fish-shell/src/event.cpp
2020-01-19 14:54:53 +01:00

465 lines
16 KiB
C++

// Functions for handling event triggers.
#include "config.h" // IWYU pragma: keep
#include "event.h"
#include <signal.h>
#include <stddef.h>
#include <unistd.h>
#include <algorithm>
#include <atomic>
#include <functional>
#include <memory>
#include <string>
#include <type_traits>
#include "common.h"
#include "fallback.h" // IWYU pragma: keep
#include "input_common.h"
#include "io.h"
#include "parser.h"
#include "proc.h"
#include "signal.h"
#include "wutil.h" // IWYU pragma: keep
class pending_signals_t {
static constexpr size_t SIGNAL_COUNT = NSIG;
/// A counter that is incremented each time a pending signal is received.
std::atomic<uint32_t> counter_{0};
/// List of pending signals.
std::array<std::atomic<bool>, SIGNAL_COUNT> received_{};
/// The last counter visible in acquire_pending().
/// This is not accessed from a signal handler.
owning_lock<uint32_t> last_counter_{0};
public:
pending_signals_t() = default;
/// No copying.
pending_signals_t(const pending_signals_t &);
void operator=(const pending_signals_t &);
/// Mark a signal as pending. This may be called from a signal handler.
/// We expect only one signal handler to execute at once.
/// Also note that these may be coalesced.
void mark(int which) {
if (which >= 0 && static_cast<size_t>(which) < received_.size()) {
// Must mark our received first, then pending.
received_[which].store(true, std::memory_order_relaxed);
uint32_t count = counter_.load(std::memory_order_relaxed);
counter_.store(1 + count, std::memory_order_release);
}
}
/// \return the list of signals that were set, clearing them.
std::bitset<SIGNAL_COUNT> acquire_pending() {
auto current = last_counter_.acquire();
// Check the counter first. If it hasn't changed, no signals have been received.
uint32_t count = counter_.load(std::memory_order_acquire);
if (count == *current) {
return {};
}
// The signal count has changed. Store the new counter and fetch all the signals that are
// set.
*current = count;
std::bitset<SIGNAL_COUNT> result{};
uint32_t bit = 0;
for (auto &signal : received_) {
bool val = signal.load(std::memory_order_relaxed);
if (val) {
result.set(bit);
signal.store(false, std::memory_order_relaxed);
}
bit++;
}
return result;
}
};
static pending_signals_t s_pending_signals;
/// List of event handlers.
static owning_lock<event_handler_list_t> s_event_handlers;
/// Variables (one per signal) set when a signal is observed. This is inspected by a signal handler.
static volatile sig_atomic_t s_observed_signals[NSIG] = {};
static void set_signal_observed(int sig, bool val) {
if (sig >= 0 &&
static_cast<size_t>(sig) < sizeof s_observed_signals / sizeof *s_observed_signals) {
s_observed_signals[sig] = val;
}
}
/// Tests if one event instance matches the definition of a event class.
static bool handler_matches(const event_handler_t &classv, const event_t &instance) {
if (classv.desc.type == event_type_t::any) return true;
if (classv.desc.type != instance.desc.type) return false;
switch (classv.desc.type) {
case event_type_t::signal: {
return classv.desc.param1.signal == instance.desc.param1.signal;
}
case event_type_t::variable: {
return instance.desc.str_param1 == classv.desc.str_param1;
}
case event_type_t::exit: {
if (classv.desc.param1.pid == EVENT_ANY_PID) return true;
return classv.desc.param1.pid == instance.desc.param1.pid;
}
case event_type_t::job_exit: {
return classv.desc.param1.job_id == instance.desc.param1.job_id;
}
case event_type_t::generic: {
return classv.desc.str_param1 == instance.desc.str_param1;
}
case event_type_t::any:
default: {
DIE("unexpected classv.type");
return false;
}
}
}
/// Test if specified event is blocked.
static int event_is_blocked(parser_t &parser, const event_t &e) {
(void)e;
const block_t *block;
size_t idx = 0;
while ((block = parser.block_at_index(idx++))) {
if (event_block_list_blocks_type(block->event_blocks)) return true;
}
return event_block_list_blocks_type(parser.global_event_blocks);
}
wcstring event_get_desc(const event_t &evt) {
const event_description_t &ed = evt.desc;
switch (ed.type) {
case event_type_t::signal: {
return format_string(_(L"signal handler for %ls (%ls)"), sig2wcs(ed.param1.signal),
signal_get_desc(ed.param1.signal));
}
case event_type_t::variable: {
return format_string(_(L"handler for variable '%ls'"), ed.str_param1.c_str());
}
case event_type_t::exit: {
if (ed.param1.pid > 0) {
return format_string(_(L"exit handler for process %d"), ed.param1.pid);
} else {
// In events, PGIDs are stored as negative PIDs
job_t *j = job_t::from_pid(-ed.param1.pid);
if (j) {
return format_string(_(L"exit handler for job %d, '%ls'"), j->job_id(),
j->command_wcstr());
} else {
return format_string(_(L"exit handler for job with process group %d"),
-ed.param1.pid);
}
}
DIE("Unreachable");
}
case event_type_t::job_exit: {
job_t *j = job_t::from_job_id(ed.param1.job_id);
if (j) {
return format_string(_(L"exit handler for job %d, '%ls'"), j->job_id(),
j->command_wcstr());
} else {
return format_string(_(L"exit handler for job with job id %d"), ed.param1.job_id);
}
break;
}
case event_type_t::generic: {
return format_string(_(L"handler for generic event '%ls'"), ed.str_param1.c_str());
}
case event_type_t::any: {
DIE("Unreachable");
}
default:
DIE("Unknown event type");
}
}
#if 0
static void show_all_handlers(void) {
std::fwprintf(stdout, L"event handlers:\n");
for (const auto& event : events) {
auto foo = event;
wcstring tmp = event_get_desc(foo);
std::fwprintf(stdout, L" handler now %ls\n", tmp.c_str());
}
}
#endif
void event_add_handler(std::shared_ptr<event_handler_t> eh) {
if (eh->desc.type == event_type_t::signal) {
signal_handle(eh->desc.param1.signal);
set_signal_observed(eh->desc.param1.signal, true);
}
s_event_handlers.acquire()->push_back(std::move(eh));
}
void event_remove_function_handlers(const wcstring &name) {
auto handlers = s_event_handlers.acquire();
auto begin = handlers->begin(), end = handlers->end();
handlers->erase(std::remove_if(begin, end,
[&](const shared_ptr<event_handler_t> &eh) {
return eh->function_name == name;
}),
end);
}
event_handler_list_t event_get_function_handlers(const wcstring &name) {
auto handlers = s_event_handlers.acquire();
event_handler_list_t result;
for (const shared_ptr<event_handler_t> &eh : *handlers) {
if (eh->function_name == name) {
result.push_back(eh);
}
}
return result;
}
bool event_is_signal_observed(int sig) {
// We are in a signal handler! Don't allocate memory, etc.
bool result = false;
if (sig >= 0 && static_cast<unsigned long>(sig) <
sizeof(s_observed_signals) / sizeof(*s_observed_signals)) {
result = s_observed_signals[sig];
}
return result;
}
/// Perform the specified event. Since almost all event firings will not be matched by even a single
/// event handler, we make sure to optimize the 'no matches' path. This means that nothing is
/// allocated/initialized unless needed.
static void event_fire_internal(parser_t &parser, const event_t &event) {
auto &ld = parser.libdata();
assert(ld.is_event >= 0 && "is_event should not be negative");
scoped_push<decltype(ld.is_event)> inc_event{&ld.is_event, ld.is_event + 1};
// Suppress fish_trace during events.
scoped_push<bool> suppress_trace{&ld.suppress_fish_trace, true};
// Capture the event handlers that match this event.
event_handler_list_t fire;
for (const auto &handler : *s_event_handlers.acquire()) {
// Check if this event is a match.
if (handler_matches(*handler, event)) {
fire.push_back(handler);
}
}
// Iterate over our list of matching events. Fire the ones that are still present.
for (const shared_ptr<event_handler_t> &handler : fire) {
// Only fire if this event is still present.
// TODO: this is kind of crazy. We want to support removing (and thereby suppressing) an
// event handler from another, but we also don't want to hold the lock across callouts. How
// can we make this less silly?
if (!contains(*s_event_handlers.acquire(), handler)) {
continue;
}
// Construct a buffer to evaluate, starting with the function name and then all the
// arguments.
wcstring buffer = handler->function_name;
for (const wcstring &arg : event.arguments) {
buffer.push_back(L' ');
buffer.append(escape_string(arg, ESCAPE_ALL));
}
// Event handlers are not part of the main flow of code, so they are marked as
// non-interactive.
scoped_push<bool> interactive{&ld.is_interactive, false};
auto prev_statuses = parser.get_last_statuses();
block_t *b = parser.push_block(block_t::event_block(event));
parser.eval(buffer, io_chain_t());
parser.pop_block(b);
parser.set_last_statuses(std::move(prev_statuses));
}
}
/// Handle all pending signal events.
void event_fire_delayed(parser_t &parser) {
auto &ld = parser.libdata();
// Do not invoke new event handlers from within event handlers.
if (ld.is_event) return;
std::vector<shared_ptr<event_t>> to_send;
to_send.swap(ld.blocked_events);
assert(ld.blocked_events.empty());
// Append all signal events to to_send.
auto signals = s_pending_signals.acquire_pending();
if (signals.any()) {
for (uint32_t sig = 0; sig < signals.size(); sig++) {
if (signals.test(sig)) {
auto e = std::make_shared<event_t>(event_type_t::signal);
e->desc.param1.signal = sig;
e->arguments.push_back(sig2wcs(sig));
to_send.push_back(std::move(e));
}
}
}
// Fire or re-block all events.
for (const auto &evt : to_send) {
if (event_is_blocked(parser, *evt)) {
ld.blocked_events.push_back(evt);
} else {
event_fire_internal(parser, *evt);
}
}
}
void event_enqueue_signal(int signal) {
// Beware, we are in a signal handler
s_pending_signals.mark(signal);
}
void event_fire(parser_t &parser, const event_t &event) {
// Fire events triggered by signals.
event_fire_delayed(parser);
if (event_is_blocked(parser, event)) {
parser.libdata().blocked_events.push_back(std::make_shared<event_t>(event));
} else {
event_fire_internal(parser, event);
}
}
/// Mapping between event type to name.
/// Note we don't bother to sort this.
struct event_type_name_t {
event_type_t type;
const wchar_t *name;
};
static const event_type_name_t events_mapping[] = {{event_type_t::signal, L"signal"},
{event_type_t::variable, L"variable"},
{event_type_t::exit, L"exit"},
{event_type_t::job_exit, L"job-id"},
{event_type_t::generic, L"generic"}};
maybe_t<event_type_t> event_type_for_name(const wcstring &name) {
for (const auto &em : events_mapping) {
if (name == em.name) {
return em.type;
}
}
return none();
}
static const wchar_t *event_name_for_type(event_type_t type) {
for (const auto &em : events_mapping) {
if (type == em.type) {
return em.name;
}
}
return L"";
}
void event_print(io_streams_t &streams, maybe_t<event_type_t> type_filter) {
event_handler_list_t tmp = *s_event_handlers.acquire();
std::sort(tmp.begin(), tmp.end(),
[](const shared_ptr<event_handler_t> &e1, const shared_ptr<event_handler_t> &e2) {
const event_description_t &d1 = e1->desc;
const event_description_t &d2 = e2->desc;
if (d1.type != d2.type) {
return d1.type < d2.type;
}
switch (d1.type) {
case event_type_t::signal:
return d1.signal < d2.signal;
case event_type_t::exit:
return d1.param1.pid < d2.param1.pid;
case event_type_t::job_exit:
return d1.param1.job_id < d2.param1.job_id;
case event_type_t::variable:
case event_type_t::any:
case event_type_t::generic:
return d1.str_param1 < d2.str_param1;
}
DIE("Unreachable");
});
maybe_t<event_type_t> last_type{};
for (const shared_ptr<event_handler_t> &evt : tmp) {
// If we have a filter, skip events that don't match.
if (type_filter && *type_filter != evt->desc.type) {
continue;
}
if (!last_type || *last_type != evt->desc.type) {
if (last_type) streams.out.append(L"\n");
last_type = static_cast<event_type_t>(evt->desc.type);
streams.out.append_format(L"Event %ls\n", event_name_for_type(*last_type));
}
switch (evt->desc.type) {
case event_type_t::signal:
streams.out.append_format(L"%ls %ls\n", sig2wcs(evt->desc.param1.signal),
evt->function_name.c_str());
break;
case event_type_t::exit:
case event_type_t::job_exit:
streams.out.append_format(L"%d %ls\n", evt->desc.param1,
evt->function_name.c_str());
break;
case event_type_t::variable:
case event_type_t::generic:
streams.out.append_format(L"%ls %ls\n", evt->desc.str_param1.c_str(),
evt->function_name.c_str());
break;
case event_type_t::any:
DIE("Unreachable");
default:
streams.out.append_format(L"%ls\n", evt->function_name.c_str());
break;
}
}
}
void event_fire_generic(parser_t &parser, const wchar_t *name, const wcstring_list_t *args) {
assert(name && "Null name");
event_t ev(event_type_t::generic);
ev.desc.str_param1 = name;
if (args) ev.arguments = *args;
event_fire(parser, ev);
}
event_description_t event_description_t::signal(int sig) {
event_description_t event(event_type_t::signal);
event.param1.signal = sig;
return event;
}
event_description_t event_description_t::variable(wcstring str) {
event_description_t event(event_type_t::variable);
event.str_param1 = std::move(str);
return event;
}
event_description_t event_description_t::generic(wcstring str) {
event_description_t event(event_type_t::generic);
event.str_param1 = std::move(str);
return event;
}
event_t event_t::variable(wcstring name, wcstring_list_t args) {
event_t evt{event_type_t::variable};
evt.desc.str_param1 = std::move(name);
evt.arguments = std::move(args);
return evt;
}