fish-shell/src/tnode.cpp
ridiculousfish 357d3b8c6d Rework 'and' and 'or' to be "job decorators"
This promotes "and" and "or" from a type of statement to "job
decorators," as a possible prefix on a job. The point is to rationalize
how they interact with && and ||.

In the new world 'and' and 'or' apply to a entire job conjunction, i.e.
they have "lower precedence." Example:

if [ $age -ge 0 ] && [ $age -le 18 ]
   or [ $age -ge 75 ] && [ $age -le 100 ]
   echo "Child or senior"
end
2018-03-05 13:41:36 -08:00

145 lines
5.6 KiB
C++

#include "tnode.h"
const parse_node_t *parse_node_tree_t::next_node_in_node_list(
const parse_node_t &node_list, parse_token_type_t entry_type,
const parse_node_t **out_list_tail) const {
parse_token_type_t list_type = node_list.type;
// Paranoia - it doesn't make sense for a list type to contain itself.
assert(list_type != entry_type);
const parse_node_t *list_cursor = &node_list;
const parse_node_t *list_entry = NULL;
// Loop while we don't have an item but do have a list. Note that some nodes may contain
// nothing; e.g. job_list contains blank lines as a production.
while (list_entry == NULL && list_cursor != NULL) {
const parse_node_t *next_cursor = NULL;
// Walk through the children.
for (node_offset_t i = 0; i < list_cursor->child_count; i++) {
const parse_node_t *child = this->get_child(*list_cursor, i);
if (child->type == entry_type) {
// This is the list entry.
list_entry = child;
} else if (child->type == list_type) {
// This is the next in the list.
next_cursor = child;
}
}
// Go to the next entry, even if it's NULL.
list_cursor = next_cursor;
}
// Return what we got.
assert(list_cursor == NULL || list_cursor->type == list_type);
assert(list_entry == NULL || list_entry->type == entry_type);
if (out_list_tail != NULL) *out_list_tail = list_cursor;
return list_entry;
}
enum parse_statement_decoration_t get_decoration(tnode_t<grammar::plain_statement> stmt) {
parse_statement_decoration_t decoration = parse_statement_decoration_none;
if (auto decorated_statement = stmt.try_get_parent<grammar::decorated_statement>()) {
decoration = static_cast<parse_statement_decoration_t>(decorated_statement.tag());
}
return decoration;
}
enum parse_bool_statement_type_t bool_statement_type(tnode_t<grammar::job_decorator> stmt) {
return static_cast<parse_bool_statement_type_t>(stmt.tag());
}
enum parse_bool_statement_type_t bool_statement_type(tnode_t<grammar::job_conjunction_continuation> cont) {
return static_cast<parse_bool_statement_type_t>(cont.tag());
}
maybe_t<redirection_type_t> redirection_type(tnode_t<grammar::redirection> redirection,
const wcstring &src, int *out_fd,
wcstring *out_target) {
assert(redirection && "redirection is missing");
maybe_t<redirection_type_t> result{};
tnode_t<grammar::tok_redirection> prim = redirection.child<0>(); // like 2>
assert(prim && "expected to have primitive");
if (prim.has_source()) {
result = redirection_type_for_string(prim.get_source(src), out_fd);
}
if (out_target != NULL) {
tnode_t<grammar::tok_string> target = redirection.child<1>(); // like &1 or file path
*out_target = target.has_source() ? target.get_source(src) : wcstring();
}
return result;
}
std::vector<tnode_t<grammar::comment>> parse_node_tree_t::comment_nodes_for_node(
const parse_node_t &parent) const {
std::vector<tnode_t<grammar::comment>> result;
if (parent.has_comments()) {
// Walk all our nodes, looking for comment nodes that have the given node as a parent.
for (size_t i = 0; i < this->size(); i++) {
const parse_node_t &potential_comment = this->at(i);
if (potential_comment.type == parse_special_type_comment &&
this->get_parent(potential_comment) == &parent) {
result.emplace_back(this, &potential_comment);
}
}
}
return result;
}
maybe_t<wcstring> command_for_plain_statement(tnode_t<grammar::plain_statement> stmt,
const wcstring &src) {
tnode_t<grammar::tok_string> cmd = stmt.child<0>();
if (cmd && cmd.has_source()) {
return cmd.get_source(src);
}
return none();
}
arguments_node_list_t get_argument_nodes(tnode_t<grammar::argument_list> list, size_t max) {
return list.descendants<grammar::argument>(max);
}
arguments_node_list_t get_argument_nodes(tnode_t<grammar::arguments_or_redirections_list> list,
size_t max) {
return list.descendants<grammar::argument>(max);
}
bool job_node_is_background(tnode_t<grammar::job> job) {
tnode_t<grammar::optional_background> bg = job.child<2>();
return bg.tag() == parse_background;
}
parse_bool_statement_type_t get_decorator(tnode_t<grammar::job_conjunction> conj) {
using namespace grammar;
tnode_t<job_decorator> dec;
// We have two possible parents: job_list and andor_job_list.
if (auto p = conj.try_get_parent<job_list>()) {
dec = p.require_get_child<job_decorator, 0>();
} else if (auto p = conj.try_get_parent<andor_job_list>()) {
dec = p.require_get_child<job_decorator, 0>();
}
// note this returns 0 (none) if dec is empty.
return bool_statement_type(dec);
}
pipeline_position_t get_pipeline_position(tnode_t<grammar::statement> st) {
using namespace grammar;
if (!st) {
return pipeline_position_t::none;
}
// If we're part of a job continuation, we're definitely in a pipeline.
if (st.try_get_parent<job_continuation>()) {
return pipeline_position_t::subsequent;
}
// Check if we're the beginning of a job, and if so, whether that job
// has a non-empty continuation.
tnode_t<job_continuation> jc = st.try_get_parent<job>().child<1>();
if (jc.try_get_child<statement, 2>()) {
return pipeline_position_t::first;
}
return pipeline_position_t::none;
}