fish-shell/builtin_printf.cpp

735 lines
22 KiB
C++

/* printf - format and print data
Copyright (C) 1990-2007 Free Software Foundation, Inc.
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2, or (at your option)
any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software Foundation,
Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
/* Usage: printf format [argument...]
A front end to the printf function that lets it be used from the shell.
Backslash escapes:
\" = double quote
\\ = backslash
\a = alert (bell)
\b = backspace
\c = produce no further output
\f = form feed
\n = new line
\r = carriage return
\t = horizontal tab
\v = vertical tab
\ooo = octal number (ooo is 1 to 3 digits)
\xhh = hexadecimal number (hhh is 1 to 2 digits)
\uhhhh = 16-bit Unicode character (hhhh is 4 digits)
\Uhhhhhhhh = 32-bit Unicode character (hhhhhhhh is 8 digits)
Additional directive:
%b = print an argument string, interpreting backslash escapes,
except that octal escapes are of the form \0 or \0ooo.
The `format' argument is re-used as many times as necessary
to convert all of the given arguments.
David MacKenzie <djm@gnu.ai.mit.edu> */
/* This file has been imported from source code of printf command in GNU Coreutils version 6.9 */
#include <stdio.h>
#include <sys/types.h>
#include <inttypes.h>
#include "common.h"
struct builtin_printf_state_t
{
/* The status of the operation */
int exit_code;
/* Whether we should stop outputting. This gets set in the case of an error, and also with the \c specifier. */
bool early_exit;
builtin_printf_state_t() : exit_code(0), early_exit(false)
{
}
void verify_numeric(const wchar_t *s, const wchar_t *end, int errcode);
void print_direc(const wchar_t *start, size_t length, wchar_t conversion,
bool have_field_width, int field_width,
bool have_precision, int precision,
wchar_t const *argument);
int print_formatted(const wchar_t *format, int argc, wchar_t **argv);
void fatal_error(const wchar_t *format, ...);
long print_esc(const wchar_t *escstart, bool octal_0);
void print_esc_string(const wchar_t *str);
void print_esc_char(wchar_t c);
void append_output(wchar_t c);
void append_output(const wchar_t *c);
void append_format_output(const wchar_t *fmt, ...);
};
static bool is_octal_digit(wchar_t c)
{
return c != L'\0' && wcschr(L"01234567", c) != NULL;
}
static bool is_hex_digit(wchar_t c)
{
return c != L'\0' && wcschr(L"0123456789ABCDEFabcdef", c) != NULL;
}
static int hex_to_bin(const wchar_t &c)
{
switch (c)
{
case L'0': return 0;
case L'1': return 1;
case L'2': return 2;
case L'3': return 3;
case L'4': return 4;
case L'5': return 5;
case L'6': return 6;
case L'7': return 7;
case L'8': return 8;
case L'9': return 9;
case L'a': case L'A': return 10;
case L'b': case L'B': return 11;
case L'c': case L'C': return 12;
case L'd': case L'D': return 13;
case L'e': case L'E': return 14;
case L'f': case L'F': return 15;
default: return -1;
}
}
static int octal_to_bin(wchar_t c)
{
switch (c)
{
case L'0': return 0;
case L'1': return 1;
case L'2': return 2;
case L'3': return 3;
case L'4': return 4;
case L'5': return 5;
case L'6': return 6;
case L'7': return 7;
default: return -1;
}
}
/* This message appears in N_() here rather than just in _() below because
the sole use would have been in a #define. */
static wchar_t const *const cfcc_msg =
N_(L"warning: %ls: character(s) following character constant have been ignored");
double C_STRTOD(wchar_t const *nptr, wchar_t **endptr)
{
double r;
const wcstring saved_locale = wsetlocale(LC_NUMERIC, NULL);
if (!saved_locale.empty())
{
wsetlocale(LC_NUMERIC, L"C");
}
r = wcstod(nptr, endptr);
if (!saved_locale.empty())
{
wsetlocale(LC_NUMERIC, saved_locale.c_str());
}
return r;
}
static inline unsigned wchar_t to_uwchar_t(wchar_t ch)
{
return ch;
}
void builtin_printf_state_t::fatal_error(const wchar_t *fmt, ...)
{
// Don't error twice
if (early_exit)
return;
va_list va;
va_start(va, fmt);
wcstring errstr = vformat_string(fmt, va);
va_end(va);
stderr_buffer.append(errstr);
if (! string_suffixes_string(L"\n", errstr))
stderr_buffer.push_back(L'\n');
this->exit_code = STATUS_BUILTIN_ERROR;
this->early_exit = true;
}
void builtin_printf_state_t::append_output(wchar_t c)
{
// Don't output if we're done
if (early_exit)
return;
stdout_buffer.push_back(c);
}
void builtin_printf_state_t::append_output(const wchar_t *c)
{
// Don't output if we're done
if (early_exit)
return;
stdout_buffer.append(c);
}
void builtin_printf_state_t::append_format_output(const wchar_t *fmt, ...)
{
// Don't output if we're done
if (early_exit)
return;
va_list va;
va_start(va, fmt);
append_formatv(stdout_buffer, fmt, va);
va_end(va);
}
void builtin_printf_state_t::verify_numeric(const wchar_t *s, const wchar_t *end, int errcode)
{
if (errcode != 0)
{
this->fatal_error(L"%ls: %s", s, strerror(errcode));
}
else if (*end)
{
if (s == end)
this->fatal_error(_(L"%ls: expected a numeric value"), s);
else
this->fatal_error(_(L"%ls: value not completely converted"), s);
}
}
template<typename T>
static T raw_string_to_scalar_type(const wchar_t *s, wchar_t ** end);
// we use wcstoll instead of wcstoimax because FreeBSD 8 has busted wcstoumax and wcstoimax - see #626
template<>
intmax_t raw_string_to_scalar_type(const wchar_t *s, wchar_t ** end)
{
return wcstoll(s, end, 0);
}
template<>
uintmax_t raw_string_to_scalar_type(const wchar_t *s, wchar_t ** end)
{
return wcstoull(s, end, 0);
}
template<>
long double raw_string_to_scalar_type(const wchar_t *s, wchar_t ** end)
{
return C_STRTOD(s, end);
}
template<typename T>
static T string_to_scalar_type(const wchar_t *s, builtin_printf_state_t *state)
{
T val;
if (*s == L'\"' || *s == L'\'')
{
unsigned wchar_t ch = *++s;
val = ch;
}
else
{
wchar_t *end = NULL;
errno = 0;
val = raw_string_to_scalar_type<T>(s, &end);
state->verify_numeric(s, end, errno);
}
return val;
}
/* Output a single-character \ escape. */
void builtin_printf_state_t::print_esc_char(wchar_t c)
{
switch (c)
{
case L'a': /* Alert. */
this->append_output(L'\a');
break;
case L'b': /* Backspace. */
this->append_output(L'\b');
break;
case L'c': /* Cancel the rest of the output. */
this->early_exit = true;
break;
case L'f': /* Form feed. */
this->append_output(L'\f');
break;
case L'n': /* New line. */
this->append_output(L'\n');
break;
case L'r': /* Carriage return. */
this->append_output(L'\r');
break;
case L't': /* Horizontal tab. */
this->append_output(L'\t');
break;
case L'v': /* Vertical tab. */
this->append_output(L'\v');
break;
default:
this->append_output(c);
break;
}
}
/* Print a \ escape sequence starting at ESCSTART.
Return the number of characters in the escape sequence
besides the backslash.
If OCTAL_0 is nonzero, octal escapes are of the form \0ooo, where o
is an octal digit; otherwise they are of the form \ooo. */
long builtin_printf_state_t::print_esc(const wchar_t *escstart, bool octal_0)
{
const wchar_t *p = escstart + 1;
int esc_value = 0; /* Value of \nnn escape. */
int esc_length; /* Length of \nnn escape. */
if (*p == L'x')
{
/* A hexadecimal \xhh escape sequence must have 1 or 2 hex. digits. */
for (esc_length = 0, ++p; esc_length < 2 && is_hex_digit(*p); ++esc_length, ++p)
esc_value = esc_value * 16 + hex_to_bin(*p);
if (esc_length == 0)
this->fatal_error(_(L"missing hexadecimal number in escape"));
this->append_format_output(L"%lc", esc_value);
}
else if (is_octal_digit(*p))
{
/* Parse \0ooo (if octal_0 && *p == L'0') or \ooo (otherwise).
Allow \ooo if octal_0 && *p != L'0'; this is an undocumented
extension to POSIX that is compatible with Bash 2.05b. */
for (esc_length = 0, p += octal_0 && *p == L'0'; esc_length < 3 && is_octal_digit(*p); ++esc_length, ++p)
esc_value = esc_value * 8 + octal_to_bin(*p);
this->append_format_output(L"%c", esc_value);
}
else if (*p && wcschr(L"\"\\abcfnrtv", *p))
print_esc_char(*p++);
else if (*p == L'u' || *p == L'U')
{
wchar_t esc_char = *p;
unsigned int uni_value;
uni_value = 0;
for (esc_length = (esc_char == L'u' ? 4 : 8), ++p;
esc_length > 0;
--esc_length, ++p)
{
if (! is_hex_digit(*p))
this->fatal_error(_(L"missing hexadecimal number in escape"));
uni_value = uni_value * 16 + hex_to_bin(*p);
}
/* A universal character name shall not specify a character short
identifier in the range 00000000 through 00000020, 0000007F through
0000009F, or 0000D800 through 0000DFFF inclusive. A universal
character name shall not designate a character in the required
character set. */
if ((uni_value <= 0x9f
&& uni_value != 0x24 && uni_value != 0x40 && uni_value != 0x60)
|| (uni_value >= 0xd800 && uni_value <= 0xdfff))
this->fatal_error(_(L"invalid universal character name \\%c%0*x"),
esc_char, (esc_char == L'u' ? 4 : 8), uni_value);
this->append_format_output(L"%lc", uni_value);
}
else
{
this->append_format_output(L"%lc", L'\\');
if (*p)
{
this->append_format_output(L"%lc", *p);
p++;
}
}
return p - escstart - 1;
}
/* Print string STR, evaluating \ escapes. */
void builtin_printf_state_t::print_esc_string(const wchar_t *str)
{
for (; *str; str++)
if (*str == L'\\')
str += print_esc(str, true);
else
this->append_format_output(L"%lc", *str);
}
/* Evaluate a printf conversion specification. START is the start of
the directive, LENGTH is its length, and CONVERSION specifies the
type of conversion. LENGTH does not include any length modifier or
the conversion specifier itself. FIELD_WIDTH and PRECISION are the
field width and precision for '*' values, if HAVE_FIELD_WIDTH and
HAVE_PRECISION are true, respectively. ARGUMENT is the argument to
be formatted. */
void builtin_printf_state_t::print_direc(const wchar_t *start, size_t length, wchar_t conversion,
bool have_field_width, int field_width,
bool have_precision, int precision,
wchar_t const *argument)
{
// Start with everything except the conversion specifier
wcstring fmt(start, length);
/* Create a copy of the % directive, with an intmax_t-wide width modifier substituted for any existing integer length modifier. */
switch (conversion)
{
case L'd':
case L'i':
fmt.append(L"ll");
break;
case L'a':
case L'e':
case L'f':
case L'g':
case L'A':
case L'E':
case L'F':
case L'G':
fmt.append(L"L");
break;
case L's':
case L'u':
fmt.append(L"l");
break;
default:
break;
}
// Append the conversion itself
fmt.push_back(conversion);
switch (conversion)
{
case L'd':
case L'i':
{
intmax_t arg = string_to_scalar_type<intmax_t>(argument, this);
if (! have_field_width)
{
if (! have_precision)
this->append_format_output(fmt.c_str(), arg);
else
this->append_format_output(fmt.c_str(), precision, arg);
}
else
{
if (! have_precision)
this->append_format_output(fmt.c_str(), field_width, arg);
else
this->append_format_output(fmt.c_str(), field_width, precision, arg);
}
}
break;
case L'o':
case L'u':
case L'x':
case L'X':
{
uintmax_t arg = string_to_scalar_type<uintmax_t>(argument, this);
if (!have_field_width)
{
if (!have_precision)
this->append_format_output(fmt.c_str(), arg);
else
this->append_format_output(fmt.c_str(), precision, arg);
}
else
{
if (!have_precision)
this->append_format_output(fmt.c_str(), field_width, arg);
else
this->append_format_output(fmt.c_str(), field_width, precision, arg);
}
}
break;
case L'a':
case L'A':
case L'e':
case L'E':
case L'f':
case L'F':
case L'g':
case L'G':
{
long double arg = string_to_scalar_type<long double>(argument, this);
if (!have_field_width)
{
if (!have_precision)
this->append_format_output(fmt.c_str(), arg);
else
this->append_format_output(fmt.c_str(), precision, arg);
}
else
{
if (!have_precision)
this->append_format_output(fmt.c_str(), field_width, arg);
else
this->append_format_output(fmt.c_str(), field_width, precision, arg);
}
}
break;
case L'c':
if (!have_field_width)
this->append_format_output(fmt.c_str(), *argument);
else
this->append_format_output(fmt.c_str(), field_width, *argument);
break;
case L's':
if (!have_field_width)
{
if (!have_precision)
{
this->append_format_output(fmt.c_str(), argument);
}
else
this->append_format_output(fmt.c_str(), precision, argument);
}
else
{
if (!have_precision)
this->append_format_output(fmt.c_str(), field_width, argument);
else
this->append_format_output(fmt.c_str(), field_width, precision, argument);
}
break;
}
}
/* Print the text in FORMAT, using ARGV (with ARGC elements) for
arguments to any `%' directives.
Return the number of elements of ARGV used. */
int builtin_printf_state_t::print_formatted(const wchar_t *format, int argc, wchar_t **argv)
{
int save_argc = argc; /* Preserve original value. */
const wchar_t *f; /* Pointer into `format'. */
const wchar_t *direc_start; /* Start of % directive. */
size_t direc_length; /* Length of % directive. */
bool have_field_width; /* True if FIELD_WIDTH is valid. */
int field_width = 0; /* Arg to first '*'. */
bool have_precision; /* True if PRECISION is valid. */
int precision = 0; /* Arg to second '*'. */
bool ok[UCHAR_MAX + 1] = { }; /* ok['x'] is true if %x is allowed. */
for (f = format; *f != L'\0'; ++f)
{
switch (*f)
{
case L'%':
direc_start = f++;
direc_length = 1;
have_field_width = have_precision = false;
if (*f == L'%')
{
this->append_output(L'%');
break;
}
if (*f == L'b')
{
/* FIXME: Field width and precision are not supported
for %b, even though POSIX requires it. */
if (argc > 0)
{
print_esc_string(*argv);
++argv;
--argc;
}
break;
}
ok['a'] = ok['A'] = ok['c'] = ok['d'] = ok['e'] = ok['E'] =
ok['f'] = ok['F'] = ok['g'] = ok['G'] = ok['i'] = ok['o'] =
ok['s'] = ok['u'] = ok['x'] = ok['X'] = true;
for (;; f++, direc_length++)
{
switch (*f)
{
case L'I':
case L'\'':
ok['a'] = ok['A'] = ok['c'] = ok['e'] = ok['E'] =
ok['o'] = ok['s'] = ok['x'] = ok['X'] = false;
break;
case '-':
case '+':
case ' ':
break;
case L'#':
ok['c'] = ok['d'] = ok['i'] = ok['s'] = ok['u'] = false;
break;
case '0':
ok['c'] = ok['s'] = false;
break;
default:
goto no_more_flag_characters;
}
}
no_more_flag_characters:
;
if (*f == L'*')
{
++f;
++direc_length;
if (argc > 0)
{
intmax_t width = string_to_scalar_type<intmax_t>(*argv, this);
if (INT_MIN <= width && width <= INT_MAX)
field_width = static_cast<int>(width);
else
this->fatal_error(_(L"invalid field width: %ls"), *argv);
++argv;
--argc;
}
else
{
field_width = 0;
}
have_field_width = true;
}
else
{
while (iswdigit(*f))
{
++f;
++direc_length;
}
}
if (*f == L'.')
{
++f;
++direc_length;
ok['c'] = false;
if (*f == L'*')
{
++f;
++direc_length;
if (argc > 0)
{
intmax_t prec = string_to_scalar_type<intmax_t>(*argv, this);
if (prec < 0)
{
/* A negative precision is taken as if the
precision were omitted, so -1 is safe
here even if prec < INT_MIN. */
precision = -1;
}
else if (INT_MAX < prec)
this->fatal_error(_(L"invalid precision: %ls"), *argv);
else
{
precision = static_cast<int>(prec);
}
++argv;
--argc;
}
else
{
precision = 0;
}
have_precision = true;
}
else
{
while (iswdigit(*f))
{
++f;
++direc_length;
}
}
}
while (*f == L'l' || *f == L'L' || *f == L'h' || *f == L'j' || *f == L't' || *f == L'z')
++f;
{
unsigned wchar_t conversion = *f;
if (! ok[conversion])
{
this->fatal_error(_(L"%.*ls: invalid conversion specification"), (int)(f + 1 - direc_start), direc_start);
return 0;
}
}
print_direc(direc_start, direc_length, *f,
have_field_width, field_width,
have_precision, precision,
(argc <= 0 ? L"" : (argc--, *argv++)));
break;
case L'\\':
f += print_esc(f, false);
break;
default:
this->append_output(*f);
}
}
return save_argc - argc;
}
static int builtin_printf(parser_t &parser, wchar_t **argv)
{
builtin_printf_state_t state;
wchar_t *format;
int args_used;
int argc = builtin_count_args(argv);
if (argc <= 1)
{
state.fatal_error(_(L"printf: not enough arguments"));
return STATUS_BUILTIN_ERROR;
}
format = argv[1];
argc -= 2;
argv += 2;
do
{
args_used = state.print_formatted(format, argc, argv);
argc -= args_used;
argv += args_used;
}
while (args_used > 0 && argc > 0 && ! state.early_exit);
return state.exit_code;
}