fish-shell/src/iothread.cpp
2018-02-18 19:12:45 -08:00

346 lines
12 KiB
C++

#include "config.h" // IWYU pragma: keep
#include <limits.h>
#include <pthread.h>
#include <signal.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <atomic>
#include <condition_variable>
#include <queue>
#include "common.h"
#include "iothread.h"
#include "wutil.h"
#ifdef _POSIX_THREAD_THREADS_MAX
#if _POSIX_THREAD_THREADS_MAX < 64
#define IO_MAX_THREADS _POSIX_THREAD_THREADS_MAX
#endif
#endif
#ifndef IO_MAX_THREADS
#define IO_MAX_THREADS 64
#endif
// Values for the wakeup bytes sent to the ioport.
#define IO_SERVICE_MAIN_THREAD_REQUEST_QUEUE 99
#define IO_SERVICE_RESULT_QUEUE 100
static void iothread_service_main_thread_requests();
static void iothread_service_result_queue();
typedef std::function<void(void)> void_function_t;
struct spawn_request_t {
void_function_t handler;
void_function_t completion;
spawn_request_t() {}
spawn_request_t(void_function_t &&f, void_function_t &&comp) : handler(f), completion(comp) {}
// Move-only
spawn_request_t &operator=(const spawn_request_t &) = delete;
spawn_request_t &operator=(spawn_request_t &&) = default;
spawn_request_t(const spawn_request_t &) = delete;
spawn_request_t(spawn_request_t &&) = default;
};
struct main_thread_request_t {
std::atomic<bool> done{false};
void_function_t func;
main_thread_request_t(void_function_t &&f) : func(f) {}
// No moving OR copying
// main_thread_requests are always stack allocated, and we deal in pointers to them
void operator=(const main_thread_request_t &) = delete;
main_thread_request_t(const main_thread_request_t &) = delete;
main_thread_request_t(main_thread_request_t &&) = delete;
};
// Spawn support. Requests are allocated and come in on request_queue and go out on result_queue
struct thread_data_t {
std::queue<spawn_request_t> request_queue;
int thread_count = 0;
};
static owning_lock<thread_data_t> s_spawn_requests;
static owning_lock<std::queue<spawn_request_t>> s_result_queue;
// "Do on main thread" support.
static fish_mutex_t s_main_thread_performer_lock; // protects the main thread requests
static std::condition_variable s_main_thread_performer_cond; // protects the main thread requests
static fish_mutex_t s_main_thread_request_q_lock; // protects the queue
static std::queue<main_thread_request_t *> s_main_thread_request_queue;
// Notifying pipes.
static int s_read_pipe, s_write_pipe;
static void iothread_init() {
static bool inited = false;
if (!inited) {
inited = true;
// Initialize the completion pipes.
int pipes[2] = {0, 0};
assert_with_errno(pipe(pipes) != -1);
s_read_pipe = pipes[0];
s_write_pipe = pipes[1];
set_cloexec(s_read_pipe);
set_cloexec(s_write_pipe);
}
}
static bool dequeue_spawn_request(spawn_request_t *result) {
auto &&locker = s_spawn_requests.acquire();
thread_data_t &td = locker.value;
if (!td.request_queue.empty()) {
*result = std::move(td.request_queue.front());
td.request_queue.pop();
return true;
}
return false;
}
static void enqueue_thread_result(spawn_request_t req) {
s_result_queue.acquire().value.push(std::move(req));
}
static void *this_thread() { return (void *)(intptr_t)pthread_self(); }
/// The function that does thread work.
static void *iothread_worker(void *unused) {
UNUSED(unused);
struct spawn_request_t req;
while (dequeue_spawn_request(&req)) {
debug(5, "pthread %p dequeued", this_thread());
// Perform the work
req.handler();
// If there's a completion handler, we have to enqueue it on the result queue.
// Note we're using std::function's weirdo operator== here
if (req.completion != nullptr) {
// Enqueue the result, and tell the main thread about it.
enqueue_thread_result(std::move(req));
const char wakeup_byte = IO_SERVICE_RESULT_QUEUE;
assert_with_errno(write_loop(s_write_pipe, &wakeup_byte, sizeof wakeup_byte) != -1);
}
}
// We believe we have exhausted the thread request queue. We want to decrement
// thread_count and exit. But it's possible that a request just came in. Furthermore,
// it's possible that the main thread saw that thread_count is full, and decided to not
// spawn a new thread, trusting in one of the existing threads to handle it. But we've already
// committed to not handling anything else. Therefore, we have to decrement
// the thread count under the lock, which we still hold. Likewise, the main thread must
// check the value under the lock.
int new_thread_count = --s_spawn_requests.acquire().value.thread_count;
assert(new_thread_count >= 0);
debug(5, "pthread %p exiting", this_thread());
// We're done.
return NULL;
}
/// Spawn another thread. No lock is held when this is called.
static void iothread_spawn() {
// The spawned thread inherits our signal mask. We don't want the thread to ever receive signals
// on the spawned thread, so temporarily block all signals, spawn the thread, and then restore
// it.
sigset_t new_set, saved_set;
sigfillset(&new_set);
DIE_ON_FAILURE(pthread_sigmask(SIG_BLOCK, &new_set, &saved_set));
// Spawn a thread. If this fails, it means there's already a bunch of threads; it is very
// unlikely that they are all on the verge of exiting, so one is likely to be ready to handle
// extant requests. So we can ignore failure with some confidence.
pthread_t thread = 0;
pthread_create(&thread, NULL, iothread_worker, NULL);
// We will never join this thread.
DIE_ON_FAILURE(pthread_detach(thread));
debug(5, "pthread %p spawned", (void *)(intptr_t)thread);
// Restore our sigmask.
DIE_ON_FAILURE(pthread_sigmask(SIG_SETMASK, &saved_set, NULL));
}
int iothread_perform_impl(void_function_t &&func, void_function_t &&completion) {
ASSERT_IS_MAIN_THREAD();
ASSERT_IS_NOT_FORKED_CHILD();
iothread_init();
struct spawn_request_t req(std::move(func), std::move(completion));
int local_thread_count = -1;
bool spawn_new_thread = false;
{
// Lock around a local region.
auto &&locker = s_spawn_requests.acquire();
thread_data_t &td = locker.value;
td.request_queue.push(std::move(req));
if (td.thread_count < IO_MAX_THREADS) {
td.thread_count++;
spawn_new_thread = true;
}
local_thread_count = td.thread_count;
}
// Kick off the thread if we decided to do so.
if (spawn_new_thread) {
iothread_spawn();
}
return local_thread_count;
}
int iothread_port() {
iothread_init();
return s_read_pipe;
}
void iothread_service_completion() {
ASSERT_IS_MAIN_THREAD();
char wakeup_byte;
assert_with_errno(read_loop(iothread_port(), &wakeup_byte, sizeof wakeup_byte) == 1);
if (wakeup_byte == IO_SERVICE_MAIN_THREAD_REQUEST_QUEUE) {
iothread_service_main_thread_requests();
} else if (wakeup_byte == IO_SERVICE_RESULT_QUEUE) {
iothread_service_result_queue();
} else {
debug(0, "Unknown wakeup byte %02x in %s", wakeup_byte, __FUNCTION__);
}
}
static bool iothread_wait_for_pending_completions(long timeout_usec) {
const long usec_per_sec = 1000000;
struct timeval tv;
tv.tv_sec = timeout_usec / usec_per_sec;
tv.tv_usec = timeout_usec % usec_per_sec;
const int fd = iothread_port();
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
int ret = select(fd + 1, &fds, NULL, NULL, &tv);
return ret > 0;
}
/// Note that this function is quite sketchy. In particular, it drains threads, not requests,
/// meaning that it may leave requests on the queue. This is the desired behavior (it may be called
/// before fork, and we don't want to bother servicing requests before we fork), but in the test
/// suite we depend on it draining all requests. In practice, this works, because a thread in
/// practice won't exit while there is outstanding requests.
///
/// At the moment, this function is only used in the test suite and in a
/// drain-all-threads-before-fork compatibility mode that no architecture requires, so it's OK that
/// it's terrible.
void iothread_drain_all() {
ASSERT_IS_MAIN_THREAD();
ASSERT_IS_NOT_FORKED_CHILD();
#define TIME_DRAIN 0
#if TIME_DRAIN
int thread_count = s_spawn_requests.acquire().value.thread_count;
double now = timef();
#endif
// Nasty polling via select().
while (s_spawn_requests.acquire().value.thread_count > 0) {
if (iothread_wait_for_pending_completions(1000)) {
iothread_service_completion();
}
}
#if TIME_DRAIN
double after = timef();
fwprintf(stdout, L"(Waited %.02f msec for %d thread(s) to drain)\n", 1000 * (after - now),
thread_count);
#endif
}
/// "Do on main thread" support.
static void iothread_service_main_thread_requests() {
ASSERT_IS_MAIN_THREAD();
// Move the queue to a local variable.
std::queue<main_thread_request_t *> request_queue;
{
scoped_lock queue_lock(s_main_thread_request_q_lock);
request_queue.swap(s_main_thread_request_queue);
}
if (!request_queue.empty()) {
// Perform each of the functions. Note we are NOT responsible for deleting these. They are
// stack allocated in their respective threads!
while (!request_queue.empty()) {
main_thread_request_t *req = request_queue.front();
request_queue.pop();
req->func();
req->done = true;
}
// Ok, we've handled everybody. Announce the good news, and allow ourselves to be unlocked.
// Note we must do this while holding the lock. Otherwise we race with the waiting threads:
//
// 1. waiting thread checks for done, sees false
// 2. main thread performs request, sets done to true, posts to condition
// 3. waiting thread unlocks lock, waits on condition (forever)
//
// Because the waiting thread performs step 1 under the lock, if we take the lock, we avoid
// posting before the waiting thread is waiting.
scoped_lock broadcast_lock(s_main_thread_performer_lock);
s_main_thread_performer_cond.notify_all();
}
}
// Service the queue of results
static void iothread_service_result_queue() {
// Move the queue to a local variable.
std::queue<spawn_request_t> result_queue;
s_result_queue.acquire().value.swap(result_queue);
// Perform each completion in order
while (!result_queue.empty()) {
spawn_request_t req(std::move(result_queue.front()));
result_queue.pop();
// ensure we don't invoke empty functions, that raises an exception
if (req.completion != nullptr) {
req.completion();
}
}
}
void iothread_perform_on_main(void_function_t &&func) {
if (is_main_thread()) {
func();
return;
}
// Make a new request. Note we are synchronous, so this can be stack allocated!
main_thread_request_t req(std::move(func));
// Append it. Do not delete the nested scope as it is crucial to the proper functioning of this
// code by virtue of the lock management.
{
scoped_lock queue_lock(s_main_thread_request_q_lock);
s_main_thread_request_queue.push(&req);
}
// Tell the pipe.
const char wakeup_byte = IO_SERVICE_MAIN_THREAD_REQUEST_QUEUE;
assert_with_errno(write_loop(s_write_pipe, &wakeup_byte, sizeof wakeup_byte) != -1);
// Wait on the condition, until we're done.
std::unique_lock<std::mutex> perform_lock(s_main_thread_performer_lock.get_mutex());
while (!req.done) {
// It would be nice to support checking for cancellation here, but the clients need a
// deterministic way to clean up to avoid leaks
s_main_thread_performer_cond.wait(perform_lock);
}
// Ok, the request must now be done.
assert(req.done);
}