fish-shell/src/proc.rs
Johannes Altmanninger c1b460525c Temporary workaround for BSD WEXITSTATUS libc bug
The libc crate has a bug on BSD where WEXITSTATUS is not an 8-bit
value, causing assertion failures.

Any libc higher than our 0.2.155 would increase our MSRV, see libc
commit 5ddbdc29f (Bump MSRV to 1.71, 2024-01-07), so we want to
woraround this anyway.  It's probably not worth using a patched
version of libc since it's just one line.

While at it, tighten some types I guess.

Upstream fix: https://github.com/rust-lang/libc/pull/4213

Closes #10919
2024-12-23 14:34:59 +01:00

1875 lines
66 KiB
Rust

//! Utilities for keeping track of jobs, processes and subshells, as well as signal handling
//! functions for tracking children. These functions do not themselves launch new processes,
//! the exec library will call proc to create representations of the running jobs as needed.
use crate::ast;
use crate::common::{
charptr2wcstring, escape, is_windows_subsystem_for_linux, redirect_tty_output,
scoped_push_replacer, timef, Timepoint, WSL,
};
use crate::curses::term;
use crate::env::Statuses;
use crate::event::{self, Event};
use crate::flog::{FLOG, FLOGF};
use crate::global_safety::RelaxedAtomicBool;
use crate::io::IoChain;
use crate::job_group::{JobGroup, MaybeJobId};
use crate::parse_tree::ParsedSourceRef;
use crate::parser::{Block, Parser};
use crate::reader::{fish_is_unwinding_for_exit, reader_schedule_prompt_repaint};
use crate::redirection::RedirectionSpecList;
use crate::signal::{signal_set_handlers_once, Signal};
use crate::threads::MainThread;
use crate::topic_monitor::{topic_monitor_principal, GenerationsList, Topic};
use crate::wait_handle::{InternalJobId, WaitHandle, WaitHandleRef, WaitHandleStore};
use crate::wchar::{wstr, WString, L};
use crate::wchar_ext::ToWString;
use crate::wutil::{perror, sprintf, wbasename, wgettext, wperror};
use libc::{
EBADF, EINVAL, ENOTTY, EPERM, EXIT_SUCCESS, SIGABRT, SIGBUS, SIGCONT, SIGFPE, SIGHUP, SIGILL,
SIGINT, SIGKILL, SIGPIPE, SIGQUIT, SIGSEGV, SIGSYS, SIGTTOU, SIG_DFL, SIG_IGN, STDIN_FILENO,
WCONTINUED, WEXITSTATUS, WIFCONTINUED, WIFEXITED, WIFSIGNALED, WIFSTOPPED, WNOHANG, WTERMSIG,
WUNTRACED, _SC_CLK_TCK,
};
use once_cell::sync::Lazy;
#[cfg(not(target_has_atomic = "64"))]
use portable_atomic::AtomicU64;
use std::cell::{Cell, Ref, RefCell, RefMut};
use std::fs;
use std::io::{Read, Write};
use std::num::NonZeroU32;
use std::os::fd::RawFd;
use std::rc::Rc;
#[cfg(target_has_atomic = "64")]
use std::sync::atomic::AtomicU64;
use std::sync::atomic::{AtomicBool, AtomicU32, AtomicU8, Ordering};
use std::sync::Arc;
/// Types of processes.
#[derive(Default, Eq, PartialEq)]
pub enum ProcessType {
/// A regular external command.
#[default]
external,
/// A builtin command.
builtin,
/// A shellscript function.
function,
/// A block of commands, represented as a node.
block_node,
/// The exec builtin.
exec,
}
#[repr(u8)]
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum JobControl {
all,
interactive,
none,
}
impl TryFrom<&wstr> for JobControl {
type Error = ();
fn try_from(value: &wstr) -> Result<Self, Self::Error> {
if value == "full" {
Ok(JobControl::all)
} else if value == "interactive" {
Ok(JobControl::interactive)
} else if value == "none" {
Ok(JobControl::none)
} else {
Err(())
}
}
}
/// A number of clock ticks.
pub type ClockTicks = u64;
/// Return clock ticks in seconds, or 0 on failure.
/// This uses sysconf(_SC_CLK_TCK) to convert to seconds.
pub fn clock_ticks_to_seconds(ticks: ClockTicks) -> f64 {
let clock_ticks_per_sec = unsafe { libc::sysconf(_SC_CLK_TCK) };
if clock_ticks_per_sec > 0 {
return ticks as f64 / clock_ticks_per_sec as f64;
}
0.0
}
pub type JobGroupRef = Arc<JobGroup>;
/// A proc_status_t is a value type that encapsulates logic around exited vs stopped vs signaled,
/// etc.
///
/// It contains two fields packed into an AtomicU64 to allow interior mutability, `status: i32` and
/// `empty: bool`.
#[derive(Default)]
pub struct ProcStatus {
value: AtomicU64,
}
impl Clone for ProcStatus {
fn clone(&self) -> Self {
Self {
value: AtomicU64::new(self.value.load(Ordering::Relaxed)),
}
}
}
impl ProcStatus {
fn new(status: i32, empty: bool) -> Self {
ProcStatus {
value: Self::to_u64(status, empty).into(),
}
}
/// Returns the raw `i32` status value.
fn status(&self) -> i32 {
Self::from_u64(self.value.load(Ordering::Relaxed)).0
}
/// Returns the `empty` field.
///
/// If `empty` is `true` then there is no actual status to report (e.g. background or variable
/// assignment).
pub fn is_empty(&self) -> bool {
Self::from_u64(self.value.load(Ordering::Relaxed)).1
}
/// Replace the current `ProcStatus` with that of `other`.
pub fn update(&self, other: &ProcStatus) {
self.value
.store(other.value.load(Ordering::Relaxed), Ordering::Relaxed);
}
fn set_status(&self, status: i32) {
let value = Self::to_u64(status, self.is_empty());
self.value.store(value, Ordering::Relaxed);
}
fn to_u64(status: i32, empty: bool) -> u64 {
(u64::from(empty) << 32) | u64::from(status as u32)
}
fn from_u64(bits: u64) -> (i32, bool) {
let status = bits as u32 as i32;
let empty = (bits >> 32) != 0;
(status, empty)
}
/// Encode a return value `ret` and signal `sig` into a status value like waitpid() does.
const fn w_exitcode(ret: i32, sig: i32) -> i32 {
#[cfg(HAVE_WAITSTATUS_SIGNAL_RET)]
// It's encoded signal and then status
// The return status is in the lower byte.
return (sig << 8) | ret;
#[cfg(not(HAVE_WAITSTATUS_SIGNAL_RET))]
// The status is encoded in the upper byte.
// This should be W_EXITCODE(ret, sig) but that's not available everywhere.
return (ret << 8) | sig;
}
/// Construct from a status returned from a waitpid call.
pub fn from_waitpid(status: i32) -> ProcStatus {
ProcStatus::new(status, false)
}
/// Construct directly from an exit code.
pub fn from_exit_code(ret: i32) -> ProcStatus {
assert!(
ret >= 0,
"trying to create proc_status_t from failed waitid()/waitpid() call \
or invalid builtin exit code!"
);
// Some paranoia.
const _zerocode: i32 = ProcStatus::w_exitcode(0, 0);
const _: () = assert!(
WIFEXITED(_zerocode),
"Synthetic exit status not reported as exited"
);
assert!(ret < 256);
ProcStatus::new(Self::w_exitcode(ret, 0 /* sig */), false)
}
/// Construct directly from a signal.
pub fn from_signal(signal: Signal) -> ProcStatus {
ProcStatus::new(Self::w_exitcode(0 /* ret */, signal.code()), false)
}
/// Construct an empty status_t (e.g. `set foo bar`).
pub fn empty() -> ProcStatus {
let empty = true;
ProcStatus::new(0, empty)
}
/// Return if we are stopped (as in SIGSTOP).
pub fn stopped(&self) -> bool {
WIFSTOPPED(self.status())
}
/// Return if we are continued (as in SIGCONT).
pub fn continued(&self) -> bool {
WIFCONTINUED(self.status())
}
/// Return if we exited normally (not a signal).
pub fn normal_exited(&self) -> bool {
WIFEXITED(self.status())
}
/// Return if we exited because of a signal.
pub fn signal_exited(&self) -> bool {
WIFSIGNALED(self.status())
}
/// Return the signal code, given that we signal exited.
pub fn signal_code(&self) -> libc::c_int {
assert!(self.signal_exited(), "Process is not signal exited");
WTERMSIG(self.status())
}
/// Return the exit code, given that we normal exited.
pub fn exit_code(&self) -> u8 {
assert!(self.normal_exited(), "Process is not normal exited");
u8::try_from(WEXITSTATUS(self.status()) & 0xff).unwrap() // Workaround for libc bug
}
/// Return if this status represents success.
pub fn is_success(&self) -> bool {
self.normal_exited() && self.exit_code() == u8::try_from(EXIT_SUCCESS).unwrap()
}
/// Return the value appropriate to populate $status.
pub fn status_value(&self) -> i32 {
if self.signal_exited() {
128 + self.signal_code()
} else if self.normal_exited() {
i32::from(self.exit_code())
} else {
panic!("Process is not exited")
}
}
}
/// A structure representing a "process" internal to fish. This is backed by a pthread instead of a
/// separate process.
pub struct InternalProc {
/// An identifier for internal processes.
/// This is used for logging purposes only.
internal_proc_id: u64,
/// Whether the process has exited.
exited: AtomicBool,
/// If the process has exited, its status code.
status: ProcStatus,
}
impl InternalProc {
pub fn new() -> Self {
static NEXT_PROC_ID: AtomicU64 = AtomicU64::new(0);
Self {
internal_proc_id: NEXT_PROC_ID.fetch_add(1, Ordering::SeqCst),
exited: AtomicBool::new(false),
status: ProcStatus::default(),
}
}
/// Return if this process has exited.
pub fn exited(&self) -> bool {
self.exited.load(Ordering::Acquire)
}
/// Mark this process as having exited with the given `status`.
pub fn mark_exited(&self, status: &ProcStatus) {
assert!(!self.exited(), "Process is already exited");
self.status.update(status);
self.exited.store(true, Ordering::Release);
topic_monitor_principal().post(Topic::internal_exit);
FLOG!(
proc_internal_proc,
"Internal proc",
self.internal_proc_id,
"exited with status",
status.status_value()
);
}
pub fn get_status(&self) -> ProcStatus {
assert!(self.exited(), "Process is not exited");
self.status.clone()
}
pub fn get_id(&self) -> u64 {
self.internal_proc_id
}
}
// Allows transferring the tty to a job group, while it runs.
#[derive(Default)]
pub struct TtyTransfer {
// The job group which owns the tty, or empty if none.
owner: Option<JobGroupRef>,
}
impl TtyTransfer {
pub fn new() -> Self {
Default::default()
}
/// Transfer to the given job group, if it wants to own the terminal.
#[allow(clippy::wrong_self_convention)]
pub fn to_job_group(&mut self, jg: &JobGroupRef) {
assert!(self.owner.is_none(), "Terminal already transferred");
if TtyTransfer::try_transfer(jg) {
self.owner = Some(jg.clone());
}
}
/// Reclaim the tty if we transferred it.
pub fn reclaim(&mut self) {
if self.owner.is_some() {
FLOG!(proc_pgroup, "fish reclaiming terminal");
if unsafe { libc::tcsetpgrp(STDIN_FILENO, libc::getpgrp()) } == -1 {
FLOG!(warning, "Could not return shell to foreground");
perror("tcsetpgrp");
}
self.owner = None;
}
}
/// Save the current tty modes into the owning job group, if we are transferred.
pub fn save_tty_modes(&mut self) {
if let Some(ref mut owner) = self.owner {
let mut tmodes: libc::termios = unsafe { std::mem::zeroed() };
if unsafe { libc::tcgetattr(STDIN_FILENO, &mut tmodes) } == 0 {
owner.tmodes.replace(Some(tmodes));
} else if errno::errno().0 != ENOTTY {
perror("tcgetattr");
}
}
}
fn try_transfer(jg: &JobGroup) -> bool {
if !jg.wants_terminal() {
// The job doesn't want the terminal.
return false;
}
// Get the pgid; we must have one if we want the terminal.
let pgid = jg.get_pgid().unwrap();
// It should never be fish's pgroup.
let fish_pgrp = unsafe { libc::getpgrp() };
assert!(
pgid.as_pid_t() != fish_pgrp,
"Job should not have fish's pgroup"
);
// Ok, we want to transfer to the child.
// Note it is important to be very careful about calling tcsetpgrp()!
// fish ignores SIGTTOU which means that it has the power to reassign the tty even if it doesn't
// own it. This means that other processes may get SIGTTOU and become zombies.
// Check who own the tty now. There's four cases of interest:
// 1. There is no tty at all (tcgetpgrp() returns -1). For example running from a pure script.
// Of course do not transfer it in that case.
// 2. The tty is owned by the process. This comes about often, as the process will call
// tcsetpgrp() on itself between fork ane exec. This is the essential race inherent in
// tcsetpgrp(). In this case we want to reclaim the tty, but do not need to transfer it
// ourselves since the child won the race.
// 3. The tty is owned by a different process. This may come about if fish is running in the
// background with job control enabled. Do not transfer it.
// 4. The tty is owned by fish. In that case we want to transfer the pgid.
let current_owner = unsafe { libc::tcgetpgrp(STDIN_FILENO) };
if current_owner < 0 {
// Case 1.
return false;
} else if current_owner == pgid.get() {
// Case 2.
return true;
} else if current_owner != pgid.get() && current_owner != fish_pgrp {
// Case 3.
return false;
}
// Case 4 - we do want to transfer it.
// The tcsetpgrp(2) man page says that EPERM is thrown if "pgrp has a supported value, but
// is not the process group ID of a process in the same session as the calling process."
// Since we _guarantee_ that this isn't the case (the child calls setpgid before it calls
// SIGSTOP, and the child was created in the same session as us), it seems that EPERM is
// being thrown because of an caching issue - the call to tcsetpgrp isn't seeing the
// newly-created process group just yet. On this developer's test machine (WSL running Linux
// 4.4.0), EPERM does indeed disappear on retry. The important thing is that we can
// guarantee the process isn't going to exit while we wait (which would cause us to possibly
// block indefinitely).
while unsafe { libc::tcsetpgrp(STDIN_FILENO, pgid.as_pid_t()) } != 0 {
FLOGF!(proc_termowner, "tcsetpgrp failed: %d", errno::errno().0);
// Before anything else, make sure that it's even necessary to call tcsetpgrp.
// Since it usually _is_ necessary, we only check in case it fails so as to avoid the
// unnecessary syscall and associated context switch, which profiling has shown to have
// a significant cost when running process groups in quick succession.
let getpgrp_res = unsafe { libc::tcgetpgrp(STDIN_FILENO) };
if getpgrp_res < 0 {
match errno::errno().0 {
ENOTTY => {
// stdin is not a tty. This may come about if job control is enabled but we are
// not a tty - see #6573.
return false;
}
EBADF => {
// stdin has been closed. Workaround a glibc bug - see #3644.
redirect_tty_output(false);
return false;
}
_ => {
perror("tcgetpgrp");
return false;
}
}
}
if getpgrp_res == pgid.get() {
FLOGF!(
proc_termowner,
"Process group %d already has control of terminal",
pgid
);
return true;
}
let pgroup_terminated;
if errno::errno().0 == EINVAL {
// OS X returns EINVAL if the process group no longer lives. Probably other OSes,
// too. Unlike EPERM below, EINVAL can only happen if the process group has
// terminated.
pgroup_terminated = true;
} else if errno::errno().0 == EPERM {
// Retry so long as this isn't because the process group is dead.
let mut result: libc::c_int = 0;
let wait_result = unsafe { libc::waitpid(-pgid.as_pid_t(), &mut result, WNOHANG) };
if wait_result == -1 {
// Note that -1 is technically an "error" for waitpid in the sense that an
// invalid argument was specified because no such process group exists any
// longer. This is the observed behavior on Linux 4.4.0. a "success" result
// would mean processes from the group still exist but is still running in some
// state or the other.
pgroup_terminated = true;
} else {
// Debug the original tcsetpgrp error (not the waitpid errno) to the log, and
// then retry until not EPERM or the process group has exited.
FLOGF!(
proc_termowner,
"terminal_give_to_job(): EPERM with pgid %d.",
pgid
);
continue;
}
} else if errno::errno().0 == ENOTTY {
// stdin is not a TTY. In general we expect this to be caught via the tcgetpgrp
// call's EBADF handler above.
return false;
} else {
FLOGF!(
warning,
"Could not send job %d ('%ls') with pgid %d to foreground",
jg.job_id.to_wstring(),
jg.command,
pgid
);
perror("tcsetpgrp");
return false;
}
if pgroup_terminated {
// All processes in the process group has exited.
// Since we delay reaping any processes in a process group until all members of that
// job/group have been started, the only way this can happen is if the very last
// process in the group terminated and didn't need to access the terminal, otherwise
// it would have hung waiting for terminal IO (SIGTTIN). We can safely ignore this.
FLOGF!(
proc_termowner,
"tcsetpgrp called but process group %d has terminated.\n",
pgid
);
return false;
}
break;
}
true
}
}
/// The destructor will assert if reclaim() has not been called.
impl Drop for TtyTransfer {
fn drop(&mut self) {
assert!(self.owner.is_none(), "Forgot to reclaim() the tty");
}
}
/// A type-safe equivalent to [`libc::pid_t`].
#[repr(transparent)]
#[derive(Clone, Copy, Debug, PartialOrd, Ord, PartialEq, Eq, Hash)]
pub struct Pid(NonZeroU32);
impl Pid {
#[inline(always)]
pub fn new(pid: i32) -> Option<Pid> {
// Construct a pid from an i32, which must be at least zero.
assert!(pid >= 0, "Pid must be at least zero");
NonZeroU32::new(pid as u32).map(Pid)
}
#[inline(always)]
pub fn get(&self) -> i32 {
self.0.get() as i32
}
#[inline(always)]
pub fn as_pid_t(&self) -> libc::pid_t {
#[allow(clippy::useless_conversion)]
self.get().into()
}
}
impl std::fmt::Display for Pid {
fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
std::fmt::Display::fmt(&self.get(), f)
}
}
impl ToWString for Pid {
fn to_wstring(&self) -> WString {
self.get().to_wstring()
}
}
impl fish_printf::ToArg<'static> for Pid {
fn to_arg(self) -> fish_printf::Arg<'static> {
self.get().to_arg()
}
}
#[derive(Default, Debug)]
pub struct AtomicPid(AtomicU32);
impl AtomicPid {
#[inline(always)]
pub fn load(&self) -> Option<Pid> {
Pid::new(self.0.load(Ordering::Relaxed) as i32)
}
#[inline(always)]
pub fn store(&self, pid: Pid) {
self.0.store(pid.get() as u32, Ordering::Relaxed);
}
#[inline(always)]
pub fn swap(&self, pid: Pid) -> Option<Pid> {
Pid::new(self.0.swap(pid.get() as u32, Ordering::Relaxed) as i32)
}
}
/// A structure representing a single fish process. Contains variables for tracking process state
/// and the process argument list. Actually, a fish process can be either a regular external
/// process, an internal builtin which may or may not spawn a fake IO process during execution, a
/// shellscript function or a block of commands to be evaluated by calling eval. Lastly, this
/// process can be the result of an exec command. The role of this process_t is determined by the
/// type field, which can be one of process_type_t::external, process_type_t::builtin,
/// process_type_t::function, process_type_t::exec.
///
/// The process_t contains information on how the process should be started, such as command name
/// and arguments, as well as runtime information on the status of the actual physical process which
/// represents it. Shellscript functions, builtins and blocks of code may all need to spawn an
/// external process that handles the piping and redirecting of IO for them.
///
/// If the process is of type process_type_t::external or process_type_t::exec, argv is the argument
/// array and actual_cmd is the absolute path of the command to execute.
///
/// If the process is of type process_type_t::builtin, argv is the argument vector, and argv[0] is
/// the name of the builtin command.
///
/// If the process is of type process_type_t::function, argv is the argument vector, and argv[0] is
/// the name of the shellscript function.
#[derive(Default)]
pub struct Process {
/// Note whether we are the first and/or last in the job
pub is_first_in_job: bool,
pub is_last_in_job: bool,
/// Type of process.
pub typ: ProcessType,
/// For internal block processes only, the node of the statement.
/// This is always either block, ifs, or switchs, never boolean or decorated.
pub block_node_source: Option<ParsedSourceRef>,
pub internal_block_node: Option<std::ptr::NonNull<ast::Statement>>,
/// The expanded variable assignments for this process, as specified by the `a=b cmd` syntax.
pub variable_assignments: Vec<ConcreteAssignment>,
/// Actual command to pass to exec in case of process_type_t::external or process_type_t::exec.
pub actual_cmd: WString,
/// Generation counts for reaping.
pub gens: GenerationsList,
/// Process ID or `None` where not available.
pub pid: AtomicPid,
/// If we are an "internal process," that process.
pub internal_proc: RefCell<Option<Arc<InternalProc>>>,
/// File descriptor that pipe output should bind to.
pub pipe_write_fd: RawFd,
/// True if process has completed.
pub completed: RelaxedAtomicBool,
/// True if process has stopped.
pub stopped: RelaxedAtomicBool,
/// If set, this process is (or will become) the pgroup leader.
/// This is only meaningful for external processes.
pub leads_pgrp: bool,
/// Whether we have generated a proc_exit event.
pub posted_proc_exit: RelaxedAtomicBool,
/// Reported status value.
pub status: ProcStatus,
pub last_times: Cell<ProcTimes>,
argv: Vec<WString>,
proc_redirection_specs: RedirectionSpecList,
// The wait handle. This is constructed lazily, and cached.
// This may be null.
wait_handle: RefCell<Option<WaitHandleRef>>,
}
#[derive(Default, Clone, Copy)]
pub struct ProcTimes {
/// Last time of cpu time check, in seconds (per timef).
pub time: Timepoint,
/// Number of jiffies spent in process at last cpu time check.
pub jiffies: ClockTicks,
}
pub struct ConcreteAssignment {
pub variable_name: WString,
pub values: Vec<WString>,
}
impl ConcreteAssignment {
pub fn new(variable_name: WString, values: Vec<WString>) -> Self {
Self {
variable_name,
values,
}
}
}
impl Process {
pub fn new() -> Self {
Default::default()
}
/// Retrieves the associated [`libc::pid_t`], `None` if unset.
#[inline(always)]
pub fn pid(&self) -> Option<Pid> {
self.pid.load()
}
#[inline(always)]
pub fn has_pid(&self) -> bool {
self.pid().is_some()
}
/// Sets the process' pid. Panics if a pid has already been set.
pub fn set_pid(&self, pid: libc::pid_t) {
let pid = Pid::new(pid).expect("Invalid pid passed to Process::set_pid()");
let old = self.pid.swap(pid);
assert!(old.is_none(), "Process::set_pid() called more than once!");
}
/// Sets argv.
pub fn set_argv(&mut self, argv: Vec<WString>) {
self.argv = argv;
}
/// Returns argv.
pub fn argv(&self) -> &Vec<WString> {
&self.argv
}
/// Returns argv[0].
pub fn argv0(&self) -> Option<&wstr> {
self.argv.get(0).map(|s| s.as_utfstr())
}
/// Redirection list getter and setter.
pub fn redirection_specs(&self) -> &RedirectionSpecList {
&self.proc_redirection_specs
}
pub fn redirection_specs_mut(&mut self) -> &mut RedirectionSpecList {
&mut self.proc_redirection_specs
}
pub fn set_redirection_specs(&mut self, specs: RedirectionSpecList) {
self.proc_redirection_specs = specs;
}
/// Store the current topic generations. That is, right before the process is launched, record
/// the generations of all topics; then we can tell which generation values have changed after
/// launch. This helps us avoid spurious waitpid calls.
pub fn check_generations_before_launch(&self) {
self.gens
.update(&topic_monitor_principal().current_generations());
}
/// Mark that this process was part of a pipeline which was aborted.
/// The process was never successfully launched; give it a status of EXIT_FAILURE.
pub fn mark_aborted_before_launch(&self) {
self.completed.store(true);
// The status may have already been set to e.g. STATUS_NOT_EXECUTABLE.
// Only stomp a successful status.
if self.status.is_success() {
self.status
.set_status(ProcStatus::from_exit_code(libc::EXIT_FAILURE).status())
}
}
/// Return whether this process type is internal (block, function, or builtin).
pub fn is_internal(&self) -> bool {
match self.typ {
ProcessType::builtin | ProcessType::function | ProcessType::block_node => true,
ProcessType::external | ProcessType::exec => false,
}
}
/// Return the wait handle for the process, if it exists.
pub fn get_wait_handle(&self) -> Option<WaitHandleRef> {
self.wait_handle.borrow().clone()
}
pub fn is_stopped(&self) -> bool {
self.stopped.load()
}
pub fn is_completed(&self) -> bool {
self.completed.load()
}
/// Create a wait handle for the process.
/// As a process does not know its job id, we pass it in.
/// Note this will return null if the process is not waitable (has no pid).
pub fn make_wait_handle(&self, jid: InternalJobId) -> Option<WaitHandleRef> {
if self.typ != ProcessType::external || self.pid().is_none() {
// Not waitable.
None
} else {
if self.wait_handle.borrow().is_none() {
self.wait_handle.replace(Some(WaitHandle::new(
self.pid().unwrap(),
jid,
wbasename(&self.actual_cmd.clone()).to_owned(),
)));
}
self.get_wait_handle()
}
}
}
pub type ProcessPtr = Box<Process>;
pub type ProcessList = Vec<ProcessPtr>;
/// A set of jobs properties. These are immutable: they do not change for the lifetime of the
/// job.
#[derive(Default, Clone, Copy)]
pub struct JobProperties {
/// Whether the specified job is a part of a subshell, event handler or some other form of
/// special job that should not be reported.
pub skip_notification: bool,
/// Whether the job had the background ampersand when constructed, e.g. /bin/echo foo &
/// Note that a job may move between foreground and background; this just describes what the
/// initial state should be.
pub initial_background: bool,
/// Whether this job was created as part of an event handler.
pub from_event_handler: bool,
}
/// Flags associated with the job.
#[derive(Default)]
pub struct JobFlags {
/// Whether the specified job is completely constructed: every process in the job has been
/// forked, etc.
pub constructed: bool,
/// Whether the user has been notified that this job is stopped (if it is).
pub notified_of_stop: bool,
/// Whether the exit status should be negated. This flag can only be set by the not builtin.
/// Two "not" prefixes on a single job cancel each other out.
pub negate: bool,
/// This job is disowned, and should be removed from the active jobs list.
pub disown_requested: bool,
// Indicates that we are the "group root." Any other jobs using this tree are nested.
pub is_group_root: bool,
}
/// A struct representing a job. A job is a pipeline of one or more processes.
#[derive(Default)]
pub struct Job {
/// Set of immutable job properties.
properties: JobProperties,
/// The original command which led to the creation of this job. It is used for displaying
/// messages about job status on the terminal.
command_str: WString,
/// All the processes in this job.
pub processes: ProcessList,
// The group containing this job.
// This is never cleared.
pub group: Option<JobGroupRef>,
/// A non-user-visible, never-recycled job ID.
pub internal_job_id: InternalJobId,
/// Flags associated with the job.
pub job_flags: RefCell<JobFlags>,
}
impl Job {
pub fn new(properties: JobProperties, command_str: WString) -> Self {
static NEXT_INTERNAL_JOB_ID: AtomicU64 = AtomicU64::new(0);
Job {
properties,
command_str,
internal_job_id: NEXT_INTERNAL_JOB_ID.fetch_add(1, Ordering::Relaxed),
..Default::default()
}
}
pub fn group(&self) -> &JobGroup {
self.group.as_ref().unwrap()
}
/// Returns the command.
pub fn command(&self) -> &wstr {
&self.command_str
}
/// Borrow the job's process list. Only read-only or interior mutability actions may be
/// performed on the processes in the list.
pub fn processes(&self) -> &ProcessList {
&self.processes
}
/// Get mutable access to the job's process list.
/// Only available with a mutable reference `&mut Job`.
pub fn processes_mut(&mut self) -> &mut ProcessList {
&mut self.processes
}
/// A read-only view of external processes running in the job's process list.
///
/// Equivalent to `processes().iter().filter(|p| p.pid.is_some())`.
#[inline(always)]
pub fn external_procs(&self) -> impl Iterator<Item = &ProcessPtr> {
self.processes.iter().filter(|p| p.pid.load().is_some())
}
/// Return whether it is OK to reap a given process. Sometimes we want to defer reaping a
/// process if it is the group leader and the job is not yet constructed, because then we might
/// also reap the process group and then we cannot add new processes to the group.
pub fn can_reap(&self, p: &ProcessPtr) -> bool {
!(
// Can't reap twice.
p.is_completed() ||
// Can't reap the group leader in an under-construction job.
(!self.is_constructed() && self.get_pgid() == p.pid())
)
}
/// Returns a truncated version of the job string. Used when a message has already been emitted
/// containing the full job string and job id, but using the job id alone would be confusing
/// due to reuse of freed job ids. Prevents overloading the debug comments with the full,
/// untruncated job string when we don't care what the job is, only which of the currently
/// running jobs it is.
pub fn preview(&self) -> WString {
if self.processes().is_empty() {
return L!("").to_owned();
}
// Note argv0 may be empty in e.g. a block process.
let procs = self.processes();
let result = procs.first().unwrap().argv0().unwrap_or(L!("null"));
result.to_owned() + L!("...")
}
/// Return our pgid, or none if we don't have one, or are internal to fish
/// This never returns fish's own pgroup.
pub fn get_pgid(&self) -> Option<Pid> {
self.group().get_pgid()
}
/// Return the pid of the last external process in the job.
/// This may be none if the job consists of just internal fish functions or builtins.
/// This will never be fish's own pid.
pub fn get_last_pid(&self) -> Option<Pid> {
self.external_procs()
.last()
.and_then(|proc| proc.pid.load())
}
/// The id of this job.
/// This is user-visible, is recycled, and may be -1.
pub fn job_id(&self) -> MaybeJobId {
self.group().job_id
}
/// Access the job flags.
pub fn flags(&self) -> Ref<JobFlags> {
self.job_flags.borrow()
}
/// Access mutable job flags.
pub fn mut_flags(&self) -> RefMut<JobFlags> {
self.job_flags.borrow_mut()
}
/// Return if we want job control.
pub fn wants_job_control(&self) -> bool {
self.group().wants_job_control()
}
pub fn entitled_to_terminal(&self) -> bool {
self.group().is_foreground() && self.processes().iter().any(|p| !p.is_internal())
}
/// Return whether this job is initially going to run in the background, because & was
/// specified.
pub fn is_initially_background(&self) -> bool {
self.properties.initial_background
}
/// Mark this job as constructed. The job must not have previously been marked as constructed.
pub fn mark_constructed(&self) {
assert!(!self.is_constructed(), "Job was already constructed");
self.mut_flags().constructed = true;
}
/// Return whether we have internal or external procs, respectively.
/// Internal procs are builtins, blocks, and functions.
/// External procs include exec and external.
pub fn has_external_proc(&self) -> bool {
self.processes().iter().any(|p| !p.is_internal())
}
/// Return whether this job, when run, will want a job ID.
/// Jobs that are only a single internal block do not get a job ID.
pub fn wants_job_id(&self) -> bool {
self.processes().len() > 1
|| !self.processes()[0].is_internal()
|| self.is_initially_background()
}
// Helper functions to check presence of flags on instances of jobs
/// The job has been fully constructed, i.e. all its member processes have been launched
pub fn is_constructed(&self) -> bool {
self.flags().constructed
}
/// The job is complete, i.e. all its member processes have been reaped
/// Return true if all processes in the job have completed.
pub fn is_completed(&self) -> bool {
assert!(!self.processes().is_empty());
self.processes().iter().all(|p| p.is_completed())
}
/// The job is in a stopped state
/// Return true if all processes in the job are stopped or completed, and there is at least one
/// stopped process.
pub fn is_stopped(&self) -> bool {
let mut has_stopped = false;
for p in self.processes().iter() {
if !p.is_completed() && !p.is_stopped() {
return false;
}
has_stopped |= p.is_stopped();
}
has_stopped
}
/// The job is OK to be externally visible, e.g. to the user via `jobs`
pub fn is_visible(&self) -> bool {
!self.is_completed() && self.is_constructed() && !self.flags().disown_requested
}
pub fn skip_notification(&self) -> bool {
self.properties.skip_notification
}
#[allow(clippy::wrong_self_convention)]
pub fn from_event_handler(&self) -> bool {
self.properties.from_event_handler
}
/// Return whether this job's group is in the foreground.
pub fn is_foreground(&self) -> bool {
self.group().is_foreground()
}
/// Return whether we should post job_exit events.
pub fn posts_job_exit_events(&self) -> bool {
// Only report root job exits.
// For example in `ls | begin ; cat ; end` we don't need to report the cat sub-job.
if !self.flags().is_group_root {
return false;
}
// Only jobs with external processes post job_exit events.
self.has_external_proc()
}
/// Run ourselves. Returning once we complete or stop.
pub fn continue_job(&self, parser: &Parser) {
FLOGF!(
proc_job_run,
"Run job %d (%ls), %ls, %ls",
self.job_id(),
self.command(),
if self.is_completed() {
"COMPLETED"
} else {
"UNCOMPLETED"
},
if parser.libdata().is_interactive {
"INTERACTIVE"
} else {
"NON-INTERACTIVE"
}
);
// Wait for the status of our own job to change.
while !fish_is_unwinding_for_exit() && !self.is_stopped() && !self.is_completed() {
process_mark_finished_children(parser, true);
}
if self.is_completed() {
// Set $status only if we are in the foreground and the last process in the job has
// finished.
let procs = self.processes();
let p = procs.last().unwrap();
if p.status.normal_exited() || p.status.signal_exited() {
if let Some(statuses) = self.get_statuses() {
parser.set_last_statuses(statuses);
parser.libdata_mut().status_count += 1;
}
}
}
}
/// Prepare to resume a stopped job by sending SIGCONT and clearing the stopped flag.
/// Return true on success, false if we failed to send the signal.
pub fn resume(&self) -> bool {
self.mut_flags().notified_of_stop = false;
if !self.signal(SIGCONT) {
FLOGF!(
proc_pgroup,
"Failed to send SIGCONT to procs in job %ls",
self.command()
);
return false;
}
// Reset the status of each process instance
for p in self.processes.iter() {
p.stopped.store(false);
}
true
}
/// Send the specified signal to all processes in this job.
/// Return true on success, false on failure.
pub fn signal(&self, signal: i32) -> bool {
if let Some(pgid) = self.group().get_pgid() {
if unsafe { libc::killpg(pgid.as_pid_t(), signal) } == -1 {
let strsignal = unsafe { libc::strsignal(signal) };
let strsignal = if strsignal.is_null() {
L!("(nil)").to_owned()
} else {
charptr2wcstring(strsignal)
};
wperror(&sprintf!("killpg(%d, %s)", pgid, strsignal));
return false;
}
} else {
// This job lives in fish's pgroup and we need to signal procs individually.
for p in self.external_procs() {
if !p.is_completed()
&& unsafe { libc::kill(p.pid().unwrap().as_pid_t(), signal) } == -1
{
return false;
}
}
}
true
}
/// Returns the statuses for this job.
pub fn get_statuses(&self) -> Option<Statuses> {
let mut st = Statuses::default();
let mut has_status = false;
let mut laststatus = 0;
st.pipestatus.resize(self.processes().len(), 0);
for (i, p) in self.processes().iter().enumerate() {
let status = &p.status;
if status.is_empty() {
// Corner case for if a variable assignment is part of a pipeline.
// e.g. `false | set foo bar | true` will push 1 in the second spot,
// for a complete pipestatus of `1 1 0`.
st.pipestatus[i] = laststatus;
continue;
}
if status.signal_exited() {
st.kill_signal = Some(Signal::new(status.signal_code()));
}
laststatus = status.status_value();
has_status = true;
st.pipestatus[i] = status.status_value();
}
if !has_status {
return None;
}
st.status = if self.flags().negate {
if laststatus == 0 {
1
} else {
0
}
} else {
laststatus
};
Some(st)
}
}
pub type JobRef = Rc<Job>;
/// Whether this shell is attached to a tty.
pub fn is_interactive_session() -> bool {
IS_INTERACTIVE_SESSION.load()
}
pub fn set_interactive_session(flag: bool) {
IS_INTERACTIVE_SESSION.store(flag)
}
static IS_INTERACTIVE_SESSION: RelaxedAtomicBool = RelaxedAtomicBool::new(false);
/// Whether we are a login shell.
pub fn get_login() -> bool {
IS_LOGIN.load()
}
pub fn mark_login() {
IS_LOGIN.store(true)
}
static IS_LOGIN: RelaxedAtomicBool = RelaxedAtomicBool::new(false);
/// If this flag is set, fish will never fork or run execve. It is used to put fish into a syntax
/// verifier mode where fish tries to validate the syntax of a file but doesn't actually do
/// anything.
pub fn no_exec() -> bool {
IS_NO_EXEC.load()
}
pub fn mark_no_exec() {
IS_NO_EXEC.store(true)
}
static IS_NO_EXEC: RelaxedAtomicBool = RelaxedAtomicBool::new(false);
// List of jobs.
pub type JobList = Vec<JobRef>;
/// The current job control mode.
///
/// Must be one of job_control_t::all, job_control_t::interactive and job_control_t::none.
pub fn get_job_control_mode() -> JobControl {
unsafe { std::mem::transmute(JOB_CONTROL_MODE.load(Ordering::Relaxed)) }
}
pub fn set_job_control_mode(mode: JobControl) {
JOB_CONTROL_MODE.store(mode as u8, Ordering::Relaxed);
// HACK: when fish (or any shell) launches a job with job control, it will put the job into its
// own pgroup and call tcsetpgrp() to allow that pgroup to own the terminal (making fish a
// background process). When the job finishes, fish will try to reclaim the terminal via
// tcsetpgrp(), but as fish is now a background process it will receive SIGTTOU and stop! Ensure
// that doesn't happen by ignoring SIGTTOU.
// Note that if we become interactive, we also ignore SIGTTOU.
if mode == JobControl::all {
unsafe {
libc::signal(SIGTTOU, SIG_IGN);
}
}
}
static JOB_CONTROL_MODE: AtomicU8 = AtomicU8::new(JobControl::interactive as u8);
/// Notify the user about stopped or terminated jobs, and delete completed jobs from the job list.
/// If `interactive` is set, allow removing interactive jobs; otherwise skip them.
/// Return whether text was printed to stdout.
pub fn job_reap(parser: &Parser, allow_interactive: bool) -> bool {
parser.assert_can_execute();
// Early out for the common case that there are no jobs.
if parser.jobs().is_empty() {
return false;
}
process_mark_finished_children(parser, false /* not block_ok */);
process_clean_after_marking(parser, allow_interactive)
}
/// Return the list of background jobs which we should warn the user about, if the user attempts to
/// exit. An empty result (common) means no such jobs.
pub fn jobs_requiring_warning_on_exit(parser: &Parser) -> JobList {
let mut result = vec![];
for job in parser.jobs().iter() {
if !job.is_foreground() && job.is_constructed() && !job.is_completed() {
result.push(job.clone());
}
}
result
}
/// Print the exit warning for the given jobs, which should have been obtained via
/// jobs_requiring_warning_on_exit().
pub fn print_exit_warning_for_jobs(jobs: &JobList) {
printf!("%s", wgettext!("There are still jobs active:\n"));
printf!("%s", wgettext!("\n PID Command\n"));
for j in jobs {
// Unwrap safety: we can't have a background job that doesn't have an external process and
// external processes always have a pid set.
printf!(
"%6d %ls\n",
j.external_procs().next().and_then(|p| p.pid()).unwrap(),
j.command()
);
}
printf!("\n");
printf!(
"%s",
wgettext!("A second attempt to exit will terminate them.\n"),
);
printf!(
"%s",
wgettext!("Use 'disown PID' to remove jobs from the list without terminating them.\n"),
);
reader_schedule_prompt_repaint();
}
/// Use the procfs filesystem to look up how many jiffies of cpu time was used by a given pid. This
/// function is only available on systems with the procfs file entry 'stat', i.e. Linux.
pub fn proc_get_jiffies(inpid: Pid) -> ClockTicks {
if !have_proc_stat() {
return 0;
}
let filename = format!("/proc/{}/stat", inpid);
let Ok(mut f) = fs::File::open(filename) else {
return 0;
};
let mut buf = vec![];
if f.read_to_end(&mut buf).is_err() {
return 0;
}
let mut timesstrs = buf.split(|c| *c == b' ').skip(13);
let mut sum = 0;
for _ in 0..4 {
let Some(timestr) = timesstrs.next() else {
return 0;
};
let Ok(timestr) = std::str::from_utf8(timestr) else {
return 0;
};
let Ok(time) = str::parse::<u64>(timestr) else {
return 0;
};
sum += time;
}
sum
}
/// Update process time usage for all processes by calling the proc_get_jiffies function for every
/// process of every job.
pub fn proc_update_jiffies(parser: &Parser) {
for job in parser.jobs().iter() {
for p in job.external_procs() {
p.last_times.replace(ProcTimes {
time: timef(),
jiffies: proc_get_jiffies(p.pid.load().unwrap()),
});
}
}
}
/// Initializations.
pub fn proc_init() {
signal_set_handlers_once(false);
}
/// Set the status of `proc` to `status`.
fn handle_child_status(job: &Job, proc: &Process, status: &ProcStatus) {
proc.status.update(status);
if status.stopped() {
proc.stopped.store(true);
} else if status.continued() {
proc.stopped.store(false);
} else {
proc.completed.store(true);
}
// If the child was killed by SIGINT or SIGQUIT, then cancel the entire group if interactive. If
// not interactive, we have historically re-sent the signal to ourselves; however don't do that
// if the signal is trapped (#6649).
// Note the asymmetry: if the fish process gets SIGINT we will run SIGINT handlers. If a child
// process gets SIGINT we do not run SIGINT handlers; we just don't exit. This should be
// rationalized.
if status.signal_exited() {
let sig = status.signal_code();
if [SIGINT, SIGQUIT].contains(&sig) {
if is_interactive_session() {
// Mark the job group as cancelled.
job.group().cancel_with_signal(Signal::new(sig));
} else if !event::is_signal_observed(sig) {
// Deliver the SIGINT or SIGQUIT signal to ourself since we're not interactive.
let mut act: libc::sigaction = unsafe { std::mem::zeroed() };
unsafe { libc::sigemptyset(&mut act.sa_mask) };
act.sa_flags = 0;
act.sa_sigaction = SIG_DFL;
unsafe {
libc::sigaction(sig, &act, std::ptr::null_mut());
libc::kill(libc::getpid(), sig);
}
}
}
}
}
/// Wait for any process finishing, or receipt of a signal.
pub fn proc_wait_any(parser: &Parser) {
process_mark_finished_children(parser, true /*block_ok*/);
let is_interactive = parser.libdata().is_interactive;
process_clean_after_marking(parser, is_interactive);
}
/// Send SIGHUP to the list `jobs`, excepting those which are in fish's pgroup.
pub fn hup_jobs(jobs: &JobList) {
let fish_pgrp = unsafe { libc::getpgrp() };
let mut kill_list = Vec::new();
for j in jobs {
let Some(pgid) = j.get_pgid() else { continue };
if pgid.as_pid_t() != fish_pgrp && !j.is_completed() {
j.signal(SIGHUP);
if j.is_stopped() {
j.signal(SIGCONT);
}
// For most applications, the above alone is sufficient for the suspended process to
// exit. But for TUI applications attached to the tty, when we SIGCONT them they might
// immediately try to re-attach to the tty and end up immediately back in a stopped
// state! In this case, when the shell exits and gives up control of the tty, the kernel
// tty driver typically sends SIGHUP + SIGCONT on its own, and with the shell no longer
// in control of the tty, the child process won't receive SIGTTOU this time around and
// can properly handle the SIGHUP and exit.
// Anyway, the fun part of all this is that WSLv1 doesn't do any of this and stopped
// backgrounded child processes that want tty access will remain stopped with SIGTTOU
// indefinitely.
if is_windows_subsystem_for_linux(WSL::V1) {
kill_list.push(j);
}
}
}
if !kill_list.is_empty() {
// Sleep once for all child processes to give them a chance to handle SIGHUP if they can
// handle SIGHUP+SIGCONT without running into SIGTTOU.
std::thread::sleep(std::time::Duration::from_millis(50));
for j in kill_list.drain(..) {
j.signal(SIGKILL);
}
}
}
/// Add a job to the list of PIDs/PGIDs we wait on even though they are not associated with any
/// jobs. Used to avoid zombie processes after disown.
pub fn add_disowned_job(j: &Job) {
let mut disowned_pids = DISOWNED_PIDS.get().borrow_mut();
for process in j.external_procs() {
disowned_pids.push(process.pid().unwrap());
}
}
// Reap any pids in our disowned list that have exited. This is used to avoid zombies.
fn reap_disowned_pids() {
let mut disowned_pids = DISOWNED_PIDS.get().borrow_mut();
// waitpid returns 0 iff the PID/PGID in question has not changed state; remove the pid/pgid
// if it has changed or an error occurs (presumably ECHILD because the child does not exist)
disowned_pids.retain(|pid| {
let mut status: libc::c_int = 0;
let ret = unsafe { libc::waitpid(pid.as_pid_t(), &mut status, WNOHANG) };
if ret > 0 {
FLOGF!(proc_reap_external, "Reaped disowned PID or PGID %d", pid);
}
ret == 0
});
}
/// A list of pids that have been disowned. They are kept around until either they exit or
/// we exit. Poll these from time-to-time to prevent zombie processes from happening (#5342).
static DISOWNED_PIDS: MainThread<RefCell<Vec<Pid>>> = MainThread::new(RefCell::new(Vec::new()));
/// See if any reapable processes have exited, and mark them accordingly.
/// \param block_ok if no reapable processes have exited, block until one is (or until we receive a
/// signal).
fn process_mark_finished_children(parser: &Parser, block_ok: bool) {
parser.assert_can_execute();
// Get the exit and signal generations of all reapable processes.
// The exit generation tells us if we have an exit; the signal generation allows for detecting
// SIGHUP and SIGINT.
// Go through each process and figure out if and how it wants to be reaped.
let mut reapgens = GenerationsList::invalid();
for j in parser.jobs().iter() {
for proc in j.processes().iter() {
if !j.can_reap(proc) {
continue;
}
if proc.has_pid() {
// Reaps with a pid.
reapgens.set_min_from(Topic::sigchld, &proc.gens);
reapgens.set_min_from(Topic::sighupint, &proc.gens);
}
if proc.internal_proc.borrow().is_some() {
// Reaps with an internal process.
reapgens.set_min_from(Topic::internal_exit, &proc.gens);
reapgens.set_min_from(Topic::sighupint, &proc.gens);
}
}
}
// Now check for changes, optionally waiting.
if !topic_monitor_principal().check(&reapgens, block_ok) {
// Nothing changed.
return;
}
// We got some changes. Since we last checked we received SIGCHLD, and or HUP/INT.
// Update the hup/int generations and reap any reapable processes.
// We structure this as two loops for some simplicity.
// First reap all pids.
for j in parser.jobs().iter() {
for proc in j.external_procs() {
// It's an external proc so it has a pid, but is it reapable?
if !j.can_reap(proc) {
continue;
}
// Always update the signal hup/int gen.
proc.gens.sighupint.set(reapgens.sighupint.get());
// Nothing to do if we did not get a new sigchld.
if proc.gens.sigchld == reapgens.sigchld {
continue;
}
proc.gens.sigchld.set(reapgens.sigchld.get());
// Ok, we are reapable. Run waitpid()!
let mut statusv: libc::c_int = -1;
let pid = unsafe {
libc::waitpid(
proc.pid().unwrap().as_pid_t(),
&mut statusv,
WNOHANG | WUNTRACED | WCONTINUED,
)
};
let Some(pid) = Pid::new(pid) else {
continue;
};
assert!(pid == proc.pid().unwrap(), "Unexpected waitpid() return");
// The process has stopped or exited! Update its status.
let status = ProcStatus::from_waitpid(statusv);
handle_child_status(j, proc, &status);
if status.stopped() {
j.group().set_is_foreground(false);
}
if status.continued() {
j.mut_flags().notified_of_stop = false;
}
if status.normal_exited() || status.signal_exited() {
FLOGF!(
proc_reap_external,
"Reaped external process '%ls' (pid %d, status %d)",
proc.argv0().unwrap(),
pid,
proc.status.status_value()
);
} else {
assert!(status.stopped() || status.continued());
FLOGF!(
proc_reap_external,
"External process '%ls' (pid %d, %s)",
proc.argv0().unwrap(),
proc.pid().unwrap(),
if proc.status.stopped() {
"stopped"
} else {
"continued"
}
);
}
}
}
// We are done reaping pids.
// Reap internal processes.
for j in parser.jobs().iter() {
for proc in j.processes.iter() {
// Does this proc have an internal process that is reapable?
if proc.internal_proc.borrow().is_none() || !j.can_reap(proc) {
continue;
}
// Always update the signal hup/int gen.
proc.gens.sighupint.set(reapgens.sighupint.get());
// Nothing to do if we did not get a new internal exit.
if proc.gens.internal_exit == reapgens.internal_exit {
continue;
}
proc.gens.internal_exit.set(reapgens.internal_exit.get());
// Keep the borrow so we don't keep borrowing again and again and unwrapping again and
// again below.
let borrow = proc.internal_proc.borrow();
let internal_proc = borrow.as_ref().unwrap();
// Has the process exited?
if !internal_proc.exited() {
continue;
}
// The process gets the status from its internal proc.
let status = internal_proc.get_status();
handle_child_status(j, proc, &status);
FLOGF!(
proc_reap_internal,
"Reaped internal process '%ls' (id %llu, status %d)",
proc.argv0().unwrap(),
internal_proc.get_id(),
proc.status.status_value(),
);
}
}
// Remove any zombies.
reap_disowned_pids();
}
/// Generate process_exit events for any completed processes in `j`.
fn generate_process_exit_events(j: &Job, out_evts: &mut Vec<Event>) {
// Historically we have avoided generating events for foreground jobs from event handlers, as an
// event handler may itself produce a new event.
if !j.from_event_handler() || !j.is_foreground() {
for p in j.external_procs() {
if p.is_completed() && !p.posted_proc_exit.load() {
p.posted_proc_exit.store(true);
out_evts.push(Event::process_exit(
p.pid().unwrap(),
p.status.status_value(),
));
}
}
}
}
/// Given a job that has completed, generate job_exit and caller_exit events.
fn generate_job_exit_events(j: &Job, out_evts: &mut Vec<Event>) {
// Generate proc and job exit events, except for foreground jobs originating in event handlers.
if !j.from_event_handler() || !j.is_foreground() {
// job_exit events.
if j.posts_job_exit_events() {
if let Some(last_pid) = j.get_last_pid() {
out_evts.push(Event::job_exit(last_pid, j.internal_job_id));
}
}
}
// Generate caller_exit events.
out_evts.push(Event::caller_exit(j.internal_job_id, j.job_id()));
}
/// Return whether to emit a fish_job_summary call for a process.
fn proc_wants_summary(j: &Job, p: &Process) -> bool {
// Are we completed with a pid?
if !p.is_completed() || !p.has_pid() {
return false;
}
// Did we die due to a signal other than SIGPIPE?
let s = &p.status;
if !s.signal_exited() || s.signal_code() == SIGPIPE {
return false;
}
// Does the job want to suppress notifications?
// Note we always report crashes.
if j.skip_notification() && !CRASHSIGNALS.contains(&s.signal_code()) {
return false;
}
true
}
/// Return whether to emit a fish_job_summary call for a job as a whole. We may also emit this for
/// its individual processes.
fn job_wants_summary(j: &Job) -> bool {
// Do we just skip notifications?
if j.skip_notification() {
return false;
}
// Do we have a single process which will also report? If so then that suffices for us.
if j.processes().len() == 1 && proc_wants_summary(j, &j.processes()[0]) {
return false;
}
// Are we foreground?
// The idea here is to not print status messages for jobs that execute in the foreground (i.e.
// without & and without being `bg`).
if j.is_foreground() {
return false;
}
true
}
/// Return whether we want to emit a fish_job_summary call for a job or any of its processes.
fn job_or_proc_wants_summary(j: &Job) -> bool {
job_wants_summary(j) || j.processes().iter().any(|p| proc_wants_summary(j, p))
}
/// Invoke the fish_job_summary function by executing the given command.
fn call_job_summary(parser: &Parser, cmd: &wstr) {
let event = Event::generic(L!("fish_job_summary").to_owned());
let b = parser.push_block(Block::event_block(event));
let saved_status = parser.get_last_statuses();
parser.eval(cmd, &IoChain::new());
parser.set_last_statuses(saved_status);
parser.pop_block(b);
}
// Return a command which invokes fish_job_summary.
// The process pointer may be null, in which case it represents the entire job.
// Note this implements the arguments which fish_job_summary expects.
fn summary_command(j: &Job, p: Option<&Process>) -> WString {
let mut buffer = L!("fish_job_summary").to_owned();
// Job id.
buffer += &sprintf!(" %s", j.job_id().to_wstring())[..];
// 1 if foreground, 0 if background.
buffer += &sprintf!(" %d", if j.is_foreground() { 1 } else { 0 })[..];
// Command.
buffer.push(' ');
buffer += &escape(j.command())[..];
match p {
None => {
// No process, we are summarizing the whole job.
buffer += if j.is_stopped() {
L!(" STOPPED")
} else {
L!(" ENDED")
};
}
Some(p) => {
// We are summarizing a process which exited with a signal.
// Arguments are the signal name and description.
let sig = Signal::new(p.status.signal_code());
buffer.push(' ');
buffer += &escape(sig.name())[..];
buffer.push(' ');
buffer += &escape(sig.desc())[..];
// If we have multiple processes, we also append the pid and argv.
if j.external_procs().count() > 1 {
// I don't think it's safe to blindly unwrap here because even though we exited with
// a signal, the job could have contained a fish function?
let pid = p.pid().map(|p| p.to_string()).unwrap_or("-".to_string());
buffer += &sprintf!(" %s", pid)[..];
buffer.push(' ');
buffer += &escape(p.argv0().unwrap())[..];
}
}
}
buffer
}
// Summarize a list of jobs, by emitting calls to fish_job_summary.
// Note the given list must NOT be the parser's own job list, since the call to fish_job_summary
// could modify it.
fn summarize_jobs(parser: &Parser, jobs: &[JobRef]) -> bool {
if jobs.is_empty() {
return false;
}
for j in jobs {
if j.is_stopped() {
call_job_summary(parser, &summary_command(j, None));
} else {
// Completed job.
for p in j.processes().iter() {
if proc_wants_summary(j, p) {
call_job_summary(parser, &summary_command(j, Some(p)));
}
}
// Overall status for the job.
if job_wants_summary(j) {
call_job_summary(parser, &summary_command(j, None));
}
}
}
true
}
/// Remove all disowned jobs whose job chain is fully constructed (that is, do not erase disowned
/// jobs that still have an in-flight parent job). Note we never print statuses for such jobs.
fn remove_disowned_jobs(jobs: &mut JobList) {
jobs.retain(|j| !j.flags().disown_requested || !j.is_constructed());
}
/// Given that a job has completed, check if it may be wait'ed on; if so add it to the wait handle
/// store. Then mark all wait handles as complete.
fn save_wait_handle_for_completed_job(job: &Job, store: &mut WaitHandleStore) {
assert!(job.is_completed(), "Job not completed");
// Are we a background job?
if !job.is_foreground() {
for proc in job.processes().iter() {
if let Some(wh) = proc.make_wait_handle(job.internal_job_id) {
store.add(wh);
}
}
}
// Mark all wait handles as complete (but don't create just for this).
for proc in job.processes().iter() {
if let Some(wh) = proc.get_wait_handle() {
wh.set_status_and_complete(proc.status.status_value());
}
}
}
/// Remove completed jobs from the job list, printing status messages as appropriate.
/// Return whether something was printed.
fn process_clean_after_marking(parser: &Parser, allow_interactive: bool) -> bool {
parser.assert_can_execute();
// This function may fire an event handler, we do not want to call ourselves recursively (to
// avoid infinite recursion).
if parser.libdata().is_cleaning_procs {
return false;
}
let _cleaning = scoped_push_replacer(
|new_value| std::mem::replace(&mut parser.libdata_mut().is_cleaning_procs, new_value),
true,
);
// This may be invoked in an exit handler, after the TERM has been torn down
// Don't try to print in that case (#3222)
let interactive = allow_interactive && term().is_some();
// Remove all disowned jobs.
remove_disowned_jobs(&mut parser.jobs_mut());
// Accumulate exit events into a new list, which we fire after the list manipulation is
// complete.
let mut exit_events = vec![];
// Defer processing under-construction jobs or jobs that want a message when we are not
// interactive.
let should_process_job = |j: &Job| {
// Do not attempt to process jobs which are not yet constructed.
// Do not attempt to process jobs that need to print a status message,
// unless we are interactive, in which case printing is OK.
j.is_constructed() && (interactive || !job_or_proc_wants_summary(j))
};
// The list of jobs to summarize. Some of these jobs are completed and are removed from the
// parser's job list, others are stopped and remain in the list.
let mut jobs_to_summarize = vec![];
// Handle stopped jobs. These stay in our list.
for j in parser.jobs().iter() {
if j.is_stopped()
&& !j.flags().notified_of_stop
&& should_process_job(j)
&& job_wants_summary(j)
{
j.mut_flags().notified_of_stop = true;
jobs_to_summarize.push(j.clone());
}
}
// Generate process_exit events for finished processes.
for j in parser.jobs().iter() {
generate_process_exit_events(j, &mut exit_events);
}
// Remove completed, processable jobs from our job list.
let mut completed_jobs = vec![];
parser.jobs_mut().retain(|j| {
if !should_process_job(j) || !j.is_completed() {
return true;
}
// We are committed to removing this job.
// Remember it for summary later, generate exit events, maybe save its wait handle if it
// finished in the background.
if job_or_proc_wants_summary(j) {
jobs_to_summarize.push(j.clone());
}
generate_job_exit_events(j, &mut exit_events);
completed_jobs.push(j.clone());
false
});
for j in completed_jobs {
save_wait_handle_for_completed_job(&j, &mut parser.mut_wait_handles());
}
// Emit calls to fish_job_summary.
let printed = summarize_jobs(parser, &jobs_to_summarize);
// Post pending exit events.
for evt in exit_events {
event::fire(parser, evt);
}
if printed {
let _ = std::io::stdout().flush();
}
printed
}
pub fn have_proc_stat() -> bool {
// Check for /proc/self/stat to see if we are running with Linux-style procfs.
static HAVE_PROC_STAT_RESULT: Lazy<bool> =
Lazy::new(|| fs::metadata("/proc/self/stat").is_ok());
*HAVE_PROC_STAT_RESULT
}
/// The signals that signify crashes to us.
const CRASHSIGNALS: [libc::c_int; 6] = [SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV, SIGSYS];