fish-shell/src/proc.h
ridiculousfish 33f3c03dae Allow on-job-exit handlers to be added for any pid in the job
Prior to this change, a function with an on-job-exit event handler must be
added with the pgid of the job. But sometimes the pgid of the job is fish
itself (if job control is disabled) and the previous commit made last_pid
an actual pid from the job, instead of its pgroup.

Switch on-job-exit to accept any pid from the job (except fish itself).
This allows it to be used directly with $last_pid, except that it now
works if job control is off. This is implemented by "resolving" the pid to
the internal job id at the point the event handler is added.

Also switch to passing the last pid of the job, rather than its pgroup.
This aligns better with $last_pid.
2021-05-25 15:28:53 -07:00

562 lines
20 KiB
C++

// Prototypes for utilities for keeping track of jobs, processes and subshells, as well as signal
// handling functions for tracking children. These functions do not themselves launch new processes,
// the exec library will call proc to create representations of the running jobs as needed.
#ifndef FISH_PROC_H
#define FISH_PROC_H
#include "config.h" // IWYU pragma: keep
#include <signal.h>
#include <stddef.h>
#include <sys/time.h> // IWYU pragma: keep
#include <sys/wait.h> // IWYU pragma: keep
#include <unistd.h>
#include <deque>
#include <memory>
#include <vector>
#include "common.h"
#include "event.h"
#include "global_safety.h"
#include "io.h"
#include "parse_tree.h"
#include "topic_monitor.h"
#include "wait_handle.h"
/// Types of processes.
enum class process_type_t {
/// A regular external command.
external,
/// A builtin command.
builtin,
/// A shellscript function.
function,
/// A block of commands, represented as a node.
block_node,
/// The exec builtin.
exec,
};
enum class job_control_t {
all,
interactive,
none,
};
namespace ast {
struct statement_t;
}
class job_group_t;
using job_group_ref_t = std::shared_ptr<job_group_t>;
/// A proc_status_t is a value type that encapsulates logic around exited vs stopped vs signaled,
/// etc.
class proc_status_t {
int status_{};
/// If set, there is no actual status to report, e.g. background or variable assignment.
bool empty_{};
explicit proc_status_t(int status) : status_(status), empty_(false) {}
proc_status_t(int status, bool empty) : status_(status), empty_(empty) {}
/// Encode a return value \p ret and signal \p sig into a status value like waitpid() does.
static constexpr int w_exitcode(int ret, int sig) {
#ifdef W_EXITCODE
return W_EXITCODE(ret, sig);
#else
return ((ret) << 8 | (sig));
#endif
}
public:
proc_status_t() = default;
/// Construct from a status returned from a waitpid call.
static proc_status_t from_waitpid(int status) { return proc_status_t(status); }
/// Construct directly from an exit code.
static proc_status_t from_exit_code(int ret) {
// Some paranoia.
constexpr int zerocode = w_exitcode(0, 0);
static_assert(WIFEXITED(zerocode), "Synthetic exit status not reported as exited");
assert(ret < 256);
return proc_status_t(w_exitcode(ret, 0 /* sig */));
}
/// Construct directly from a signal.
static proc_status_t from_signal(int sig) {
return proc_status_t(w_exitcode(0 /* ret */, sig));
}
/// Construct an empty status_t (e.g. `set foo bar`).
static proc_status_t empty() {
bool empty = true;
return proc_status_t(0, empty);
}
/// \return if we are stopped (as in SIGSTOP).
bool stopped() const { return WIFSTOPPED(status_); }
/// \return if we are continued (as in SIGCONT).
bool continued() const { return WIFCONTINUED(status_); }
/// \return if we exited normally (not a signal).
bool normal_exited() const { return WIFEXITED(status_); }
/// \return if we exited because of a signal.
bool signal_exited() const { return WIFSIGNALED(status_); }
/// \return the signal code, given that we signal exited.
int signal_code() const {
assert(signal_exited() && "Process is not signal exited");
return WTERMSIG(status_);
}
/// \return the exit code, given that we normal exited.
int exit_code() const {
assert(normal_exited() && "Process is not normal exited");
return WEXITSTATUS(status_);
}
/// \return if this status represents success.
bool is_success() const { return normal_exited() && exit_code() == EXIT_SUCCESS; }
/// \return if this status is empty.
bool is_empty() const { return empty_; }
/// \return the value appropriate to populate $status.
int status_value() const {
if (signal_exited()) {
return 128 + signal_code();
} else if (normal_exited()) {
return exit_code();
} else {
DIE("Process is not exited");
}
}
};
/// A structure representing a "process" internal to fish. This is backed by a pthread instead of a
/// separate process.
class internal_proc_t {
/// An identifier for internal processes.
/// This is used for logging purposes only.
const uint64_t internal_proc_id_;
/// Whether the process has exited.
std::atomic<bool> exited_{};
/// If the process has exited, its status code.
std::atomic<proc_status_t> status_{};
public:
/// \return if this process has exited.
bool exited() const { return exited_.load(std::memory_order_acquire); }
/// Mark this process as exited, with the given status.
void mark_exited(proc_status_t status);
proc_status_t get_status() const {
assert(exited() && "Process is not exited");
return status_.load(std::memory_order_relaxed);
}
uint64_t get_id() const { return internal_proc_id_; }
internal_proc_t();
};
/// 0 should not be used; although it is not a valid PGID in userspace,
/// the Linux kernel will use it for kernel processes.
/// -1 should not be used; it is a possible return value of the getpgid()
/// function
enum { INVALID_PID = -2 };
/// A structure representing a single fish process. Contains variables for tracking process state
/// and the process argument list. Actually, a fish process can be either a regular external
/// process, an internal builtin which may or may not spawn a fake IO process during execution, a
/// shellscript function or a block of commands to be evaluated by calling eval. Lastly, this
/// process can be the result of an exec command. The role of this process_t is determined by the
/// type field, which can be one of process_type_t::external, process_type_t::builtin,
/// process_type_t::function, process_type_t::exec.
///
/// The process_t contains information on how the process should be started, such as command name
/// and arguments, as well as runtime information on the status of the actual physical process which
/// represents it. Shellscript functions, builtins and blocks of code may all need to spawn an
/// external process that handles the piping and redirecting of IO for them.
///
/// If the process is of type process_type_t::external or process_type_t::exec, argv is the argument
/// array and actual_cmd is the absolute path of the command to execute.
///
/// If the process is of type process_type_t::builtin, argv is the argument vector, and argv[0] is
/// the name of the builtin command.
///
/// If the process is of type process_type_t::function, argv is the argument vector, and argv[0] is
/// the name of the shellscript function.
class parser_t;
class process_t {
public:
process_t();
/// Note whether we are the first and/or last in the job
bool is_first_in_job{false};
bool is_last_in_job{false};
/// Type of process.
process_type_t type{process_type_t::external};
/// For internal block processes only, the node of the statement.
/// This is always either block, ifs, or switchs, never boolean or decorated.
parsed_source_ref_t block_node_source{};
const ast::statement_t *internal_block_node{};
struct concrete_assignment {
wcstring variable_name;
wcstring_list_t values;
};
/// The expanded variable assignments for this process, as specified by the `a=b cmd` syntax.
std::vector<concrete_assignment> variable_assignments;
/// Sets argv.
void set_argv(wcstring_list_t argv) { argv_ = std::move(argv); }
/// Returns argv.
const wcstring_list_t &argv() { return argv_; }
/// Returns argv[0], or nullptr.
const wchar_t *argv0() const { return argv_.empty() ? nullptr : argv_.front().c_str(); }
/// Redirection list getter and setter.
const redirection_spec_list_t &redirection_specs() const { return proc_redirection_specs_; }
void set_redirection_specs(redirection_spec_list_t specs) {
this->proc_redirection_specs_ = std::move(specs);
}
/// Store the current topic generations. That is, right before the process is launched, record
/// the generations of all topics; then we can tell which generation values have changed after
/// launch. This helps us avoid spurious waitpid calls.
void check_generations_before_launch();
/// Mark that this process was part of a pipeline which was aborted.
/// The process was never successfully launched; give it a status of EXIT_FAILURE.
void mark_aborted_before_launch();
/// \return whether this process type is internal (block, function, or builtin).
bool is_internal() const;
/// \return the wait handle for the process, creating it if \p create is set.
/// This will return nullptr if the process does not have a pid (i.e. is not external).
wait_handle_ref_t get_wait_handle(bool create = true);
/// Actual command to pass to exec in case of process_type_t::external or process_type_t::exec.
wcstring actual_cmd;
/// Generation counts for reaping.
generation_list_t gens_{};
/// Process ID
pid_t pid{0};
/// If we are an "internal process," that process.
std::shared_ptr<internal_proc_t> internal_proc_{};
/// File descriptor that pipe output should bind to.
int pipe_write_fd{0};
/// True if process has completed.
bool completed{false};
/// True if process has stopped.
bool stopped{false};
/// Reported status value.
proc_status_t status{};
/// Last time of cpu time check.
struct timeval last_time {};
/// Number of jiffies spent in process at last cpu time check.
unsigned long last_jiffies{0};
// No copying.
process_t(const process_t &rhs) = delete;
void operator=(const process_t &rhs) = delete;
private:
wcstring_list_t argv_;
redirection_spec_list_t proc_redirection_specs_;
// The wait handle. This is constructed lazily, and cached.
wait_handle_ref_t wait_handle_{};
};
using process_ptr_t = std::unique_ptr<process_t>;
using process_list_t = std::vector<process_ptr_t>;
/// A struct representing a job. A job is a pipeline of one or more processes.
class job_t {
public:
/// A set of jobs properties. These are immutable: they do not change for the lifetime of the
/// job.
struct properties_t {
/// Whether the specified job is a part of a subshell, event handler or some other form of
/// special job that should not be reported.
bool skip_notification{};
/// Whether the job had the background ampersand when constructed, e.g. /bin/echo foo &
/// Note that a job may move between foreground and background; this just describes what the
/// initial state should be.
bool initial_background{};
/// Whether the job has the 'time' prefix and so we should print timing for this job.
bool wants_timing{};
/// Whether this job was created as part of an event handler.
bool from_event_handler{};
/// Whether the job is under job control, i.e. has its own pgrp.
bool job_control{};
};
private:
/// Set of immutable job properties.
const properties_t properties;
/// The original command which led to the creation of this job. It is used for displaying
/// messages about job status on the terminal.
const wcstring command_str;
// No copying.
job_t(const job_t &rhs) = delete;
void operator=(const job_t &) = delete;
public:
job_t(const properties_t &props, wcstring command_str);
~job_t();
/// Returns the command as a wchar_t *. */
const wchar_t *command_wcstr() const { return command_str.c_str(); }
/// Returns the command.
const wcstring &command() const { return command_str; }
/// \return whether it is OK to reap a given process. Sometimes we want to defer reaping a
/// process if it is the group leader and the job is not yet constructed, because then we might
/// also reap the process group and then we cannot add new processes to the group.
bool can_reap(const process_ptr_t &p) const {
if (p->completed) {
// Can't reap twice.
return false;
} else if (p->pid && !is_constructed() && this->get_pgid() == maybe_t<pid_t>{p->pid}) {
// p is the the group leader in an under-construction job.
return false;
} else {
return true;
}
}
/// Returns a truncated version of the job string. Used when a message has already been emitted
/// containing the full job string and job id, but using the job id alone would be confusing
/// due to reuse of freed job ids. Prevents overloading the debug comments with the full,
/// untruncated job string when we don't care what the job is, only which of the currently
/// running jobs it is.
wcstring preview() const {
if (processes.empty()) return L"";
// Note argv0 may be empty in e.g. a block process.
const wchar_t *argv0 = processes.front()->argv0();
wcstring result = argv0 ? argv0 : L"null";
return result + L" ...";
}
/// All the processes in this job.
process_list_t processes;
// The group containing this job.
// This is never null and not changed after construction.
job_group_ref_t group{};
/// \return the pgid for the job, based on the job group.
/// This may be none if the job consists of just internal fish functions or builtins.
/// This may also be fish itself.
maybe_t<pid_t> get_pgid() const;
/// \return the pid of the last external process in the job.
/// This may be none if the job consists of just internal fish functions or builtins.
/// This will never be fish's own pid.
maybe_t<pid_t> get_last_pid() const;
/// The id of this job.
/// This is user-visible, is recycled, and may be -1.
job_id_t job_id() const;
/// A non-user-visible, never-recycled job ID.
const internal_job_id_t internal_job_id;
/// Flags associated with the job.
struct flags_t {
/// Whether the specified job is completely constructed: every process in the job has been
/// forked, etc.
bool constructed{false};
/// Whether the user has been told about stopped job.
bool notified{false};
/// Whether the exit status should be negated. This flag can only be set by the not builtin.
bool negate{false};
/// This job is disowned, and should be removed from the active jobs list.
bool disown_requested{false};
// Indicates that we are the "group root." Any other jobs using this tree are nested.
bool is_group_root{false};
} job_flags{};
/// Access the job flags.
const flags_t &flags() const { return job_flags; }
/// Access mutable job flags.
flags_t &mut_flags() { return job_flags; }
// \return whether we should print timing information.
bool wants_timing() const { return properties.wants_timing; }
/// \return if we want job control.
bool wants_job_control() const { return properties.job_control; }
/// \return whether this job is initially going to run in the background, because & was
/// specified.
bool is_initially_background() const { return properties.initial_background; }
/// Mark this job as constructed. The job must not have previously been marked as constructed.
void mark_constructed();
/// \return whether we have internal or external procs, respectively.
/// Internal procs are builtins, blocks, and functions.
/// External procs include exec and external.
bool has_internal_proc() const;
bool has_external_proc() const;
// Helper functions to check presence of flags on instances of jobs
/// The job has been fully constructed, i.e. all its member processes have been launched
bool is_constructed() const { return flags().constructed; }
/// The job is complete, i.e. all its member processes have been reaped
bool is_completed() const;
/// The job is in a stopped state
bool is_stopped() const;
/// The job is OK to be externally visible, e.g. to the user via `jobs`
bool is_visible() const {
return !is_completed() && is_constructed() && !flags().disown_requested;
}
bool skip_notification() const { return properties.skip_notification; }
bool from_event_handler() const { return properties.from_event_handler; }
/// \return whether this job's group is in the foreground.
bool is_foreground() const;
/// \return whether we should report process exit events.
/// This implements some historical behavior which has not been justified.
bool should_report_process_exits() const;
/// \return whether this job and its parent chain are fully constructed.
bool job_chain_is_fully_constructed() const;
/// Continues running a job, which may be stopped, or may just have started.
/// This will send SIGCONT if the job is stopped.
/// If \p in_foreground is set, then wait for the job to stop or complete;
/// otherwise do not wait for the job.
void continue_job(parser_t &parser, bool in_foreground = true);
/// Send the specified signal to all processes in this job.
/// \return true on success, false on failure.
bool signal(int signal);
/// \returns the statuses for this job.
maybe_t<statuses_t> get_statuses() const;
};
/// Whether this shell is attached to a tty.
bool is_interactive_session();
void set_interactive_session(bool flag);
/// Whether we are a login shell.
bool get_login();
void mark_login();
/// If this flag is set, fish will never fork or run execve. It is used to put fish into a syntax
/// verifier mode where fish tries to validate the syntax of a file but doesn't actually do
/// anything.
bool no_exec();
void mark_no_exec();
// List of jobs.
typedef std::deque<shared_ptr<job_t>> job_list_t;
/// The current job control mode.
///
/// Must be one of job_control_t::all, job_control_t::interactive and job_control_t::none.
job_control_t get_job_control_mode();
void set_job_control_mode(job_control_t mode);
/// Notify the user about stopped or terminated jobs, and delete completed jobs from the job list.
/// If \p interactive is set, allow removing interactive jobs; otherwise skip them.
/// \return whether text was printed to stdout.
class parser_t;
bool job_reap(parser_t &parser, bool interactive);
/// \return the list of background jobs which we should warn the user about, if the user attempts to
/// exit. An empty result (common) means no such jobs.
job_list_t jobs_requiring_warning_on_exit(const parser_t &parser);
/// Print the exit warning for the given jobs, which should have been obtained via
/// jobs_requiring_warning_on_exit().
void print_exit_warning_for_jobs(const job_list_t &jobs);
/// Use the procfs filesystem to look up how many jiffies of cpu time was used by this process. This
/// function is only available on systems with the procfs file entry 'stat', i.e. Linux.
unsigned long proc_get_jiffies(process_t *p);
/// Update process time usage for all processes by calling the proc_get_jiffies function for every
/// process of every job.
void proc_update_jiffies(parser_t &parser);
/// Perform a set of simple sanity checks on the job list. This includes making sure that only one
/// job is in the foreground, that every process is in a valid state, etc.
void proc_sanity_check(const parser_t &parser);
/// Initializations.
void proc_init();
/// Wait for any process finishing, or receipt of a signal.
void proc_wait_any(parser_t &parser);
/// Set and get whether we are in initialization.
// Hackish. In order to correctly report the origin of code with no associated file, we need to
// know whether it's run during initialization or not.
void set_is_within_fish_initialization(bool flag);
bool is_within_fish_initialization();
/// Send SIGHUP to the list \p jobs, excepting those which are in fish's pgroup.
void hup_jobs(const job_list_t &jobs);
/// Give ownership of the terminal to the specified job group, if it wants it.
///
/// \param jg The job group to give the terminal to.
/// \param continuing_from_stopped If this variable is set, we are giving back control to a job that
/// was previously stopped. In that case, we need to set the terminal attributes to those saved in
/// the job.
/// \return 1 if transferred, 0 if no transfer was necessary, -1 on error.
int terminal_maybe_give_to_job_group(const job_group_t *jg, bool continuing_from_stopped);
/// Add a job to the list of PIDs/PGIDs we wait on even though they are not associated with any
/// jobs. Used to avoid zombie processes after disown.
void add_disowned_job(const job_t *j);
bool have_proc_stat();
#endif