fish-shell/src/timer.cpp
2019-12-19 23:02:23 -06:00

192 lines
8.4 KiB
C++

// Functions for executing the time builtin.
#include "config.h" // IWYU pragma: keep
#include <cerrno>
#include <ctime>
#include <chrono>
#include <cstddef>
#include "common.h"
#include "builtin.h"
#include "exec.h"
#include "fallback.h" // IWYU pragma: keep
#include "io.h"
#include "parser.h"
#include "proc.h"
#include "timer.h"
#include "wgetopt.h"
#include "wutil.h" // IWYU pragma: keep
#include <algorithm>
#include <string.h>
// Measuring time is always complicated with many caveats. Quite apart from the typical
// gotchas faced by developers attempting to choose between monotonic vs non-monotonic and system vs
// cpu clocks, the fact that we are executing as a shell further complicates matters: we can't just
// observe the elapsed CPU time, because that does not reflect the total execution time for both
// ourselves (internal shell execution time and the time it takes for builtins and functions to
// execute) and any external processes we spawn.
// It would be nice to use the C++1 type-safe <chrono> interfaces to measure elapsed time, but that
// unfortunately is underspecified with regards to user/system time and only provides means of
// querying guaranteed monotonicity and resolution for the various clocks. It can be used to measure
// elapsed wall time nicely, but if we would like to provide information more useful for
// benchmarking and tuning then we must turn to either clock_gettime(2), with extensions for thread-
// and process-specific elapsed CPU time, or times(3) for a standard interface to overall process
// and child user/system time elapsed between snapshots. At least on some systems, times(3) has been
// deprecated in favor of getrusage(2), which offers a wider variety of metrics coalesced for SELF,
// THREAD, or CHILDREN.
// With regards to the C++11 `<chrono>` interface, there are three different time sources (clocks)
// that we can use portably: `system_clock`, `steady_clock`, and `high_resolution_clock`; with
// different properties and guarantees. While the obvious difference is the direct tradeoff between
// period and resolution (higher resolution equals ability to measure smaller time differences more
// accurately, but at the cost of rolling over more frequently), but unfortunately it is not as
// simple as starting two clocks and going with the highest resolution that hasn't rolled over.
// `system_clock` is out because it is always subject to interference due to adjustments from NTP
// servers or super users (as it reflects the "actual" time), but `high_resolution_clock` may or may
// not be aliased to `system_clock` or `steady_clock`. In practice, there's likely no need to worry
// about this too much, a survey <http://howardhinnant.github.io/clock_survey.html> of the different
// libraries indicates that `high_resolution_clock` is either an alias for `steady_clock` (in which
// case it offers no greater resolution) or it is an alias for `system_clock` (in which case, even
// when it offers a greater resolution than `steady_clock` it is not fit for use).
static int64_t micros(struct timeval t) {
return (static_cast<int64_t>(t.tv_usec) + static_cast<int64_t>(t.tv_sec * 1E6));
};
template <typename D1, typename D2>
static int64_t micros(const std::chrono::duration<D1, D2> &d) {
return std::chrono::duration_cast<std::chrono::microseconds>(d).count();
};
timer_snapshot_t timer_snapshot_t::take() {
timer_snapshot_t snapshot;
getrusage(RUSAGE_SELF, &snapshot.cpu_fish);
getrusage(RUSAGE_CHILDREN, &snapshot.cpu_children);
snapshot.wall = std::chrono::steady_clock::now();
return snapshot;
}
wcstring
timer_snapshot_t::print_delta(timer_snapshot_t t1, timer_snapshot_t t2, bool verbose /* = true */) {
int64_t fish_sys_micros = micros(t2.cpu_fish.ru_stime) - micros(t1.cpu_fish.ru_stime);
int64_t fish_usr_micros = micros(t2.cpu_fish.ru_utime) - micros(t1.cpu_fish.ru_utime);
int64_t child_sys_micros = micros(t2.cpu_children.ru_stime) - micros(t1.cpu_children.ru_stime);
int64_t child_usr_micros = micros(t2.cpu_children.ru_utime) - micros(t1.cpu_children.ru_utime);
// The result from getrusage is not necessarily realtime, it may be cached a few microseconds
// behind. In the event that execution completes extremely quickly or there is no data (say, we
// are measuring external execution time but no external processes have been launched), it can
// incorrectly appear to be negative.
fish_sys_micros = std::max(int64_t(0), fish_sys_micros);
fish_usr_micros = std::max(int64_t(0), fish_usr_micros);
child_sys_micros = std::max(int64_t(0), child_sys_micros);
child_usr_micros = std::max(int64_t(0), child_usr_micros);
int64_t net_sys_micros = fish_sys_micros + child_sys_micros;
int64_t net_usr_micros = fish_usr_micros + child_usr_micros;
int64_t net_wall_micros = micros(t2.wall - t1.wall);
enum class tunit {
minutes,
seconds,
milliseconds,
microseconds,
};
auto get_unit = [](int64_t micros) {
if (micros > 900 * 1E6) {
return tunit::minutes;
} else if (micros > 1 * 1E6) {
return tunit::seconds;
} else if (micros > 1E3) {
return tunit::milliseconds;
} else {
return tunit::microseconds;
}
};
auto unit_name = [](tunit unit) {
switch (unit) {
case tunit::minutes: return "minutes";
case tunit::seconds: return "seconds";
case tunit::milliseconds: return "milliseconds";
case tunit::microseconds: return "microseconds";
}
// GCC does not recognize the exhaustive switch above
return "";
};
auto unit_short_name = [](tunit unit) {
switch (unit) {
case tunit::minutes: return "mins";
case tunit::seconds: return "secs";
case tunit::milliseconds: return "millis";
case tunit::microseconds: return "micros";
}
// GCC does not recognize the exhaustive switch above
return "";
};
auto convert = [](int64_t micros, tunit unit) {
switch (unit) {
case tunit::minutes: return micros / 1.0E6 / 60.0;
case tunit::seconds: return micros / 1.0E6;
case tunit::milliseconds: return micros / 1.0E3;
case tunit::microseconds: return micros / 1.0;
}
// GCC does not recognize the exhaustive switch above
return 0.0;
};
auto wall_unit = get_unit(net_wall_micros);
auto cpu_unit = get_unit((net_sys_micros + net_usr_micros) / 2);
auto wall_time = convert(net_wall_micros, wall_unit);
auto usr_time = convert(net_usr_micros, cpu_unit);
auto sys_time = convert(net_sys_micros, cpu_unit);
wcstring output;
if (!verbose) {
append_format(output,
L"\n_______________________________" \
L"\nExecuted in %6.2F %s" \
L"\n usr time %6.2F %s" \
L"\n sys time %6.2F %s" \
L"\n",
wall_time, unit_name(wall_unit),
usr_time, unit_name(cpu_unit),
sys_time, unit_name(cpu_unit)
);
} else {
auto fish_unit = get_unit((fish_sys_micros + fish_usr_micros) / 2);
auto child_unit = get_unit((child_sys_micros + child_usr_micros) / 2);
auto fish_usr_time = convert(fish_usr_micros, fish_unit);
auto fish_sys_time = convert(fish_sys_micros, fish_unit);
auto child_usr_time = convert(child_usr_micros, child_unit);
auto child_sys_time = convert(child_sys_micros, child_unit);
append_format(output,
L"\n________________________________________________________" \
L"\nExecuted in %6.2F %s %*s %*s " \
L"\n usr time %6.2F %s %6.2F %s %6.2F %s " \
L"\n sys time %6.2F %s %6.2F %s %6.2F %s " \
L"\n",
wall_time, unit_short_name(wall_unit),
strlen(unit_short_name(wall_unit)) - 1, "fish",
strlen(unit_short_name(fish_unit)) - 1, "external",
usr_time, unit_short_name(cpu_unit),
fish_usr_time, unit_short_name(fish_unit),
child_usr_time, unit_short_name(child_unit),
sys_time, unit_short_name(cpu_unit),
fish_sys_time, unit_short_name(fish_unit),
child_sys_time, unit_short_name(child_unit)
);
}
return output;
};