mode
|
|
if (!chaos_mode) history_file_lock(out_fd, F_WRLCK);
|
|
|
|
// We (hopefully successfully) took the exclusive lock. Append to the file.
|
|
// Note that this is sketchy for a few reasons:
|
|
// - Another shell may have appended its own items with a later timestamp, so our file may
|
|
// no longer be sorted by timestamp.
|
|
// - Another shell may have appended the same items, so our file may now contain
|
|
// duplicates.
|
|
//
|
|
// We cannot modify any previous parts of our file, because other instances may be reading
|
|
// those portions. We can only append.
|
|
//
|
|
// Originally we always rewrote the file on saving, which avoided both of these problems.
|
|
// However, appending allows us to save history after every command, which is nice!
|
|
//
|
|
// Periodically we "clean up" the file by rewriting it, so that most of the time it doesn't
|
|
// have duplicates, although we don't yet sort by timestamp (the timestamp isn't really used
|
|
// for much anyways).
|
|
|
|
// So far so good. Write all items at or after first_unwritten_new_item_index. Note that we
|
|
// write even a pending item - pending items are ignored by history within the command
|
|
// itself, but should still be written to the file.
|
|
bool errored = false;
|
|
history_output_buffer_t buffer;
|
|
while (first_unwritten_new_item_index < new_items.size()) {
|
|
const history_item_t &item = new_items.at(first_unwritten_new_item_index);
|
|
append_yaml_to_buffer(item.str(), item.timestamp(), item.get_required_paths(), &buffer);
|
|
if (buffer.output_size() >= HISTORY_OUTPUT_BUFFER_SIZE) {
|
|
errored = !buffer.flush_to_fd(out_fd);
|
|
if (errored) break;
|
|
}
|
|
|
|
// We wrote this item, hooray.
|
|
first_unwritten_new_item_index++;
|
|
}
|
|
|
|
if (!errored && buffer.flush_to_fd(out_fd)) {
|
|
ok = true;
|
|
}
|
|
|
|
close(out_fd);
|
|
}
|
|
|
|
signal_unblock();
|
|
|
|
// If someone has replaced the file, forget our file state.
|
|
if (file_changed) {
|
|
this->clear_file_state();
|
|
}
|
|
|
|
return ok;
|
|
}
|
|
|
|
/// Save the specified mode to file; optionally also vacuums.
|
|
void history_t::save_internal(bool vacuum) {
|
|
ASSERT_IS_LOCKED(lock);
|
|
|
|
// Nothing to do if there's no new items.
|
|
if (first_unwritten_new_item_index >= new_items.size() && deleted_items.empty()) return;
|
|
|
|
// Compact our new items so we don't have duplicates.
|
|
this->compact_new_items();
|
|
|
|
// Try saving. If we have items to delete, we have to rewrite the file. If we do not, we can
|
|
// append to it.
|
|
bool ok = false;
|
|
if (!vacuum && deleted_items.empty()) {
|
|
// Try doing a fast append.
|
|
ok = save_internal_via_appending();
|
|
}
|
|
if (!ok) {
|
|
// We did not or could not append; rewrite the file ("vacuum" it).
|
|
this->save_internal_via_rewrite();
|
|
}
|
|
}
|
|
|
|
void history_t::save(void) {
|
|
scoped_lock locker(lock);
|
|
this->save_internal(false);
|
|
}
|
|
|
|
// Formats a single history record, including a trailing newline. Returns true
|
|
// if bytes were written to the output stream and false otherwise.
|
|
static bool format_history_record(const history_item_t &item, const wchar_t *show_time_format,
|
|
bool null_terminate, io_streams_t &streams) {
|
|
if (show_time_format) {
|
|
const time_t seconds = item.timestamp();
|
|
struct tm timestamp;
|
|
if (!localtime_r(&seconds, ×tamp)) return false;
|
|
const int max_tstamp_length = 100;
|
|
wchar_t timestamp_string[max_tstamp_length + 1];
|
|
if (std::wcsftime(timestamp_string, max_tstamp_length, show_time_format, ×tamp) == 0) {
|
|
return false;
|
|
}
|
|
streams.out.append(timestamp_string);
|
|
}
|
|
streams.out.append(item.str());
|
|
if (null_terminate) {
|
|
streams.out.append(L'\0');
|
|
} else {
|
|
streams.out.append(L'\n');
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool history_t::search(history_search_type_t search_type, wcstring_list_t search_args,
|
|
const wchar_t *show_time_format, long max_items, bool case_sensitive,
|
|
bool null_terminate, io_streams_t &streams) {
|
|
// scoped_lock locker(lock);
|
|
if (search_args.empty()) {
|
|
// Start at one because zero is the current command.
|
|
for (int i = 1; !this->item_at_index(i).empty() && max_items; ++i, --max_items) {
|
|
if (!format_history_record(this->item_at_index(i), show_time_format, null_terminate,
|
|
streams)) {
|
|
return false;
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
for (wcstring_list_t::const_iterator iter = search_args.begin(); iter != search_args.end();
|
|
++iter) {
|
|
const wcstring &search_string = *iter;
|
|
if (search_string.empty()) {
|
|
streams.err.append_format(L"Searching for the empty string isn't allowed");
|
|
return false;
|
|
}
|
|
history_search_t searcher =
|
|
history_search_t(*this, search_string, search_type, case_sensitive);
|
|
while (searcher.go_backwards()) {
|
|
if (!format_history_record(searcher.current_item(), show_time_format, null_terminate,
|
|
streams)) {
|
|
return false;
|
|
}
|
|
if (--max_items == 0) return true;
|
|
}
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
void history_t::disable_automatic_saving() {
|
|
scoped_lock locker(lock);
|
|
disable_automatic_save_counter++;
|
|
assert(disable_automatic_save_counter != 0); // overflow!
|
|
}
|
|
|
|
void history_t::enable_automatic_saving() {
|
|
scoped_lock locker(lock);
|
|
assert(disable_automatic_save_counter > 0); // underflow
|
|
disable_automatic_save_counter--;
|
|
save_internal_unless_disabled();
|
|
}
|
|
|
|
void history_t::clear(void) {
|
|
scoped_lock locker(lock);
|
|
new_items.clear();
|
|
deleted_items.clear();
|
|
first_unwritten_new_item_index = 0;
|
|
old_item_offsets.clear();
|
|
wcstring filename = history_filename(name, L"");
|
|
if (!filename.empty()) wunlink(filename);
|
|
this->clear_file_state();
|
|
}
|
|
|
|
bool history_t::is_empty(void) {
|
|
scoped_lock locker(lock);
|
|
|
|
// If we have new items, we're not empty.
|
|
if (!new_items.empty()) return false;
|
|
|
|
bool empty = false;
|
|
if (loaded_old) {
|
|
// If we've loaded old items, see if we have any offsets.
|
|
empty = old_item_offsets.empty();
|
|
} else {
|
|
// If we have not loaded old items, don't actually load them (which may be expensive); just
|
|
// stat the file and see if it exists and is nonempty.
|
|
const wcstring where = history_filename(name, L"");
|
|
struct stat buf = {};
|
|
if (wstat(where, &buf) != 0) {
|
|
// Access failed, assume missing.
|
|
empty = true;
|
|
} else {
|
|
// We're empty if the file is empty.
|
|
empty = (buf.st_size == 0);
|
|
}
|
|
}
|
|
return empty;
|
|
}
|
|
|
|
/// Populates from older location (in config path, rather than data path) This is accomplished by
|
|
/// clearing ourselves, and copying the contents of the old history file to the new history file.
|
|
/// The new contents will automatically be re-mapped later.
|
|
void history_t::populate_from_config_path() {
|
|
wcstring old_file;
|
|
if (path_get_config(old_file)) {
|
|
old_file.append(L"/");
|
|
old_file.append(name);
|
|
old_file.append(L"_history");
|
|
int src_fd = wopen_cloexec(old_file, O_RDONLY, 0);
|
|
if (src_fd != -1) {
|
|
wcstring new_file = history_filename(name, wcstring());
|
|
|
|
// Clear must come after we've retrieved the new_file name, and before we open
|
|
// destination file descriptor, since it destroys the name and the file.
|
|
this->clear();
|
|
|
|
int dst_fd = wopen_cloexec(new_file, O_WRONLY | O_CREAT, 0644);
|
|
char buf[BUFSIZ];
|
|
ssize_t size;
|
|
while ((size = read(src_fd, buf, BUFSIZ)) > 0) {
|
|
ssize_t written = write(dst_fd, buf, static_cast<size_t>(size));
|
|
if (written < 0) {
|
|
// This message does not have high enough priority to be shown by default.
|
|
debug(2, L"Error when writing history file");
|
|
break;
|
|
}
|
|
}
|
|
|
|
close(src_fd);
|
|
close(dst_fd);
|
|
}
|
|
}
|
|
}
|
|
|
|
/// Indicate whether we ought to import the bash history file into fish.
|
|
static bool should_import_bash_history_line(const std::string &line) {
|
|
if (line.empty()) return false;
|
|
|
|
// Very naive tests! Skip export; probably should skip others.
|
|
const char *const ignore_prefixes[] = {"export ", "#"};
|
|
|
|
for (size_t i = 0; i < sizeof ignore_prefixes / sizeof *ignore_prefixes; i++) {
|
|
const char *prefix = ignore_prefixes[i];
|
|
if (!line.compare(0, strlen(prefix), prefix)) {
|
|
return false;
|
|
}
|
|
}
|
|
|
|
// Skip lines with backticks.
|
|
if (line.find('`') != std::string::npos) return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
void history_t::populate_from_bash(FILE *stream) {
|
|
// Bash's format is very simple: just lines with #s for comments. Ignore a few commands that are
|
|
// bash-specific. This list ought to be expanded.
|
|
std::string line;
|
|
for (;;) {
|
|
line.clear();
|
|
bool success = false;
|
|
bool has_newline = false;
|
|
|
|
// Loop until we've read a line.
|
|
do {
|
|
char buff[128];
|
|
success = (bool)fgets(buff, sizeof buff, stream);
|
|
if (success) {
|
|
// Skip the newline.
|
|
char *a_newline = strchr(buff, '\n');
|
|
if (a_newline) *a_newline = '\0';
|
|
has_newline = (a_newline != NULL);
|
|
|
|
// Append what we've got.
|
|
line.append(buff);
|
|
}
|
|
} while (success && !has_newline);
|
|
|
|
// Maybe add this line.
|
|
if (should_import_bash_history_line(line)) {
|
|
this->add(str2wcstring(line));
|
|
}
|
|
|
|
if (line.empty()) break;
|
|
}
|
|
}
|
|
|
|
void history_t::incorporate_external_changes() {
|
|
// To incorporate new items, we simply update our timestamp to now, so that items from previous
|
|
// instances get added. We then clear the file state so that we remap the file. Note that this
|
|
// is somehwhat expensive because we will be going back over old items. An optimization would be
|
|
// to preserve old_item_offsets so that they don't have to be recomputed. (However, then items
|
|
// *deleted* in other instances would not show up here).
|
|
time_t new_timestamp = time(NULL);
|
|
scoped_lock locker(lock);
|
|
|
|
// If for some reason the clock went backwards, we don't want to start dropping items; therefore
|
|
// we only do work if time has progressed. This also makes multiple calls cheap.
|
|
if (new_timestamp > this->boundary_timestamp) {
|
|
this->boundary_timestamp = new_timestamp;
|
|
this->clear_file_state();
|
|
|
|
// We also need to erase new_items, since we go through those first, and that means we
|
|
// will not properly interleave them with items from other instances.
|
|
// We'll pick them up from the file (#2312)
|
|
this->save_internal(false);
|
|
this->new_items.clear();
|
|
this->first_unwritten_new_item_index = 0;
|
|
}
|
|
}
|
|
|
|
void history_init() {}
|
|
|
|
void history_collection_t::save() {
|
|
// Save all histories.
|
|
for (std::map<wcstring, history_t *>::iterator iter = m_histories.begin();
|
|
iter != m_histories.end(); ++iter) {
|
|
history_t *hist = iter->second;
|
|
hist->save();
|
|
}
|
|
}
|
|
|
|
void history_destroy() { histories.save(); }
|
|
|
|
void history_sanity_check() {
|
|
// No sanity checking implemented yet...
|
|
}
|
|
|
|
int file_detection_context_t::perform_file_detection(bool test_all) {
|
|
ASSERT_IS_BACKGROUND_THREAD();
|
|
valid_paths.clear();
|
|
// TODO: Figure out why this bothers to return a variable result since the only consumer,
|
|
// perform_file_detection_done(), ignores the result. It seems like either this should always
|
|
// return a constant or perform_file_detection_done() should use our return value.
|
|
int result = 1;
|
|
for (path_list_t::const_iterator iter = potential_paths.begin(); iter != potential_paths.end();
|
|
++iter) {
|
|
if (path_is_valid(*iter, working_directory)) {
|
|
// Push the original (possibly relative) path.
|
|
valid_paths.push_back(*iter);
|
|
} else {
|
|
// Not a valid path.
|
|
result = 0;
|
|
if (!test_all) break;
|
|
}
|
|
}
|
|
return result;
|
|
}
|
|
|
|
bool file_detection_context_t::paths_are_valid(const path_list_t &paths) {
|
|
this->potential_paths = paths;
|
|
return perform_file_detection(false) > 0;
|
|
}
|
|
|
|
file_detection_context_t::file_detection_context_t(history_t *hist, history_identifier_t ident)
|
|
: history(hist), working_directory(env_get_pwd_slash()), history_item_identifier(ident) {}
|
|
|
|
static int threaded_perform_file_detection(file_detection_context_t *ctx) {
|
|
ASSERT_IS_BACKGROUND_THREAD();
|
|
assert(ctx != NULL);
|
|
return ctx->perform_file_detection(true /* test all */);
|
|
}
|
|
|
|
static void perform_file_detection_done(file_detection_context_t *ctx, int success) {
|
|
UNUSED(success);
|
|
ASSERT_IS_MAIN_THREAD();
|
|
|
|
// Now that file detection is done, update the history item with the valid file paths.
|
|
ctx->history->set_valid_file_paths(ctx->valid_paths, ctx->history_item_identifier);
|
|
|
|
// Allow saving again.
|
|
ctx->history->enable_automatic_saving();
|
|
|
|
// Done with the context.
|
|
delete ctx;
|
|
}
|
|
|
|
static bool string_could_be_path(const wcstring &potential_path) {
|
|
// Assume that things with leading dashes aren't paths.
|
|
if (potential_path.empty() || potential_path.at(0) == L'-') {
|
|
return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void history_t::add_pending_with_file_detection(const wcstring &str) {
|
|
ASSERT_IS_MAIN_THREAD();
|
|
path_list_t potential_paths;
|
|
|
|
// Find all arguments that look like they could be file paths.
|
|
bool impending_exit = false;
|
|
parse_node_tree_t tree;
|
|
parse_tree_from_string(str, parse_flag_none, &tree, NULL);
|
|
size_t count = tree.size();
|
|
|
|
for (size_t i = 0; i < count; i++) {
|
|
const parse_node_t &node = tree.at(i);
|
|
if (!node.has_source()) {
|
|
continue;
|
|
}
|
|
|
|
if (node.type == symbol_argument) {
|
|
wcstring potential_path = node.get_source(str);
|
|
bool unescaped = unescape_string_in_place(&potential_path, UNESCAPE_DEFAULT);
|
|
if (unescaped && string_could_be_path(potential_path)) {
|
|
potential_paths.push_back(potential_path);
|
|
}
|
|
} else if (node.type == symbol_plain_statement) {
|
|
// Hack hack hack - if the command is likely to trigger an exit, then don't do
|
|
// background file detection, because we won't be able to write it to our history file
|
|
// before we exit.
|
|
if (tree.decoration_for_plain_statement(node) == parse_statement_decoration_exec) {
|
|
impending_exit = true;
|
|
}
|
|
|
|
wcstring command;
|
|
tree.command_for_plain_statement(node, str, &command);
|
|
unescape_string_in_place(&command, UNESCAPE_DEFAULT);
|
|
if (contains(command, L"exit", L"reboot")) {
|
|
impending_exit = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we got a path, we'll perform file detection for autosuggestion hinting.
|
|
history_identifier_t identifier = 0;
|
|
if (!potential_paths.empty() && !impending_exit) {
|
|
// Grab the next identifier.
|
|
static history_identifier_t sLastIdentifier = 0;
|
|
identifier = ++sLastIdentifier;
|
|
|
|
// Create a new detection context.
|
|
file_detection_context_t *context = new file_detection_context_t(this, identifier);
|
|
context->potential_paths.swap(potential_paths);
|
|
|
|
// Prevent saving until we're done, so we have time to get the paths.
|
|
this->disable_automatic_saving();
|
|
|
|
// Kick it off. Even though we haven't added the item yet, it updates the item on the main
|
|
// thread, so we can't race.
|
|
iothread_perform(threaded_perform_file_detection, perform_file_detection_done, context);
|
|
}
|
|
|
|
// Actually add the item to the history.
|
|
this->add(str, identifier, true /* pending */);
|
|
|
|
// If we think we're about to exit, save immediately, regardless of any disabling. This may
|
|
// cause us to lose file hinting for some commands, but it beats losing history items.
|
|
if (impending_exit) {
|
|
this->save();
|
|
}
|
|
}
|
|
|
|
/// Very simple, just mark that we have no more pending items.
|
|
void history_t::resolve_pending() {
|
|
scoped_lock locker(lock);
|
|
this->has_pending_item = false;
|
|
}
|