fish-shell/src/input_common.rs
Johannes Altmanninger 390b40e02b Fix regression not refreshing TTY timestamps after external command from binding
Commit 8a7c3ce (Don't abandon line after writing control sequences, 2024-04-06)
was broken by 29f2da8 (Toggle terminal protocols lazily, 2024-05-16), fix that.

Fixes #10529
2024-05-29 12:57:09 +02:00

1208 lines
41 KiB
Rust

use libc::STDOUT_FILENO;
use crate::common::{
fish_reserved_codepoint, is_windows_subsystem_for_linux, read_blocked, shell_modes, WSL,
};
use crate::env::{EnvStack, Environment};
use crate::fd_readable_set::FdReadableSet;
use crate::flog::FLOG;
use crate::global_safety::RelaxedAtomicBool;
use crate::key::{
self, alt, canonicalize_control_char, canonicalize_keyed_control_char, function_key, shift,
Key, Modifiers,
};
use crate::reader::{reader_current_data, reader_test_and_clear_interrupted};
use crate::threads::{iothread_port, iothread_service_main, MainThread};
use crate::universal_notifier::default_notifier;
use crate::wchar::{encode_byte_to_char, prelude::*};
use crate::wutil::encoding::{mbrtowc, mbstate_t, zero_mbstate};
use crate::wutil::{fish_wcstol, write_to_fd};
use std::cell::RefCell;
use std::collections::VecDeque;
use std::ops::ControlFlow;
use std::os::fd::RawFd;
use std::ptr;
use std::sync::atomic::{AtomicUsize, Ordering};
// The range of key codes for inputrc-style keyboard functions.
pub const R_END_INPUT_FUNCTIONS: usize = (ReadlineCmd::ReverseRepeatJump as usize) + 1;
/// Hackish: the input style, which describes how char events (only) are applied to the command
/// line. Note this is set only after applying bindings; it is not set from readb().
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub enum CharInputStyle {
// Insert characters normally.
Normal,
// Insert characters only if the cursor is not at the beginning. Otherwise, discard them.
NotFirst,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
#[repr(u8)]
pub enum ReadlineCmd {
BeginningOfLine,
EndOfLine,
ForwardChar,
BackwardChar,
BackwardCharPassive,
ForwardSingleChar,
ForwardCharPassive,
ForwardWord,
BackwardWord,
ForwardBigword,
BackwardBigword,
NextdOrForwardWord,
PrevdOrBackwardWord,
HistorySearchBackward,
HistorySearchForward,
HistoryPrefixSearchBackward,
HistoryPrefixSearchForward,
HistoryPager,
HistoryPagerDelete,
DeleteChar,
BackwardDeleteChar,
KillLine,
Yank,
YankPop,
Complete,
CompleteAndSearch,
PagerToggleSearch,
BeginningOfHistory,
EndOfHistory,
BackwardKillLine,
KillWholeLine,
KillInnerLine,
KillWord,
KillBigword,
BackwardKillWord,
BackwardKillPathComponent,
BackwardKillBigword,
HistoryTokenSearchBackward,
HistoryTokenSearchForward,
SelfInsert,
SelfInsertNotFirst,
TransposeChars,
TransposeWords,
UpcaseWord,
DowncaseWord,
CapitalizeWord,
TogglecaseChar,
TogglecaseSelection,
Execute,
BeginningOfBuffer,
EndOfBuffer,
RepaintMode,
Repaint,
ForceRepaint,
UpLine,
DownLine,
SuppressAutosuggestion,
AcceptAutosuggestion,
BeginSelection,
SwapSelectionStartStop,
EndSelection,
KillSelection,
InsertLineUnder,
InsertLineOver,
ForwardJump,
BackwardJump,
ForwardJumpTill,
BackwardJumpTill,
FuncAnd,
FuncOr,
ExpandAbbr,
DeleteOrExit,
Exit,
CancelCommandline,
Cancel,
Undo,
Redo,
BeginUndoGroup,
EndUndoGroup,
RepeatJump,
DisableMouseTracking,
FocusIn,
FocusOut,
// ncurses uses the obvious name
ClearScreenAndRepaint,
// NOTE: This one has to be last.
ReverseRepeatJump,
}
/// Represents an event on the character input stream.
#[derive(Debug, Clone)]
pub enum CharEventType {
/// A character was entered.
Char(Key),
/// A readline event.
Readline(ReadlineCmd),
/// A shell command.
Command(WString),
/// end-of-file was reached.
Eof,
/// An event was handled internally, or an interrupt was received. Check to see if the reader
/// loop should exit.
CheckExit,
}
#[derive(Debug, Clone)]
pub struct ReadlineCmdEvent {
pub cmd: ReadlineCmd,
/// The sequence of characters in the input mapping which generated this event.
/// Note that the generic self-insert case does not have any characters, so this would be empty.
/// This is also empty for invalid Unicode code points, which produce multiple characters.
pub seq: WString,
}
#[derive(Debug, Clone)]
pub struct KeyEvent {
// The key.
pub key: Key,
// The style to use when inserting characters into the command line.
pub input_style: CharInputStyle,
/// The sequence of characters in the input mapping which generated this event.
/// Note that the generic self-insert case does not have any characters, so this would be empty.
/// This is also empty for invalid Unicode code points, which produce multiple characters.
pub seq: WString,
}
#[derive(Debug, Clone)]
pub enum CharEvent {
/// A character was entered.
Key(KeyEvent),
/// A readline event.
Readline(ReadlineCmdEvent),
/// A shell command.
Command(WString),
/// end-of-file was reached.
Eof,
/// An event was handled internally, or an interrupt was received. Check to see if the reader
/// loop should exit.
CheckExit,
}
impl CharEvent {
pub fn is_char(&self) -> bool {
matches!(self, CharEvent::Key(_))
}
pub fn is_eof(&self) -> bool {
matches!(self, CharEvent::Eof)
}
pub fn is_check_exit(&self) -> bool {
matches!(self, CharEvent::CheckExit)
}
pub fn is_readline(&self) -> bool {
matches!(self, CharEvent::Readline(_))
}
pub fn is_readline_or_command(&self) -> bool {
matches!(self, CharEvent::Readline(_) | CharEvent::Command(_))
}
pub fn get_char(&self) -> char {
let CharEvent::Key(kevt) = self else {
panic!("Not a char type");
};
kevt.key.codepoint
}
pub fn get_key(&self) -> Option<&KeyEvent> {
match self {
CharEvent::Key(kevt) => Some(kevt),
_ => None,
}
}
pub fn get_readline(&self) -> ReadlineCmd {
let CharEvent::Readline(c) = self else {
panic!("Not a readline type");
};
c.cmd
}
pub fn get_command(&self) -> Option<&wstr> {
match self {
CharEvent::Command(c) => Some(c),
_ => None,
}
}
pub fn from_char(c: char) -> CharEvent {
Self::from_key(Key::from_raw(c))
}
pub fn from_key(key: Key) -> CharEvent {
Self::from_key_seq(key, WString::new())
}
pub fn from_key_seq(key: Key, seq: WString) -> CharEvent {
CharEvent::Key(KeyEvent {
key,
input_style: CharInputStyle::Normal,
seq,
})
}
pub fn from_char_seq(c: char, seq: WString) -> CharEvent {
CharEvent::Key(KeyEvent {
key: Key::from_raw(c),
input_style: CharInputStyle::Normal,
seq,
})
}
pub fn from_readline(cmd: ReadlineCmd) -> CharEvent {
Self::from_readline_seq(cmd, WString::new())
}
pub fn from_readline_seq(cmd: ReadlineCmd, seq: WString) -> CharEvent {
CharEvent::Readline(ReadlineCmdEvent { cmd, seq })
}
pub fn from_check_exit() -> CharEvent {
CharEvent::CheckExit
}
}
/// Time in milliseconds to wait for another byte to be available for reading
/// after \x1B is read before assuming that escape key was pressed, and not an
/// escape sequence.
const WAIT_ON_ESCAPE_DEFAULT: usize = 30;
static WAIT_ON_ESCAPE_MS: AtomicUsize = AtomicUsize::new(WAIT_ON_ESCAPE_DEFAULT);
const WAIT_ON_SEQUENCE_KEY_INFINITE: usize = usize::MAX;
static WAIT_ON_SEQUENCE_KEY_MS: AtomicUsize = AtomicUsize::new(WAIT_ON_SEQUENCE_KEY_INFINITE);
/// Internal function used by readch to read one byte.
/// This calls select() on three fds: input (e.g. stdin), the ioport notifier fd (for main thread
/// requests), and the uvar notifier. This returns either the byte which was read, or one of the
/// special values below.
enum ReadbResult {
// A byte was successfully read.
Byte(u8),
// The in fd has been closed.
Eof,
// select() was interrupted by a signal.
Interrupted,
// Our uvar notifier reported a change (either through poll() or its fd).
UvarNotified,
// Our ioport reported a change, so service main thread requests.
IOPortNotified,
NothingToRead,
}
fn readb(in_fd: RawFd, blocking: bool) -> ReadbResult {
assert!(in_fd >= 0, "Invalid in fd");
let mut fdset = FdReadableSet::new();
loop {
fdset.clear();
fdset.add(in_fd);
// Add the completion ioport.
let ioport_fd = iothread_port();
fdset.add(ioport_fd);
// Get the uvar notifier fd (possibly none).
let notifier = default_notifier();
let notifier_fd = notifier.notification_fd();
if let Some(notifier_fd) = notifier.notification_fd() {
fdset.add(notifier_fd);
}
// Here's where we call select().
let select_res = fdset.check_readable(if blocking {
FdReadableSet::kNoTimeout
} else {
0
});
if select_res < 0 {
let err = errno::errno().0;
if err == libc::EINTR || err == libc::EAGAIN {
// A signal.
return ReadbResult::Interrupted;
} else {
// Some fd was invalid, so probably the tty has been closed.
return ReadbResult::Eof;
}
}
if blocking {
// select() did not return an error, so we may have a readable fd.
// The priority order is: uvars, stdin, ioport.
// Check to see if we want a universal variable barrier.
if let Some(notifier_fd) = notifier_fd {
if fdset.test(notifier_fd) && notifier.notification_fd_became_readable(notifier_fd)
{
return ReadbResult::UvarNotified;
}
}
}
// Check stdin.
if fdset.test(in_fd) {
let mut arr: [u8; 1] = [0];
if read_blocked(in_fd, &mut arr) != Ok(1) {
// The terminal has been closed.
return ReadbResult::Eof;
}
FLOG!(reader, "Read byte", arr[0]);
// The common path is to return a u8.
return ReadbResult::Byte(arr[0]);
}
if !blocking {
return ReadbResult::NothingToRead;
}
// Check for iothread completions only if there is no data to be read from the stdin.
// This gives priority to the foreground.
if fdset.test(ioport_fd) {
return ReadbResult::IOPortNotified;
}
}
}
// Update the wait_on_escape_ms value in response to the fish_escape_delay_ms user variable being
// set.
pub fn update_wait_on_escape_ms(vars: &EnvStack) {
let fish_escape_delay_ms = vars.get_unless_empty(L!("fish_escape_delay_ms"));
let Some(fish_escape_delay_ms) = fish_escape_delay_ms else {
WAIT_ON_ESCAPE_MS.store(WAIT_ON_ESCAPE_DEFAULT, Ordering::Relaxed);
return;
};
let fish_escape_delay_ms = fish_escape_delay_ms.as_string();
match fish_wcstol(&fish_escape_delay_ms) {
Ok(val) if (10..5000).contains(&val) => {
WAIT_ON_ESCAPE_MS.store(val.try_into().unwrap(), Ordering::Relaxed);
}
_ => {
eprintln!(
concat!(
"ignoring fish_escape_delay_ms: value '{}' ",
"is not an integer or is < 10 or >= 5000 ms"
),
fish_escape_delay_ms
)
}
}
}
// Update the wait_on_sequence_key_ms value in response to the fish_sequence_key_delay_ms user
// variable being set.
pub fn update_wait_on_sequence_key_ms(vars: &EnvStack) {
let sequence_key_time_ms = vars.get_unless_empty(L!("fish_sequence_key_delay_ms"));
let Some(sequence_key_time_ms) = sequence_key_time_ms else {
WAIT_ON_SEQUENCE_KEY_MS.store(WAIT_ON_SEQUENCE_KEY_INFINITE, Ordering::Relaxed);
return;
};
let sequence_key_time_ms = sequence_key_time_ms.as_string();
match fish_wcstol(&sequence_key_time_ms) {
Ok(val) if (10..5000).contains(&val) => {
WAIT_ON_SEQUENCE_KEY_MS.store(val.try_into().unwrap(), Ordering::Relaxed);
}
_ => {
eprintln!(
concat!(
"ignoring fish_sequence_key_delay_ms: value '{}' ",
"is not an integer or is < 10 or >= 5000 ms"
),
sequence_key_time_ms
)
}
}
}
static TERMINAL_PROTOCOLS: MainThread<RefCell<Option<TerminalProtocols>>> =
MainThread::new(RefCell::new(None));
pub(crate) static IS_TMUX: RelaxedAtomicBool = RelaxedAtomicBool::new(false);
pub(crate) fn terminal_protocols_enable_ifn() {
let mut term_protocols = TERMINAL_PROTOCOLS.get().borrow_mut();
if term_protocols.is_some() {
return;
}
*term_protocols = Some(TerminalProtocols::new());
}
pub(crate) fn terminal_protocols_disable_ifn() {
TERMINAL_PROTOCOLS.get().replace(None);
}
pub(crate) fn terminal_protocols_try_disable_ifn() {
if let Ok(mut term_protocols) = TERMINAL_PROTOCOLS.get().try_borrow_mut() {
*term_protocols = None;
}
}
struct TerminalProtocols {}
impl TerminalProtocols {
fn new() -> Self {
let sequences = concat!(
"\x1b[?2004h", // Bracketed paste
"\x1b[>4;1m", // XTerm's modifyOtherKeys
"\x1b[>5u", // CSI u with kitty progressive enhancement
"\x1b=", // set application keypad mode, so the keypad keys send unique codes
);
FLOG!(
term_protocols,
format!(
"Enabling extended keys and bracketed paste: {:?}",
sequences
)
);
let _ = write_to_fd(sequences.as_bytes(), STDOUT_FILENO);
if IS_TMUX.load() {
let _ = write_to_fd("\x1b[?1004h".as_bytes(), STDOUT_FILENO);
}
reader_current_data().map(|data| data.save_screen_state());
Self {}
}
}
impl Drop for TerminalProtocols {
fn drop(&mut self) {
let sequences = concat!(
"\x1b[?2004l",
"\x1b[>4;0m",
"\x1b[<1u", // Konsole breaks unless we pass an explicit number of entries to pop.
"\x1b>",
);
FLOG!(
term_protocols,
format!(
"Disabling extended keys and bracketed paste: {:?}",
sequences
)
);
let _ = write_to_fd(sequences.as_bytes(), STDOUT_FILENO);
if IS_TMUX.load() {
let _ = write_to_fd("\x1b[?1004l".as_bytes(), STDOUT_FILENO);
}
reader_current_data().map(|data| data.save_screen_state());
}
}
fn parse_mask(mask: u32) -> Modifiers {
Modifiers {
ctrl: (mask & 4) != 0,
alt: (mask & 2) != 0,
shift: (mask & 1) != 0,
}
}
/// A trait which knows how to produce a stream of input events.
/// Note this is conceptually a "base class" with override points.
pub trait InputEventQueuer {
/// Return the next event in the queue, or none if the queue is empty.
fn try_pop(&mut self) -> Option<CharEvent> {
self.get_queue_mut().pop_front()
}
/// Function used by input_readch to read bytes from stdin until enough bytes have been read to
/// convert them to a wchar_t. Conversion is done using mbrtowc. If a character has previously
/// been read and then 'unread' using \c input_common_unreadch, that character is returned.
fn readch(&mut self) -> CharEvent {
loop {
// Do we have something enqueued already?
// Note this may be initially true, or it may become true through calls to
// iothread_service_main() or env_universal_barrier() below.
if let Some(mevt) = self.try_pop() {
return mevt;
}
// We are going to block; but first allow any override to inject events.
self.prepare_to_select();
if let Some(mevt) = self.try_pop() {
return mevt;
}
let rr = readb(self.get_in_fd(), /*blocking=*/ true);
match rr {
ReadbResult::Eof => {
return CharEvent::Eof;
}
ReadbResult::Interrupted => {
self.select_interrupted();
}
ReadbResult::UvarNotified => {
self.uvar_change_notified();
}
ReadbResult::IOPortNotified => {
iothread_service_main(reader_current_data().unwrap());
}
ReadbResult::Byte(read_byte) => {
let mut have_escape_prefix = false;
let mut buffer = vec![read_byte];
let key_with_escape = if read_byte == 0x1b {
self.parse_escape_sequence(&mut buffer, &mut have_escape_prefix)
} else {
canonicalize_control_char(read_byte)
};
if self.paste_is_buffering() {
if read_byte != 0x1b {
self.paste_push_char(read_byte);
}
continue;
}
let mut seq = WString::new();
let mut key = key_with_escape;
if key == Some(Key::from_raw(key::Invalid)) {
continue;
}
let mut consumed = 0;
let mut state = zero_mbstate();
let mut i = 0;
let ok = loop {
if i == buffer.len() {
buffer.push(match readb(self.get_in_fd(), /*blocking=*/ true) {
ReadbResult::Byte(b) => b,
_ => 0,
});
}
match self.parse_codepoint(
&mut state,
&mut key,
&mut seq,
&buffer,
i,
&mut consumed,
&mut have_escape_prefix,
) {
ControlFlow::Continue(codepoint_complete) => {
if codepoint_complete && i + 1 == buffer.len() {
break true;
}
}
ControlFlow::Break(()) => {
break false;
}
}
i += 1;
};
if !ok {
continue;
}
return if let Some(key) = key {
CharEvent::from_key_seq(key, seq)
} else {
self.insert_front(seq.chars().skip(1).map(CharEvent::from_char));
let Some(c) = seq.chars().next() else {
continue;
};
CharEvent::from_key_seq(Key::from_raw(c), seq)
};
}
ReadbResult::NothingToRead => unreachable!(),
}
}
}
fn try_readb(&mut self, buffer: &mut Vec<u8>) -> Option<u8> {
let ReadbResult::Byte(next) = readb(self.get_in_fd(), /*blocking=*/ false) else {
return None;
};
buffer.push(next);
Some(next)
}
fn parse_escape_sequence(
&mut self,
buffer: &mut Vec<u8>,
have_escape_prefix: &mut bool,
) -> Option<Key> {
let Some(next) = self.try_readb(buffer) else {
if !self.paste_is_buffering() {
return Some(Key::from_raw(key::Escape));
}
return None;
};
if next == b'[' {
// potential CSI
return Some(self.parse_csi(buffer).unwrap_or(alt('[')));
}
if next == b'O' {
// potential SS3
return Some(self.parse_ss3(buffer).unwrap_or(alt('O')));
}
match canonicalize_control_char(next) {
Some(mut key) => {
key.modifiers.alt = true;
Some(key)
}
None => {
*have_escape_prefix = true;
None
}
}
}
fn parse_codepoint(
&mut self,
state: &mut mbstate_t,
out_key: &mut Option<Key>,
out_seq: &mut WString,
buffer: &[u8],
i: usize,
consumed: &mut usize,
have_escape_prefix: &mut bool,
) -> ControlFlow<(), bool> {
let mut res: char = '\0';
let read_byte = buffer[i];
if crate::libc::MB_CUR_MAX() == 1 {
// single-byte locale, all values are legal
// FIXME: this looks wrong, this falsely assumes that
// the single-byte locale is compatible with Unicode upper-ASCII.
res = read_byte.into();
out_seq.push(res);
return ControlFlow::Continue(true);
}
let mut codepoint = u32::from(res);
let sz = unsafe {
mbrtowc(
std::ptr::addr_of_mut!(codepoint).cast(),
std::ptr::addr_of!(read_byte).cast(),
1,
state,
)
} as isize;
match sz {
-1 => {
FLOG!(reader, "Illegal input");
*consumed += 1;
self.push_front(CharEvent::from_check_exit());
return ControlFlow::Break(());
}
-2 => {
// Sequence not yet complete.
return ControlFlow::Continue(false);
}
0 => {
// Actual nul char.
*consumed += 1;
out_seq.push('\0');
return ControlFlow::Continue(true);
}
_ => (),
}
if let Some(res) = char::from_u32(codepoint) {
// Sequence complete.
if !fish_reserved_codepoint(res) {
if *have_escape_prefix && i != 0 {
*have_escape_prefix = false;
*out_key = Some(alt(res));
}
*consumed += 1;
out_seq.push(res);
return ControlFlow::Continue(true);
}
}
for &b in &buffer[*consumed..i] {
out_seq.push(encode_byte_to_char(b));
*consumed += 1;
}
ControlFlow::Continue(true)
}
fn parse_csi(&mut self, buffer: &mut Vec<u8>) -> Option<Key> {
let mut next_char = |zelf: &mut Self| zelf.try_readb(buffer).unwrap_or(0xff);
let mut params = [[0_u32; 16]; 4];
let mut c = next_char(self);
let private_mode;
if matches!(c, b'?' | b'<' | b'=' | b'>') {
// private mode
private_mode = Some(c);
c = next_char(self);
} else {
private_mode = None;
}
let mut count = 0;
let mut subcount = 0;
while count < 16 && c >= 0x30 && c <= 0x3f {
if c.is_ascii_digit() {
params[count][subcount] = params[count][subcount] * 10 + u32::from(c - b'0');
} else if c == b':' && subcount < 3 {
subcount += 1;
} else if c == b';' {
count += 1;
subcount = 0;
} else {
return None;
}
c = next_char(self);
}
if c != b'$' && !(0x40..=0x7e).contains(&c) {
return None;
}
let masked_key = |mut codepoint, shifted_codepoint| {
let mask = params[1][0].saturating_sub(1);
let mut modifiers = parse_mask(mask);
if let Some(shifted_codepoint) = shifted_codepoint {
if shifted_codepoint != '\0' && modifiers.shift {
modifiers.shift = false;
codepoint = shifted_codepoint;
}
}
Key {
modifiers,
codepoint,
}
};
let key = match c {
b'$' => {
if private_mode == Some(b'?') && next_char(self) == b'y' {
// DECRPM
return None;
}
match params[0][0] {
23 | 24 => shift(
char::from_u32(u32::from(function_key(11)) + params[0][0] - 23).unwrap(), // rxvt style
),
_ => return None,
}
}
b'A' | b'a' => masked_key(key::Up, None),
b'B' | b'b' => masked_key(key::Down, None),
b'C' | b'c' => masked_key(key::Right, None),
b'D' | b'd' => masked_key(key::Left, None),
b'E' => masked_key('5', None), // Numeric keypad
b'F' => masked_key(key::End, None), // PC/xterm style
b'H' => masked_key(key::Home, None), // PC/xterm style
b'M' | b'm' => {
self.disable_mouse_tracking();
let sgr = private_mode == Some(b'<');
if !sgr && c == b'm' {
return None;
}
// Extended (SGR/1006) mouse reporting mode, with semicolon-separated parameters
// for button code, Px, and Py, ending with 'M' for button press or 'm' for
// button release.
if sgr {
return None;
}
// Generic X10 or modified VT200 sequence. It doesn't matter which, they're both 6
// chars (although in mode 1005, the characters may be unicode and not necessarily
// just one byte long) reporting the button that was clicked and its location.
let _ = next_char(self);
let _ = next_char(self);
let _ = next_char(self);
return None;
}
b't' => {
self.disable_mouse_tracking();
// VT200 button released in mouse highlighting mode at valid text location. 5 chars.
let _ = next_char(self);
let _ = next_char(self);
return None;
}
b'T' => {
self.disable_mouse_tracking();
// VT200 button released in mouse highlighting mode past end-of-line. 9 characters.
for _ in 0..7 {
let _ = next_char(self);
}
return None;
}
b'P' => masked_key(function_key(1), None),
b'Q' => masked_key(function_key(2), None),
b'R' => masked_key(function_key(3), None),
b'S' => masked_key(function_key(4), None),
b'~' => match params[0][0] {
1 => masked_key(key::Home, None), // VT220/tmux style
2 => masked_key(key::Insert, None),
3 => masked_key(key::Delete, None),
4 => masked_key(key::End, None), // VT220/tmux style
5 => masked_key(key::PageUp, None),
6 => masked_key(key::PageDown, None),
7 => masked_key(key::Home, None), // rxvt style
8 => masked_key(key::End, None), // rxvt style
11..=15 => masked_key(
char::from_u32(u32::from(function_key(1)) + params[0][0] - 11).unwrap(),
None,
),
17..=21 => masked_key(
char::from_u32(u32::from(function_key(6)) + params[0][0] - 17).unwrap(),
None,
),
23 | 24 => masked_key(
char::from_u32(u32::from(function_key(11)) + params[0][0] - 23).unwrap(),
None,
),
25 | 26 => {
shift(char::from_u32(u32::from(function_key(3)) + params[0][0] - 25).unwrap())
} // rxvt style
28 | 29 => {
shift(char::from_u32(u32::from(function_key(5)) + params[0][0] - 28).unwrap())
} // rxvt style
31 | 32 => {
shift(char::from_u32(u32::from(function_key(7)) + params[0][0] - 31).unwrap())
} // rxvt style
33 | 34 => {
shift(char::from_u32(u32::from(function_key(9)) + params[0][0] - 33).unwrap())
} // rxvt style
200 => {
self.paste_start_buffering();
return Some(Key::from_raw(key::Invalid));
}
201 => {
self.paste_commit();
return Some(Key::from_raw(key::Invalid));
}
_ => return None,
},
b'u' => {
// Treat numpad keys the same as their non-numpad counterparts. Could add a numpad modifier here.
let key = match params[0][0] {
57399 => '0',
57400 => '1',
57401 => '2',
57402 => '3',
57403 => '4',
57404 => '5',
57405 => '6',
57406 => '7',
57407 => '8',
57408 => '9',
57409 => '.',
57410 => '/',
57411 => '*',
57412 => '-',
57413 => '+',
57414 => key::Enter,
57415 => '=',
57417 => key::Left,
57418 => key::Right,
57419 => key::Up,
57420 => key::Down,
57421 => key::PageUp,
57422 => key::PageDown,
57423 => key::Home,
57424 => key::End,
57425 => key::Insert,
57426 => key::Delete,
cp => canonicalize_keyed_control_char(char::from_u32(cp).unwrap()),
};
masked_key(
key,
Some(canonicalize_keyed_control_char(
char::from_u32(params[0][1]).unwrap(),
)),
)
}
b'Z' => shift(key::Tab),
b'I' => {
self.push_front(CharEvent::from_readline(ReadlineCmd::FocusIn));
return Some(Key::from_raw(key::Invalid));
}
b'O' => {
self.push_front(CharEvent::from_readline(ReadlineCmd::FocusOut));
return Some(Key::from_raw(key::Invalid));
}
_ => return None,
};
Some(key)
}
fn disable_mouse_tracking(&mut self) {
// fish recognizes but does not actually support mouse reporting. We never turn it on, and
// it's only ever enabled if a program we spawned enabled it and crashed or forgot to turn
// it off before exiting. We turn it off here to avoid wasting resources.
//
// Since this is only called when we detect an incoming mouse reporting payload, we know the
// terminal emulator supports mouse reporting, so no terminfo checks.
FLOG!(reader, "Disabling mouse tracking");
// We shouldn't directly manipulate stdout from here, so we ask the reader to do it.
// writembs(outputter_t::stdoutput(), "\x1B[?1000l");
self.push_front(CharEvent::from_readline(ReadlineCmd::DisableMouseTracking));
}
fn parse_ss3(&mut self, buffer: &mut Vec<u8>) -> Option<Key> {
let mut raw_mask = 0;
let mut code = b'0';
loop {
raw_mask = raw_mask * 10 + u32::from(code - b'0');
code = self.try_readb(buffer).unwrap_or(0xff);
if !(b'0'..=b'9').contains(&code) {
break;
}
}
let modifiers = parse_mask(raw_mask.saturating_sub(1));
#[rustfmt::skip]
let key = match code {
b' ' => Key{modifiers, codepoint: key::Space},
b'A' | b'a' => Key{modifiers, codepoint: key::Up},
b'B' | b'b' => Key{modifiers, codepoint: key::Down},
b'C' | b'c' => Key{modifiers, codepoint: key::Right},
b'D' | b'd' => Key{modifiers, codepoint: key::Left},
b'F' => Key{modifiers, codepoint: key::End},
b'H' => Key{modifiers, codepoint: key::Home},
b'I' => Key{modifiers, codepoint: key::Tab},
b'M' => Key{modifiers, codepoint: key::Enter},
b'P' => Key{modifiers, codepoint: function_key(1)},
b'Q' => Key{modifiers, codepoint: function_key(2)},
b'R' => Key{modifiers, codepoint: function_key(3)},
b'S' => Key{modifiers, codepoint: function_key(4)},
b'X' => Key{modifiers, codepoint: '='},
b'j' => Key{modifiers, codepoint: '*'},
b'k' => Key{modifiers, codepoint: '+'},
b'l' => Key{modifiers, codepoint: ','},
b'm' => Key{modifiers, codepoint: '-'},
b'n' => Key{modifiers, codepoint: '.'},
b'o' => Key{modifiers, codepoint: '/'},
b'p' => Key{modifiers, codepoint: '0'},
b'q' => Key{modifiers, codepoint: '1'},
b'r' => Key{modifiers, codepoint: '2'},
b's' => Key{modifiers, codepoint: '3'},
b't' => Key{modifiers, codepoint: '4'},
b'u' => Key{modifiers, codepoint: '5'},
b'v' => Key{modifiers, codepoint: '6'},
b'w' => Key{modifiers, codepoint: '7'},
b'x' => Key{modifiers, codepoint: '8'},
b'y' => Key{modifiers, codepoint: '9'},
_ => return None,
};
Some(key)
}
fn readch_timed_esc(&mut self) -> Option<CharEvent> {
self.readch_timed(WAIT_ON_ESCAPE_MS.load(Ordering::Relaxed))
}
fn readch_timed_sequence_key(&mut self) -> Option<CharEvent> {
let wait_on_sequence_key_ms = WAIT_ON_SEQUENCE_KEY_MS.load(Ordering::Relaxed);
if wait_on_sequence_key_ms == WAIT_ON_SEQUENCE_KEY_INFINITE {
return Some(self.readch());
}
self.readch_timed(wait_on_sequence_key_ms)
}
/// Like readch(), except it will wait at most wait_time_ms milliseconds for a
/// character to be available for reading.
/// Return None on timeout, the event on success.
fn readch_timed(&mut self, wait_time_ms: usize) -> Option<CharEvent> {
if let Some(evt) = self.try_pop() {
return Some(evt);
}
terminal_protocols_enable_ifn();
// We are not prepared to handle a signal immediately; we only want to know if we get input on
// our fd before the timeout. Use pselect to block all signals; we will handle signals
// before the next call to readch().
let mut sigs: libc::sigset_t = unsafe { std::mem::zeroed() };
unsafe { libc::sigfillset(&mut sigs) };
// pselect expects timeouts in nanoseconds.
const NSEC_PER_MSEC: u64 = 1000 * 1000;
const NSEC_PER_SEC: u64 = NSEC_PER_MSEC * 1000;
let wait_nsec: u64 = (wait_time_ms as u64) * NSEC_PER_MSEC;
let timeout = libc::timespec {
tv_sec: (wait_nsec / NSEC_PER_SEC).try_into().unwrap(),
tv_nsec: (wait_nsec % NSEC_PER_SEC).try_into().unwrap(),
};
// We have one fd of interest.
let mut fdset: libc::fd_set = unsafe { std::mem::zeroed() };
let in_fd = self.get_in_fd();
unsafe {
libc::FD_ZERO(&mut fdset);
libc::FD_SET(in_fd, &mut fdset);
};
let res = unsafe {
libc::pselect(
in_fd + 1,
&mut fdset,
ptr::null_mut(),
ptr::null_mut(),
&timeout,
&sigs,
)
};
// Prevent signal starvation on WSL causing the `torn_escapes.py` test to fail
if is_windows_subsystem_for_linux(WSL::V1) {
// Merely querying the current thread's sigmask is sufficient to deliver a pending signal
let _ = unsafe { libc::pthread_sigmask(0, ptr::null(), &mut sigs) };
}
if res > 0 {
return Some(self.readch());
}
None
}
/// Return our queue. These are "abstract" methods to be implemented by concrete types.
fn get_queue(&self) -> &VecDeque<CharEvent>;
fn get_queue_mut(&mut self) -> &mut VecDeque<CharEvent>;
/// Return the fd corresponding to stdin.
fn get_in_fd(&self) -> RawFd;
// Support for "bracketed paste"
// The way it works is that we acknowledge our support by printing
// \e\[?2004h
// then the terminal will "bracket" every paste in
// \e\[200~ and \e\[201~
// Every character in between those two will be part of the paste and should not cause a binding to execute (like \n executing commands).
//
// We enable it after every command and disable it before, see the terminal protocols logic.
//
// Support for this seems to be ubiquitous - emacs enables it unconditionally (!) since 25.1
// (though it only supports it since then, it seems to be the last term to gain support).
//
// See http://thejh.net/misc/website-terminal-copy-paste.
fn paste_start_buffering(&mut self);
fn paste_is_buffering(&self) -> bool;
fn paste_push_char(&mut self, _b: u8) {}
fn paste_commit(&mut self);
/// Enqueue a character or a readline function to the queue of unread characters that
/// readch will return before actually reading from fd 0.
fn push_back(&mut self, ch: CharEvent) {
self.get_queue_mut().push_back(ch);
}
/// Add a character or a readline function to the front of the queue of unread characters. This
/// will be the next character returned by readch.
fn push_front(&mut self, ch: CharEvent) {
self.get_queue_mut().push_front(ch);
}
/// Find the first sequence of non-char events, and promote them to the front.
fn promote_interruptions_to_front(&mut self) {
// Find the first sequence of non-char events.
// EOF is considered a char: we don't want to pull EOF in front of real chars.
let queue = self.get_queue_mut();
let is_char = |evt: &CharEvent| evt.is_char() || evt.is_eof();
// Find the index of the first non-char event.
// If there's none, we're done.
let Some(first): Option<usize> = queue.iter().position(|e| !is_char(e)) else {
return;
};
let last = queue
.range(first..)
.position(is_char)
.map_or(queue.len(), |x| x + first);
// Move the non-char events to the front, retaining their order.
let elems: Vec<CharEvent> = queue.drain(first..last).collect();
for elem in elems.into_iter().rev() {
queue.push_front(elem);
}
}
/// Add multiple readline events to the front of the queue of unread characters.
/// The order of the provided events is not changed, i.e. they are not inserted in reverse
/// order. That is, the first element in evts will be the first element returned.
fn insert_front<I>(&mut self, evts: I)
where
I: IntoIterator<Item = CharEvent>,
I::IntoIter: DoubleEndedIterator,
{
let queue = self.get_queue_mut();
let iter = evts.into_iter().rev();
queue.reserve(iter.size_hint().0);
for evt in iter {
queue.push_front(evt);
}
}
/// Forget all enqueued readline events in the front of the queue.
fn drop_leading_readline_events(&mut self) {
let queue = self.get_queue_mut();
while let Some(evt) = queue.front() {
if evt.is_readline_or_command() {
queue.pop_front();
} else {
break;
}
}
}
/// Override point for when we are about to (potentially) block in select(). The default does
/// nothing.
fn prepare_to_select(&mut self) {}
/// Called when select() is interrupted by a signal.
fn select_interrupted(&mut self);
/// Override point for when when select() is interrupted by the universal variable notifier.
/// The default does nothing.
fn uvar_change_notified(&mut self) {}
/// Return if we have any lookahead.
fn has_lookahead(&self) -> bool {
!self.get_queue().is_empty()
}
}
/// A simple, concrete implementation of InputEventQueuer.
pub struct InputEventQueue {
queue: VecDeque<CharEvent>,
in_fd: RawFd,
is_in_bracketed_paste: bool,
}
impl InputEventQueue {
pub fn new(in_fd: RawFd) -> InputEventQueue {
InputEventQueue {
queue: VecDeque::new(),
in_fd,
is_in_bracketed_paste: false,
}
}
}
impl InputEventQueuer for InputEventQueue {
fn get_queue(&self) -> &VecDeque<CharEvent> {
&self.queue
}
fn get_queue_mut(&mut self) -> &mut VecDeque<CharEvent> {
&mut self.queue
}
fn get_in_fd(&self) -> RawFd {
self.in_fd
}
fn select_interrupted(&mut self) {
if reader_test_and_clear_interrupted() != 0 {
let vintr = shell_modes().c_cc[libc::VINTR];
if vintr != 0 {
self.push_front(CharEvent::from_key(Key::from_single_byte(vintr)));
}
}
}
fn paste_start_buffering(&mut self) {
self.is_in_bracketed_paste = true;
}
fn paste_is_buffering(&self) -> bool {
self.is_in_bracketed_paste
}
fn paste_commit(&mut self) {
self.is_in_bracketed_paste = false;
}
}