fish-shell/exec.cpp

1500 lines
45 KiB
C++

/** \file exec.c
Functions for executing a program.
Some of the code in this file is based on code from the Glibc
manual, though the changes performed have been massive.
*/
#include "config.h"
#include <stdlib.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <termios.h>
#include <unistd.h>
#include <fcntl.h>
#include <errno.h>
#include <wchar.h>
#include <string.h>
#include <limits.h>
#include <signal.h>
#include <sys/wait.h>
#include <assert.h>
#include <dirent.h>
#include <time.h>
#include <vector>
#include <algorithm>
#include <memory>
#ifdef HAVE_SIGINFO_H
#include <siginfo.h>
#endif
#include "fallback.h"
#include "util.h"
#include "iothread.h"
#include "postfork.h"
#include "common.h"
#include "wutil.h"
#include "proc.h"
#include "exec.h"
#include "parser.h"
#include "builtin.h"
#include "function.h"
#include "env.h"
#include "wildcard.h"
#include "sanity.h"
#include "expand.h"
#include "signal.h"
#include "parse_util.h"
/**
file descriptor redirection error message
*/
#define FD_ERROR _( L"An error occurred while redirecting file descriptor %d" )
/**
file descriptor redirection error message
*/
#define WRITE_ERROR _( L"An error occurred while writing output" )
/**
file redirection error message
*/
#define FILE_ERROR _( L"An error occurred while redirecting file '%s'" )
/**
Base open mode to pass to calls to open
*/
#define OPEN_MASK 0666
/**
List of all pipes used by internal pipes. These must be closed in
many situations in order to make sure that stray fds aren't lying
around.
Note this is used after fork, so we must not do anything that may allocate memory. Hopefully methods like open_fds.at() don't.
*/
static std::vector<bool> open_fds;
// Called in a forked child
static void exec_write_and_exit(int fd, const char *buff, size_t count, int status)
{
if (write_loop(fd, buff, count) == -1)
{
debug(0, WRITE_ERROR);
wperror(L"write");
exit_without_destructors(status);
}
exit_without_destructors(status);
}
void exec_close(int fd)
{
ASSERT_IS_MAIN_THREAD();
/* This may be called in a child of fork(), so don't allocate memory */
if (fd < 0)
{
debug(0, L"Called close on invalid file descriptor ");
return;
}
while (close(fd) == -1)
{
if (errno != EINTR)
{
debug(1, FD_ERROR, fd);
wperror(L"close");
break;
}
}
/* Maybe remove this from our set of open fds */
if ((size_t)fd < open_fds.size())
{
open_fds[fd] = false;
}
}
int exec_pipe(int fd[2])
{
int res;
while ((res=pipe(fd)))
{
if (errno != EINTR)
{
wperror(L"pipe");
return res;
}
}
debug(4, L"Created pipe using fds %d and %d", fd[0], fd[1]);
int max_fd = std::max(fd[0], fd[1]);
if (max_fd >= 0 && open_fds.size() <= (size_t)max_fd)
{
open_fds.resize(max_fd + 1, false);
}
open_fds.at(fd[0]) = true;
open_fds.at(fd[1]) = true;
return res;
}
/**
Check if the specified fd is used as a part of a pipeline in the
specidied set of IO redirections.
This is called after fork().
\param fd the fd to search for
\param io_chain the set of io redirections to search in
*/
static bool use_fd_in_pipe(int fd, const io_chain_t &io_chain)
{
for (size_t idx = 0; idx < io_chain.size(); idx++)
{
const shared_ptr<const io_data_t> &io = io_chain.at(idx);
if ((io->io_mode == IO_BUFFER) ||
(io->io_mode == IO_PIPE))
{
if (io->param1.pipe_fd[0] == fd ||
io->param1.pipe_fd[1] == fd)
return true;
}
}
return false;
}
/**
Close all fds in open_fds, except for those that are mentioned in
the redirection list io. This should make sure that there are no
stray opened file descriptors in the child.
\param io the list of io redirections for this job. Pipes mentioned
here should not be closed.
*/
void close_unused_internal_pipes(const io_chain_t &io)
{
/* A call to exec_close will modify open_fds, so be careful how we walk */
for (size_t i=0; i < open_fds.size(); i++)
{
if (open_fds[i])
{
int fd = (int)i;
if (!use_fd_in_pipe(fd, io))
{
debug(4, L"Close fd %d, used in other context", fd);
exec_close(fd);
i--;
}
}
}
}
void get_unused_internal_pipes(std::vector<int> &fds, const io_chain_t &io)
{
for (size_t i=0; i < open_fds.size(); i++)
{
if (open_fds[i])
{
int fd = (int)i;
if (!use_fd_in_pipe(fd, io))
{
fds.push_back(fd);
}
}
}
}
/**
Returns the interpreter for the specified script. Returns NULL if file
is not a script with a shebang.
*/
char *get_interpreter(const char *command, char *interpreter, size_t buff_size)
{
// OK to not use CLO_EXEC here because this is only called after fork
int fd = open(command, O_RDONLY);
if (fd >= 0)
{
size_t idx = 0;
while (idx + 1 < buff_size)
{
char ch;
ssize_t amt = read(fd, &ch, sizeof ch);
if (amt <= 0)
break;
if (ch == '\n')
break;
interpreter[idx++] = ch;
}
interpreter[idx++] = '\0';
close(fd);
}
if (strncmp(interpreter, "#! /", 4) == 0)
{
return interpreter + 3;
}
else if (strncmp(interpreter, "#!/", 3) == 0)
{
return interpreter + 2;
}
else
{
return NULL;
}
}
/**
This function is executed by the child process created by a call to
fork(). It should be called after \c setup_child_process. It calls
execve to replace the fish process image with the command specified
in \c p. It never returns.
*/
/* Called in a forked child! Do not allocate memory, etc. */
static void safe_launch_process(process_t *p, const char *actual_cmd, char **argv, char **envv)
{
int err;
// debug( 1, L"exec '%ls'", p->argv[0] );
// Wow, this wcs2str call totally allocates memory
execve(actual_cmd, argv, envv);
err = errno;
/*
Something went wrong with execve, check for a ":", and run
/bin/sh if encountered. This is a weird predecessor to the shebang
that is still sometimes used since it is supported on Windows.
*/
/* OK to not use CLO_EXEC here because this is called after fork and the file is immediately closed */
int fd = open(actual_cmd, O_RDONLY);
if (fd >= 0)
{
char begin[1] = {0};
ssize_t amt_read = read(fd, begin, 1);
close(fd);
if ((amt_read==1) && (begin[0] == ':'))
{
// Relaunch it with /bin/sh. Don't allocate memory, so if you have more args than this, update your silly script! Maybe this should be changed to be based on ARG_MAX somehow.
char sh_command[] = "/bin/sh";
char *argv2[128];
argv2[0] = sh_command;
for (size_t i=1; i < sizeof argv2 / sizeof *argv2; i++)
{
argv2[i] = argv[i-1];
if (argv2[i] == NULL)
break;
}
execve(sh_command, argv2, envv);
}
}
errno = err;
safe_report_exec_error(errno, actual_cmd, argv, envv);
exit_without_destructors(STATUS_EXEC_FAIL);
}
/**
This function is similar to launch_process, except it is not called after a fork (i.e. it only calls exec) and therefore it can allocate memory.
*/
static void launch_process_nofork(process_t *p)
{
ASSERT_IS_MAIN_THREAD();
ASSERT_IS_NOT_FORKED_CHILD();
char **argv = wcsv2strv(p->get_argv());
char **envv = env_export_arr(false);
char *actual_cmd = wcs2str(p->actual_cmd.c_str());
/* Bounce to launch_process. This never returns. */
safe_launch_process(p, actual_cmd, argv, envv);
}
/**
Check if the IO redirection chains contains redirections for the
specified file descriptor
*/
static int has_fd(const io_chain_t &d, int fd)
{
return io_chain_get(d, fd) != NULL;
}
/**
Free a transmogrified io chain. Only the chain itself and resources
used by a transmogrified IO_FILE redirection are freed, since the
original chain may still be needed.
*/
static void io_cleanup_chains(io_chain_t &chains, const std::vector<int> &opened_fds)
{
/* Close all the fds */
for (size_t idx = 0; idx < opened_fds.size(); idx++)
{
close(opened_fds.at(idx));
}
/* Then delete all of the redirections we made */
chains.destroy();
}
/**
Make a copy of the specified io redirection chain, but change file
redirection into fd redirection. This makes the redirection chain
suitable for use as block-level io, since the file won't be
repeatedly reopened for every command in the block, which would
reset the cursor position.
\return the transmogrified chain on sucess, or 0 on failiure
*/
static bool io_transmogrify(const io_chain_t &in_chain, io_chain_t &out_chain, std::vector<int> &out_opened_fds)
{
ASSERT_IS_MAIN_THREAD();
assert(out_chain.empty());
/* Just to be clear what we do for an empty chain */
if (in_chain.empty())
{
return true;
}
bool success = true;
/* Make our chain of redirections */
io_chain_t result_chain;
/* In the event we can't finish transmorgrifying, we'll have to close all the files we opened. */
std::vector<int> opened_fds;
for (size_t idx = 0; idx < in_chain.size(); idx++)
{
const shared_ptr<io_data_t> &in = in_chain.at(idx);
shared_ptr<io_data_t> out; //gets allocated via new
switch (in->io_mode)
{
default:
/* Unknown type, should never happen */
fprintf(stderr, "Unknown io_mode %ld\n", (long)in->io_mode);
abort();
break;
/*
These redirections don't need transmogrification. They can be passed through.
*/
case IO_PIPE:
case IO_FD:
case IO_BUFFER:
case IO_CLOSE:
{
out = in;
break;
}
/*
Transmogrify file redirections
*/
case IO_FILE:
{
out.reset(new io_data_t());
out->fd = in->fd;
out->io_mode = IO_FD;
out->param2.close_old = 1;
int fd;
if ((fd=open(in->filename_cstr, in->param2.flags, OPEN_MASK))==-1)
{
debug(1,
FILE_ERROR,
in->filename_cstr);
wperror(L"open");
success = false;
break;
}
opened_fds.push_back(fd);
out->param1.old_fd = fd;
break;
}
}
/* Record this IO redirection even if we failed (so we can free it) */
result_chain.push_back(out);
/* But don't go any further if we failed */
if (! success)
{
break;
}
}
/* Now either return success, or clean up */
if (success)
{
/* Yay */
out_chain.swap(result_chain);
out_opened_fds.swap(opened_fds);
}
else
{
/* No dice - clean up */
io_cleanup_chains(result_chain, opened_fds);
}
return success;
}
/**
Morph an io redirection chain into redirections suitable for
passing to eval, call eval, and clean up morphed redirections.
\param def the code to evaluate
\param block_type the type of block to push on evaluation
\param io the io redirections to be performed on this block
*/
static void internal_exec_helper(parser_t &parser,
const wchar_t *def,
enum block_type_t block_type,
io_chain_t &ios)
{
io_chain_t morphed_chain;
std::vector<int> opened_fds;
bool transmorgrified = io_transmogrify(ios, morphed_chain, opened_fds);
int is_block_old=is_block;
is_block=1;
/*
Did the transmogrification fail - if so, set error status and return
*/
if (! transmorgrified)
{
proc_set_last_status(STATUS_EXEC_FAIL);
return;
}
signal_unblock();
parser.eval(def, morphed_chain, block_type);
signal_block();
io_cleanup_chains(morphed_chain, opened_fds);
job_reap(0);
is_block=is_block_old;
}
/** Perform output from builtins. Called from a forked child, so don't do anything that may allocate memory, etc.. */
static void do_builtin_io(const char *out, size_t outlen, const char *err, size_t errlen)
{
if (out && outlen)
{
if (write_loop(STDOUT_FILENO, out, outlen) == -1)
{
debug(0, L"Error while writing to stdout");
wperror(L"write_loop");
show_stackframe();
}
}
if (err && errlen)
{
if (write_loop(STDERR_FILENO, err, errlen) == -1)
{
/*
Can't really show any error message here, since stderr is
dead.
*/
}
}
}
/* Returns whether we can use posix spawn for a given process in a given job.
Per https://github.com/fish-shell/fish-shell/issues/364 , error handling for file redirections is too difficult with posix_spawn
So in that case we use fork/exec
Furthermore, to avoid the race between the caller calling tcsetpgrp() and the client checking the foreground process group, we don't use posix_spawn if we're going to foreground the process. (If we use fork(), we can call tcsetpgrp after the fork, before the exec, and avoid the racse).
*/
static bool can_use_posix_spawn_for_job(const job_t *job, const process_t *process)
{
if (job_get_flag(job, JOB_CONTROL))
{
/* We are going to use job control; therefore when we launch this job it will get its own process group ID. But will it be foregrounded? */
if (job_get_flag(job, JOB_TERMINAL) && job_get_flag(job, JOB_FOREGROUND))
{
/* It will be foregrounded, so we will call tcsetpgrp(), therefore do not use posix_spawn */
return false;
}
}
bool result = true;
for (size_t idx = 0; idx < job->io.size(); idx++)
{
const shared_ptr<const io_data_t> &io = job->io.at(idx);
if (io->io_mode == IO_FILE)
{
const char *path = io->filename_cstr;
/* This IO action is a file redirection. Only allow /dev/null, which is a common case we assume won't fail. */
if (strcmp(path, "/dev/null") != 0)
{
result = false;
break;
}
}
}
return result;
}
void exec(parser_t &parser, job_t *j)
{
process_t *p;
pid_t pid = 0;
int mypipe[2];
sigset_t chldset;
shared_ptr<io_data_t> io_buffer;
/*
Set to true if something goes wrong while exec:ing the job, in
which case the cleanup code will kick in.
*/
bool exec_error = false;
bool needs_keepalive = false;
process_t keepalive;
CHECK(j,);
CHECK_BLOCK();
if (no_exec)
return;
sigemptyset(&chldset);
sigaddset(&chldset, SIGCHLD);
debug(4, L"Exec job '%ls' with id %d", j->command_wcstr(), j->job_id);
if (! parser.block_io.empty())
{
io_duplicate_prepend(parser.block_io, j->io);
}
shared_ptr<const io_data_t> input_redirect;
for (size_t idx = 0; idx < j->io.size(); idx++)
{
input_redirect = j->io.at(idx);
if ((input_redirect->io_mode == IO_BUFFER) &&
input_redirect->is_input)
{
/*
Input redirection - create a new gobetween process to take
care of buffering
*/
process_t *fake = new process_t();
fake->type = INTERNAL_BUFFER;
fake->pipe_write_fd = 1;
j->first_process->pipe_read_fd = input_redirect->fd;
fake->next = j->first_process;
j->first_process = fake;
break;
}
}
if (j->first_process->type==INTERNAL_EXEC)
{
/*
Do a regular launch - but without forking first...
*/
signal_block();
/*
setup_child_process makes sure signals are properly set
up. It will also call signal_unblock
*/
if (!setup_child_process(j, 0))
{
/*
launch_process _never_ returns
*/
launch_process_nofork(j->first_process);
}
else
{
job_set_flag(j, JOB_CONSTRUCTED, 1);
j->first_process->completed=1;
return;
}
}
shared_ptr<io_data_t> pipe_read(new io_data_t);
pipe_read->fd = 0;
pipe_read->io_mode = IO_PIPE;
pipe_read->is_input = 1;
pipe_read->param1.pipe_fd[0] = pipe_read->param1.pipe_fd[1] = -1;
shared_ptr<io_data_t> pipe_write(new io_data_t);
pipe_write->fd = 1;
pipe_write->io_mode = IO_PIPE;
pipe_write->is_input = 0;
pipe_write->param1.pipe_fd[0] = pipe_write->param1.pipe_fd[1] = -1;
j->io.push_back(pipe_write);
signal_block();
/*
See if we need to create a group keepalive process. This is
a process that we create to make sure that the process group
doesn't die accidentally, and is often needed when a
builtin/block/function is inside a pipeline, since that
usually means we have to wait for one program to exit before
continuing in the pipeline, causing the group leader to
exit.
*/
if (job_get_flag(j, JOB_CONTROL))
{
for (p=j->first_process; p; p = p->next)
{
if (p->type != EXTERNAL)
{
if (p->next)
{
needs_keepalive = true;
break;
}
if (p != j->first_process)
{
needs_keepalive = true;
break;
}
}
}
}
if (needs_keepalive)
{
/* Call fork. No need to wait for threads since our use is confined and simple. */
if (g_log_forks)
{
printf("fork #%d: Executing keepalive fork for '%ls'\n", g_fork_count, j->command_wcstr());
}
keepalive.pid = execute_fork(false);
if (keepalive.pid == 0)
{
/* Child */
keepalive.pid = getpid();
set_child_group(j, &keepalive, 1);
pause();
exit_without_destructors(0);
}
else
{
/* Parent */
set_child_group(j, &keepalive, 0);
}
}
/*
This loop loops over every process_t in the job, starting it as
appropriate. This turns out to be rather complex, since a
process_t can be one of many rather different things.
The loop also has to handle pipelining between the jobs.
*/
for (p=j->first_process; p; p = p->next)
{
const bool p_wants_pipe = (p->next != NULL);
mypipe[1]=-1;
pipe_write->fd = p->pipe_write_fd;
pipe_read->fd = p->pipe_read_fd;
// debug( 0, L"Pipe created from fd %d to fd %d", pipe_write->fd, pipe_read->fd );
/*
This call is used so the global environment variable array
is regenerated, if needed, before the fork. That way, we
avoid a lot of duplicate work where EVERY child would need
to generate it, since that result would not get written
back to the parent. This call could be safely removed, but
it would result in slightly lower performance - at least on
uniprocessor systems.
*/
if (p->type == EXTERNAL)
env_export_arr(true);
/*
Set up fd:s that will be used in the pipe
*/
if (p == j->first_process->next)
{
j->io.push_back(pipe_read);
}
if (p_wants_pipe)
{
// debug( 1, L"%ls|%ls" , p->argv[0], p->next->argv[0]);
if (exec_pipe(mypipe) == -1)
{
debug(1, PIPE_ERROR);
wperror(L"pipe");
exec_error = true;
break;
}
memcpy(pipe_write->param1.pipe_fd, mypipe, sizeof(int)*2);
}
else
{
/*
This is the last element of the pipeline.
Remove the io redirection for pipe output.
*/
io_chain_t::iterator where = std::find(j->io.begin(), j->io.end(), pipe_write);
if (where != j->io.end())
j->io.erase(where);
}
switch (p->type)
{
case INTERNAL_FUNCTION:
{
wchar_t * def=0;
int shadows;
/*
Calls to function_get_definition might need to
source a file as a part of autoloading, hence there
must be no blocks.
*/
signal_unblock();
wcstring orig_def;
function_get_definition(p->argv0(), &orig_def);
// function_get_named_arguments may trigger autoload, which deallocates the orig_def.
// We should make function_get_definition return a wcstring (but how to handle NULL...)
if (! orig_def.empty())
def = wcsdup(orig_def.c_str());
wcstring_list_t named_arguments = function_get_named_arguments(p->argv0());
shadows = function_get_shadows(p->argv0());
signal_block();
if (def == NULL)
{
debug(0, _(L"Unknown function '%ls'"), p->argv0());
break;
}
function_block_t *newv = new function_block_t(p, p->argv0(), shadows);
parser.push_block(newv);
/*
set_argv might trigger an event
handler, hence we need to unblock
signals.
*/
signal_unblock();
parse_util_set_argv(p->get_argv()+1, named_arguments);
signal_block();
parser.forbid_function(p->argv0());
if (p->next)
{
io_buffer.reset(io_buffer_create(0));
j->io.push_back(io_buffer);
}
internal_exec_helper(parser, def, TOP, j->io);
parser.allow_function();
parser.pop_block();
free(def);
break;
}
case INTERNAL_BLOCK:
{
if (p->next)
{
io_buffer.reset(io_buffer_create(0));
j->io.push_back(io_buffer);
}
internal_exec_helper(parser, p->argv0(), TOP, j->io);
break;
}
case INTERNAL_BUILTIN:
{
int builtin_stdin=0;
int fg;
int close_stdin=0;
/*
If this is the first process, check the io
redirections and see where we should be reading
from.
*/
if (p == j->first_process)
{
const shared_ptr<const io_data_t> &in = io_chain_get(j->io, 0);
if (in)
{
switch (in->io_mode)
{
case IO_FD:
{
builtin_stdin = in->param1.old_fd;
break;
}
case IO_PIPE:
{
builtin_stdin = in->param1.pipe_fd[0];
break;
}
case IO_FILE:
{
/* Do not set CLO_EXEC because child needs access */
builtin_stdin=open(in->filename_cstr,
in->param2.flags, OPEN_MASK);
if (builtin_stdin == -1)
{
debug(1,
FILE_ERROR,
in->filename_cstr);
wperror(L"open");
}
else
{
close_stdin = 1;
}
break;
}
case IO_CLOSE:
{
/*
FIXME:
When requesting that stdin be closed, we
really don't do anything. How should this be
handled?
*/
builtin_stdin = -1;
break;
}
default:
{
builtin_stdin=-1;
debug(1,
_(L"Unknown input redirection type %d"),
in->io_mode);
break;
}
}
}
}
else
{
builtin_stdin = pipe_read->param1.pipe_fd[0];
}
if (builtin_stdin == -1)
{
exec_error = true;
break;
}
else
{
int old_out = builtin_out_redirect;
int old_err = builtin_err_redirect;
/*
Since this may be the foreground job, and since
a builtin may execute another foreground job,
we need to pretend to suspend this job while
running the builtin, in order to avoid a
situation where two jobs are running at once.
The reason this is done here, and not by the
relevant builtins, is that this way, the
builtin does not need to know what job it is
part of. It could probably figure that out by
walking the job list, but it seems more robust
to make exec handle things.
*/
builtin_push_io(parser, builtin_stdin);
builtin_out_redirect = has_fd(j->io, 1);
builtin_err_redirect = has_fd(j->io, 2);
fg = job_get_flag(j, JOB_FOREGROUND);
job_set_flag(j, JOB_FOREGROUND, 0);
signal_unblock();
p->status = builtin_run(parser, p->get_argv(), j->io);
builtin_out_redirect=old_out;
builtin_err_redirect=old_err;
signal_block();
/*
Restore the fg flag, which is temporarily set to
false during builtin execution so as not to confuse
some job-handling builtins.
*/
job_set_flag(j, JOB_FOREGROUND, fg);
}
/*
If stdin has been redirected, close the redirection
stream.
*/
if (close_stdin)
{
exec_close(builtin_stdin);
}
break;
}
}
if (exec_error)
{
break;
}
switch (p->type)
{
case INTERNAL_BLOCK:
case INTERNAL_FUNCTION:
{
int status = proc_get_last_status();
/*
Handle output from a block or function. This usually
means do nothing, but in the case of pipes, we have
to buffer such io, since otherwise the internal pipe
buffer might overflow.
*/
if (!io_buffer)
{
/*
No buffer, so we exit directly. This means we
have to manually set the exit status.
*/
if (p->next == 0)
{
proc_set_last_status(job_get_flag(j, JOB_NEGATE)?(!status):status);
}
p->completed = 1;
break;
}
io_remove(j->io, io_buffer);
io_buffer_read(io_buffer.get());
const char *buffer = io_buffer->out_buffer_ptr();
size_t count = io_buffer->out_buffer_size();
if (io_buffer->out_buffer_size() > 0)
{
/* We don't have to drain threads here because our child process is simple */
if (g_log_forks)
{
printf("Executing fork for internal block or function for '%ls'\n", p->argv0());
}
pid = execute_fork(false);
if (pid == 0)
{
/*
This is the child process. Write out the contents of the pipeline.
*/
p->pid = getpid();
setup_child_process(j, p);
exec_write_and_exit(io_buffer->fd, buffer, count, status);
}
else
{
/*
This is the parent process. Store away
information on the child, and possibly give
it control over the terminal.
*/
p->pid = pid;
set_child_group(j, p, 0);
}
}
else
{
if (p->next == 0)
{
proc_set_last_status(job_get_flag(j, JOB_NEGATE)?(!status):status);
}
p->completed = 1;
}
io_buffer_destroy(io_buffer);
io_buffer.reset();
break;
}
case INTERNAL_BUFFER:
{
const char *buffer = input_redirect->out_buffer_ptr();
size_t count = input_redirect->out_buffer_size();
/* We don't have to drain threads here because our child process is simple */
if (g_log_forks)
{
printf("fork #%d: Executing fork for internal buffer for '%ls'\n", g_fork_count, p->argv0() ? p->argv0() : L"(null)");
}
pid = execute_fork(false);
if (pid == 0)
{
/*
This is the child process. Write out the
contents of the pipeline.
*/
p->pid = getpid();
setup_child_process(j, p);
exec_write_and_exit(1, buffer, count, 0);
}
else
{
/*
This is the parent process. Store away
information on the child, and possibly give
it control over the terminal.
*/
p->pid = pid;
set_child_group(j, p, 0);
}
break;
}
case INTERNAL_BUILTIN:
{
bool skip_fork;
/*
Handle output from builtin commands. In the general
case, this means forking of a worker process, that
will write out the contents of the stdout and stderr
buffers to the correct file descriptor. Since
forking is expensive, fish tries to avoid it wehn
possible.
*/
/*
If a builtin didn't produce any output, and it is
not inside a pipeline, there is no need to fork
*/
skip_fork =
get_stdout_buffer().empty() &&
get_stderr_buffer().empty() &&
!p->next;
/*
If the output of a builtin is to be sent to an internal
buffer, there is no need to fork. This helps out the
performance quite a bit in complex completion code.
*/
const shared_ptr<io_data_t> &io = io_chain_get(j->io, 1);
bool buffer_stdout = io && io->io_mode == IO_BUFFER;
if ((get_stderr_buffer().empty()) &&
(!p->next) &&
(! get_stdout_buffer().empty()) &&
(buffer_stdout))
{
const std::string res = wcs2string(get_stdout_buffer());
io->out_buffer_append(res.c_str(), res.size());
skip_fork = true;
}
if (! skip_fork && j->io.empty())
{
/* PCA for some reason, fish forks a lot, even for basic builtins like echo just to write out their buffers. I'm certain a lot of this is unnecessary, but I am not sure exactly when. If j->io is NULL, then it means there's no pipes or anything, so we can certainly just write out our data. Beyond that, we may be able to do the same if io_get returns 0 for STDOUT_FILENO and STDERR_FILENO. */
if (g_log_forks)
{
printf("fork #-: Skipping fork for internal builtin for '%ls'\n", p->argv0());
}
const wcstring &out = get_stdout_buffer(), &err = get_stderr_buffer();
const std::string outbuff = wcs2string(out);
const std::string errbuff = wcs2string(err);
do_builtin_io(outbuff.data(), outbuff.size(), errbuff.data(), errbuff.size());
skip_fork = true;
}
for (io_chain_t::iterator iter = j->io.begin(); iter != j->io.end(); iter++)
{
const shared_ptr<io_data_t> &tmp_io = *iter;
if (tmp_io->io_mode == IO_FILE && strcmp(tmp_io->filename_cstr, "/dev/null") != 0)
{
skip_fork = false;
break;
}
}
if (skip_fork)
{
p->completed=1;
if (p->next == 0)
{
debug(3, L"Set status of %ls to %d using short circut", j->command_wcstr(), p->status);
int status = p->status;
proc_set_last_status(job_get_flag(j, JOB_NEGATE)?(!status):status);
}
break;
}
/* Ok, unfortunatly, we have to do a real fork. Bummer. We work hard to make sure we don't have to wait for all our threads to exit, by arranging things so that we don't have to allocate memory or do anything except system calls in the child. */
/* Get the strings we'll write before we fork (since they call malloc) */
const wcstring &out = get_stdout_buffer(), &err = get_stderr_buffer();
/* These strings may contain embedded nulls, so don't treat them as C strings */
const std::string outbuff_str = wcs2string(out);
const char *outbuff = outbuff_str.data();
size_t outbuff_len = outbuff_str.size();
const std::string errbuff_str = wcs2string(err);
const char *errbuff = errbuff_str.data();
size_t errbuff_len = errbuff_str.size();
fflush(stdout);
fflush(stderr);
if (g_log_forks)
{
printf("fork #%d: Executing fork for internal builtin for '%ls'\n", g_fork_count, p->argv0());
io_print(io_chain_t(io));
}
pid = execute_fork(false);
if (pid == 0)
{
/*
This is the child process. Setup redirections,
print correct output to stdout and stderr, and
then exit.
*/
p->pid = getpid();
setup_child_process(j, p);
do_builtin_io(outbuff, outbuff_len, errbuff, errbuff_len);
exit_without_destructors(p->status);
}
else
{
/*
This is the parent process. Store away
information on the child, and possibly give
it control over the terminal.
*/
p->pid = pid;
set_child_group(j, p, 0);
}
break;
}
case EXTERNAL:
{
/* Get argv and envv before we fork */
null_terminated_array_t<char> argv_array = convert_wide_array_to_narrow(p->get_argv_array());
null_terminated_array_t<char> envv_array;
env_export_arr(false, envv_array);
char **envv = envv_array.get();
char **argv = argv_array.get();
std::string actual_cmd_str = wcs2string(p->actual_cmd);
const char *actual_cmd = actual_cmd_str.c_str();
const wchar_t *reader_current_filename();
if (g_log_forks)
{
const wchar_t *file = reader_current_filename();
const wchar_t *func = parser_t::principal_parser().is_function();
printf("fork #%d: forking for '%s' in '%ls:%ls'\n", g_fork_count, actual_cmd, file ? file : L"", func ? func : L"?");
fprintf(stderr, "IO chain for %s:\n", actual_cmd);
io_print(j->io);
}
#if FISH_USE_POSIX_SPAWN
/* Prefer to use posix_spawn, since it's faster on some systems like OS X */
bool use_posix_spawn = g_use_posix_spawn && can_use_posix_spawn_for_job(j, p);
if (use_posix_spawn)
{
/* Create posix spawn attributes and actions */
posix_spawnattr_t attr = posix_spawnattr_t();
posix_spawn_file_actions_t actions = posix_spawn_file_actions_t();
bool made_it = fork_actions_make_spawn_properties(&attr, &actions, j, p);
if (made_it)
{
/* We successfully made the attributes and actions; actually call posix_spawn */
int spawn_ret = posix_spawn(&pid, actual_cmd, &actions, &attr, argv, envv);
/* This usleep can be used to test for various race conditions (https://github.com/fish-shell/fish-shell/issues/360) */
//usleep(10000);
if (spawn_ret != 0)
{
safe_report_exec_error(spawn_ret, actual_cmd, argv, envv);
/* Make sure our pid isn't set */
pid = 0;
}
/* Clean up our actions */
posix_spawn_file_actions_destroy(&actions);
posix_spawnattr_destroy(&attr);
}
/* A 0 pid means we failed to posix_spawn. Since we have no pid, we'll never get told when it's exited, so we have to mark the process as failed. */
if (pid == 0)
{
job_mark_process_as_failed(j, p);
exec_error = true;
}
}
else
#endif
{
pid = execute_fork(false);
if (pid == 0)
{
/* This is the child process. */
p->pid = getpid();
setup_child_process(j, p);
safe_launch_process(p, actual_cmd, argv, envv);
/*
safe_launch_process _never_ returns...
*/
}
}
/*
This is the parent process. Store away
information on the child, and possibly fice
it control over the terminal.
*/
p->pid = pid;
set_child_group(j, p, 0);
break;
}
}
if (p->type == INTERNAL_BUILTIN)
builtin_pop_io(parser);
/*
Close the pipe the current process uses to read from the
previous process_t
*/
if (pipe_read->param1.pipe_fd[0] >= 0)
exec_close(pipe_read->param1.pipe_fd[0]);
/*
Set up the pipe the next process uses to read from the
current process_t
*/
if (p_wants_pipe)
pipe_read->param1.pipe_fd[0] = mypipe[0];
/*
If there is a next process in the pipeline, close the
output end of the current pipe (the surrent child
subprocess already has a copy of the pipe - this makes sure
we don't leak file descriptors either in the shell or in
the children).
*/
if (p->next)
{
exec_close(mypipe[1]);
}
}
/*
The keepalive process is no longer needed, so we terminate it
with extreme prejudice
*/
if (needs_keepalive)
{
kill(keepalive.pid, SIGKILL);
}
signal_unblock();
debug(3, L"Job is constructed");
io_remove(j->io, pipe_read);
for (io_chain_t::const_iterator iter = parser.block_io.begin(); iter != parser.block_io.end(); iter++)
{
io_remove(j->io, *iter);
}
job_set_flag(j, JOB_CONSTRUCTED, 1);
if (!job_get_flag(j, JOB_FOREGROUND))
{
proc_last_bg_pid = j->pgid;
}
if (!exec_error)
{
job_continue(j, 0);
}
}
static int exec_subshell_internal(const wcstring &cmd, wcstring_list_t *lst)
{
ASSERT_IS_MAIN_THREAD();
int prev_subshell = is_subshell;
int status, prev_status;
char sep=0;
const env_var_t ifs = env_get_string(L"IFS");
if (! ifs.missing_or_empty())
{
if (ifs.at(0) < 128)
{
sep = '\n';//ifs[0];
}
else
{
sep = 0;
debug(0, L"Warning - invalid command substitution separator '%lc'. Please change the firsta character of IFS", ifs[0]);
}
}
is_subshell=1;
const shared_ptr<io_data_t> io_buffer(io_buffer_create(0));
prev_status = proc_get_last_status();
parser_t &parser = parser_t::principal_parser();
if (parser.eval(cmd, io_chain_t(io_buffer), SUBST))
{
status = -1;
}
else
{
status = proc_get_last_status();
}
io_buffer_read(io_buffer.get());
proc_set_last_status(prev_status);
is_subshell = prev_subshell;
if (lst != NULL)
{
const char *begin = io_buffer->out_buffer_ptr();
const char *end = begin + io_buffer->out_buffer_size();
const char *cursor = begin;
while (cursor < end)
{
// Look for the next separator
const char *stop = (const char *)memchr(cursor, sep, end - cursor);
const bool hit_separator = (stop != NULL);
if (! hit_separator)
{
// If it's not found, just use the end
stop = end;
}
// Stop now points at the first character we do not want to copy
const wcstring wc = str2wcstring(cursor, stop - cursor);
lst->push_back(wc);
// If we hit a separator, skip over it; otherwise we're at the end
cursor = stop + (hit_separator ? 1 : 0);
}
}
io_buffer_destroy(io_buffer);
return status;
}
int exec_subshell(const wcstring &cmd, std::vector<wcstring> &outputs)
{
ASSERT_IS_MAIN_THREAD();
return exec_subshell_internal(cmd, &outputs);
}
__warn_unused int exec_subshell(const wcstring &cmd)
{
ASSERT_IS_MAIN_THREAD();
return exec_subshell_internal(cmd, NULL);
}