mirror of
https://github.com/fish-shell/fish-shell
synced 2025-01-01 07:38:46 +00:00
302 lines
11 KiB
C++
302 lines
11 KiB
C++
// Helper functions for working with wcstring.
|
|
#include "config.h" // IWYU pragma: keep
|
|
|
|
#include "wcstringutil.h"
|
|
|
|
#include <wctype.h>
|
|
|
|
#include <locale>
|
|
|
|
#include "common.h"
|
|
#include "flog.h"
|
|
|
|
wcstring_range wcstring_tok(wcstring &str, const wcstring &needle, wcstring_range last) {
|
|
using size_type = wcstring::size_type;
|
|
size_type pos = last.second == wcstring::npos ? wcstring::npos : last.first;
|
|
if (pos != wcstring::npos && last.second != wcstring::npos) pos += last.second;
|
|
if (pos != wcstring::npos && pos != 0) ++pos;
|
|
if (pos == wcstring::npos || pos >= str.size()) {
|
|
return std::make_pair(wcstring::npos, wcstring::npos);
|
|
}
|
|
|
|
if (needle.empty()) {
|
|
return std::make_pair(pos, wcstring::npos);
|
|
}
|
|
|
|
pos = str.find_first_not_of(needle, pos);
|
|
if (pos == wcstring::npos) return std::make_pair(wcstring::npos, wcstring::npos);
|
|
|
|
size_type next_pos = str.find_first_of(needle, pos);
|
|
if (next_pos == wcstring::npos) {
|
|
return std::make_pair(pos, wcstring::npos);
|
|
}
|
|
|
|
str[next_pos] = L'\0';
|
|
return std::make_pair(pos, next_pos - pos);
|
|
}
|
|
|
|
wcstring truncate(const wcstring &input, int max_len, ellipsis_type etype) {
|
|
if (input.size() <= static_cast<size_t>(max_len)) {
|
|
return input;
|
|
}
|
|
|
|
if (etype == ellipsis_type::None) {
|
|
return input.substr(0, max_len);
|
|
}
|
|
if (etype == ellipsis_type::Prettiest) {
|
|
const wchar_t *ellipsis_str = get_ellipsis_str();
|
|
return input.substr(0, max_len - std::wcslen(ellipsis_str)).append(ellipsis_str);
|
|
}
|
|
wcstring output = input.substr(0, max_len - 1);
|
|
output.push_back(get_ellipsis_char());
|
|
return output;
|
|
}
|
|
|
|
wcstring trim(wcstring input) { return trim(std::move(input), L"\t\v \r\n"); }
|
|
|
|
wcstring trim(wcstring input, const wchar_t *any_of) {
|
|
wcstring result = std::move(input);
|
|
size_t suffix = result.find_last_not_of(any_of);
|
|
if (suffix == wcstring::npos) {
|
|
return wcstring{};
|
|
}
|
|
result.erase(suffix + 1);
|
|
|
|
auto prefix = result.find_first_not_of(any_of);
|
|
assert(prefix != wcstring::npos && "Should have one non-trimmed character");
|
|
result.erase(0, prefix);
|
|
return result;
|
|
}
|
|
|
|
wcstring wcstolower(wcstring input) {
|
|
wcstring result = std::move(input);
|
|
std::transform(result.begin(), result.end(), result.begin(), towlower);
|
|
return result;
|
|
}
|
|
|
|
bool string_prefixes_string(const wchar_t *proposed_prefix, const wcstring &value) {
|
|
return string_prefixes_string(proposed_prefix, value.c_str());
|
|
}
|
|
|
|
bool string_prefixes_string(const wcstring &proposed_prefix, const wcstring &value) {
|
|
size_t prefix_size = proposed_prefix.size();
|
|
return prefix_size <= value.size() && value.compare(0, prefix_size, proposed_prefix) == 0;
|
|
}
|
|
|
|
bool string_prefixes_string(const wchar_t *proposed_prefix, const wchar_t *value) {
|
|
for (size_t idx = 0; proposed_prefix[idx] != L'\0'; idx++) {
|
|
// Note if the prefix is longer than value, then we will compare a nonzero prefix character
|
|
// against a zero value character, and so we'll return false;
|
|
if (proposed_prefix[idx] != value[idx]) return false;
|
|
}
|
|
// We must have that proposed_prefix[idx] == L'\0', so we have a prefix match.
|
|
return true;
|
|
}
|
|
|
|
bool string_prefixes_string(const char *proposed_prefix, const std::string &value) {
|
|
return string_prefixes_string(proposed_prefix, value.c_str());
|
|
}
|
|
|
|
bool string_prefixes_string(const char *proposed_prefix, const char *value) {
|
|
for (size_t idx = 0; proposed_prefix[idx] != L'\0'; idx++) {
|
|
if (proposed_prefix[idx] != value[idx]) return false;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool string_prefixes_string_case_insensitive(const wcstring &proposed_prefix,
|
|
const wcstring &value) {
|
|
size_t prefix_size = proposed_prefix.size();
|
|
return prefix_size <= value.size() &&
|
|
wcsncasecmp(proposed_prefix.c_str(), value.c_str(), prefix_size) == 0;
|
|
}
|
|
|
|
bool string_suffixes_string(const wcstring &proposed_suffix, const wcstring &value) {
|
|
size_t suffix_size = proposed_suffix.size();
|
|
return suffix_size <= value.size() &&
|
|
value.compare(value.size() - suffix_size, suffix_size, proposed_suffix) == 0;
|
|
}
|
|
|
|
bool string_suffixes_string(const wchar_t *proposed_suffix, const wcstring &value) {
|
|
size_t suffix_size = std::wcslen(proposed_suffix);
|
|
return suffix_size <= value.size() &&
|
|
value.compare(value.size() - suffix_size, suffix_size, proposed_suffix) == 0;
|
|
}
|
|
|
|
bool string_suffixes_string_case_insensitive(const wcstring &proposed_suffix,
|
|
const wcstring &value) {
|
|
size_t suffix_size = proposed_suffix.size();
|
|
return suffix_size <= value.size() && wcsncasecmp(value.c_str() + (value.size() - suffix_size),
|
|
proposed_suffix.c_str(), suffix_size) == 0;
|
|
}
|
|
|
|
/// Returns true if needle, represented as a subsequence, is contained within haystack.
|
|
/// Note subsequence is not substring: "foo" is a subsequence of "follow" for example.
|
|
static bool subsequence_in_string(const wcstring &needle, const wcstring &haystack) {
|
|
// Impossible if haystack is larger than string.
|
|
if (haystack.size() > haystack.size()) {
|
|
return false;
|
|
}
|
|
|
|
// Empty strings are considered to be subsequences of everything.
|
|
if (needle.empty()) {
|
|
return true;
|
|
}
|
|
|
|
auto ni = needle.begin();
|
|
for (auto hi = haystack.begin(); ni != needle.end() && hi != haystack.end(); ++hi) {
|
|
if (*ni == *hi) {
|
|
++ni;
|
|
}
|
|
}
|
|
// We succeeded if we exhausted our sequence.
|
|
assert(ni <= needle.end());
|
|
return ni == needle.end();
|
|
}
|
|
|
|
// static
|
|
maybe_t<string_fuzzy_match_t> string_fuzzy_match_t::try_create(const wcstring &string,
|
|
const wcstring &match_against,
|
|
bool anchor_start) {
|
|
// Helper to lazily compute if case insensitive matches should use icase or smartcase.
|
|
// Use icase if the input contains any uppercase characters, smartcase otherwise.
|
|
auto get_case_fold = [&] {
|
|
for (wchar_t c : string) {
|
|
if (towlower(c) != static_cast<wint_t>(c)) return case_fold_t::icase;
|
|
}
|
|
return case_fold_t::smartcase;
|
|
};
|
|
|
|
// A string cannot fuzzy match against a shorter string.
|
|
if (string.size() > match_against.size()) {
|
|
return none();
|
|
}
|
|
|
|
// exact samecase
|
|
if (string == match_against) {
|
|
return string_fuzzy_match_t{contain_type_t::exact, case_fold_t::samecase};
|
|
}
|
|
|
|
// prefix samecase
|
|
if (string_prefixes_string(string, match_against)) {
|
|
return string_fuzzy_match_t{contain_type_t::prefix, case_fold_t::samecase};
|
|
}
|
|
|
|
// exact icase
|
|
if (wcscasecmp(string.c_str(), match_against.c_str()) == 0) {
|
|
return string_fuzzy_match_t{contain_type_t::exact, get_case_fold()};
|
|
}
|
|
|
|
// prefix icase
|
|
if (string_prefixes_string_case_insensitive(string, match_against)) {
|
|
return string_fuzzy_match_t{contain_type_t::prefix, get_case_fold()};
|
|
}
|
|
|
|
// If anchor_start is set, this is as far as we go.
|
|
if (anchor_start) {
|
|
return none();
|
|
}
|
|
|
|
// substr samecase
|
|
size_t location;
|
|
if ((location = match_against.find(string)) != wcstring::npos) {
|
|
return string_fuzzy_match_t{contain_type_t::substr, case_fold_t::samecase};
|
|
}
|
|
|
|
// substr icase
|
|
if ((location = ifind(match_against, string, true /* fuzzy */)) != wcstring::npos) {
|
|
return string_fuzzy_match_t{contain_type_t::substr, get_case_fold()};
|
|
}
|
|
|
|
// subseq samecase
|
|
if (subsequence_in_string(string, match_against)) {
|
|
return string_fuzzy_match_t{contain_type_t::subseq, case_fold_t::samecase};
|
|
}
|
|
|
|
// We do not currently test subseq icase.
|
|
return none();
|
|
}
|
|
|
|
uint32_t string_fuzzy_match_t::rank() const {
|
|
// Combine our type and our case fold into a single number, such that better matches are
|
|
// smaller. Treat 'exact' types the same as 'prefix' types; this is because we do not
|
|
// prefer exact matches to prefix matches when presenting completions to the user.
|
|
// Treat smartcase the same as samecase; see #3978.
|
|
auto effective_type = (type == contain_type_t::exact ? contain_type_t::prefix : type);
|
|
auto effective_case = (case_fold == case_fold_t::smartcase ? case_fold_t::samecase : case_fold);
|
|
|
|
// Type dominates fold.
|
|
return static_cast<uint32_t>(effective_type) * 8 + static_cast<uint32_t>(effective_case);
|
|
}
|
|
|
|
template <bool Fuzzy, typename T>
|
|
size_t ifind_impl(const T &haystack, const T &needle) {
|
|
using char_t = typename T::value_type;
|
|
std::locale locale;
|
|
|
|
auto ieq = [&locale](char_t c1, char_t c2) {
|
|
if (c1 == c2 || std::toupper(c1, locale) == std::toupper(c2, locale)) return true;
|
|
|
|
// In fuzzy matching treat treat `-` and `_` as equal (#3584).
|
|
if (Fuzzy) {
|
|
if ((c1 == '-' || c1 == '_') && (c2 == '-' || c2 == '_')) return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
auto result = std::search(haystack.begin(), haystack.end(), needle.begin(), needle.end(), ieq);
|
|
if (result != haystack.end()) {
|
|
return result - haystack.begin();
|
|
}
|
|
return T::npos;
|
|
}
|
|
|
|
size_t ifind(const wcstring &haystack, const wcstring &needle, bool fuzzy) {
|
|
return fuzzy ? ifind_impl<true>(haystack, needle) : ifind_impl<false>(haystack, needle);
|
|
}
|
|
|
|
size_t ifind(const std::string &haystack, const std::string &needle, bool fuzzy) {
|
|
return fuzzy ? ifind_impl<true>(haystack, needle) : ifind_impl<false>(haystack, needle);
|
|
}
|
|
|
|
wcstring_list_t split_string(const wcstring &val, wchar_t sep) {
|
|
wcstring_list_t out;
|
|
size_t pos = 0, end = val.size();
|
|
while (pos <= end) {
|
|
size_t next_pos = val.find(sep, pos);
|
|
if (next_pos == wcstring::npos) {
|
|
next_pos = end;
|
|
}
|
|
out.emplace_back(val, pos, next_pos - pos);
|
|
pos = next_pos + 1; // skip the separator, or skip past the end
|
|
}
|
|
return out;
|
|
}
|
|
|
|
wcstring join_strings(const wcstring_list_t &vals, wchar_t sep) {
|
|
if (vals.empty()) return wcstring{};
|
|
|
|
// Reserve the size we will need.
|
|
// count-1 separators, plus the length of all strings.
|
|
size_t size = vals.size() - 1;
|
|
for (const wcstring &s : vals) {
|
|
size += s.size();
|
|
}
|
|
|
|
// Construct the string.
|
|
wcstring result;
|
|
result.reserve(size);
|
|
bool first = true;
|
|
for (const wcstring &s : vals) {
|
|
if (!first) {
|
|
result.push_back(sep);
|
|
}
|
|
result.append(s);
|
|
first = false;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
void wcs2string_bad_char(wchar_t wc) {
|
|
FLOGF(char_encoding, L"Wide character U+%4X has no narrow representation", wc);
|
|
}
|