mirror of
https://github.com/fish-shell/fish-shell
synced 2024-12-31 23:28:45 +00:00
14908322a9
GRrrrrr
617 lines
22 KiB
C++
617 lines
22 KiB
C++
/*
|
|
* TINYEXPR - Tiny recursive descent parser and evaluation engine in C
|
|
*
|
|
* Copyright (c) 2015, 2016 Lewis Van Winkle
|
|
*
|
|
* http://CodePlea.com
|
|
*
|
|
* This software is provided 'as-is', without any express or implied
|
|
* warranty. In no event will the authors be held liable for any damages
|
|
* arising from the use of this software.
|
|
*
|
|
* Permission is granted to anyone to use this software for any purpose,
|
|
* including commercial applications, and to alter it and redistribute it
|
|
* freely, subject to the following restrictions:
|
|
*
|
|
* 1. The origin of this software must not be misrepresented; you must not
|
|
* claim that you wrote the original software. If you use this software
|
|
* in a product, an acknowledgement in the product documentation would be
|
|
* appreciated but is not required.
|
|
* 2. Altered source versions must be plainly marked as such, and must not be
|
|
* misrepresented as being the original software.
|
|
* 3. This notice may not be removed or altered from any source distribution.
|
|
*/
|
|
|
|
// This version has been altered and ported to C++ for inclusion in fish.
|
|
#include "fallback.h" // IWYU pragma: keep
|
|
#include "tinyexpr.h"
|
|
#include "wutil.h"
|
|
|
|
#include <ctype.h>
|
|
#include <limits.h>
|
|
#include <math.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
|
|
#include <algorithm>
|
|
#include <cstring>
|
|
#include <iterator>
|
|
#include <utility>
|
|
|
|
// TODO: It would be nice not to rely on a typedef for this, especially one that can only do
|
|
// functions with two args.
|
|
using te_fun2 = double (*)(double, double);
|
|
using te_fun1 = double (*)(double);
|
|
using te_fun0 = double (*)();
|
|
|
|
enum {
|
|
TE_CONSTANT = 0,
|
|
TE_FUNCTION0,
|
|
TE_FUNCTION1,
|
|
TE_FUNCTION2,
|
|
TE_FUNCTION3,
|
|
TOK_NULL,
|
|
TOK_ERROR,
|
|
TOK_END,
|
|
TOK_SEP,
|
|
TOK_OPEN,
|
|
TOK_CLOSE,
|
|
TOK_NUMBER,
|
|
TOK_INFIX
|
|
};
|
|
|
|
static int get_arity(const int type) {
|
|
if (type == TE_FUNCTION3) return 3;
|
|
if (type == TE_FUNCTION2) return 2;
|
|
if (type == TE_FUNCTION1) return 1;
|
|
return 0;
|
|
}
|
|
|
|
typedef struct te_expr {
|
|
int type;
|
|
union {
|
|
double value;
|
|
const void *function;
|
|
};
|
|
te_expr *parameters[];
|
|
} te_expr;
|
|
|
|
using te_builtin = struct {
|
|
const wchar_t *name;
|
|
const void *address;
|
|
int type;
|
|
};
|
|
|
|
using state = struct {
|
|
union {
|
|
double value;
|
|
const void *function;
|
|
};
|
|
const wchar_t *start;
|
|
const wchar_t *next;
|
|
int type;
|
|
te_error_type_t error;
|
|
};
|
|
|
|
/* Parses the input expression. */
|
|
/* Returns NULL on error. */
|
|
te_expr *te_compile(const wchar_t *expression, te_error_t *error);
|
|
|
|
/* Evaluates the expression. */
|
|
double te_eval(const te_expr *n);
|
|
|
|
/* Frees the expression. */
|
|
/* This is safe to call on NULL pointers. */
|
|
void te_free(te_expr *n);
|
|
|
|
// TODO: That move there? Ouch. Replace with a proper class with a constructor.
|
|
#define NEW_EXPR(type, ...) new_expr((type), std::move((const te_expr *[]){__VA_ARGS__}))
|
|
|
|
static te_expr *new_expr(const int type, const te_expr *parameters[]) {
|
|
const int arity = get_arity(type);
|
|
const int psize = sizeof(te_expr *) * arity;
|
|
const int size = sizeof(te_expr) + psize;
|
|
auto ret = static_cast<te_expr *>(malloc(size));
|
|
// This sets float to 0, which depends on the implementation.
|
|
// We rely on IEEE-754 floats anyway, so it's okay.
|
|
std::memset(ret, 0, size);
|
|
if (arity && parameters) {
|
|
std::memcpy(ret->parameters, parameters, psize);
|
|
}
|
|
ret->type = type;
|
|
return ret;
|
|
}
|
|
|
|
static void te_free_parameters(te_expr *n) {
|
|
if (!n) return;
|
|
int arity = get_arity(n->type);
|
|
// Free all parameters from the back to the front.
|
|
while (arity > 0) {
|
|
te_free(n->parameters[arity - 1]);
|
|
arity--;
|
|
}
|
|
}
|
|
|
|
void te_free(te_expr *n) {
|
|
if (!n) return;
|
|
te_free_parameters(n);
|
|
free(n);
|
|
}
|
|
|
|
static constexpr double pi() { return M_PI; }
|
|
static constexpr double tau() { return 2 * M_PI; }
|
|
static constexpr double e() { return M_E; }
|
|
|
|
static double fac(double a) { /* simplest version of fac */
|
|
if (a < 0.0) return NAN;
|
|
if (a > UINT_MAX) return INFINITY;
|
|
auto ua = static_cast<unsigned int>(a);
|
|
unsigned long int result = 1, i;
|
|
for (i = 1; i <= ua; i++) {
|
|
if (i > ULONG_MAX / result) return INFINITY;
|
|
result *= i;
|
|
}
|
|
return static_cast<double>(result);
|
|
}
|
|
|
|
static double ncr(double n, double r) {
|
|
if (n < 0.0 || r < 0.0 || n < r) return NAN;
|
|
if (n > UINT_MAX || r > UINT_MAX) return INFINITY;
|
|
unsigned long int un = static_cast<unsigned int>(n), ur = static_cast<unsigned int>(r), i;
|
|
unsigned long int result = 1;
|
|
if (ur > un / 2) ur = un - ur;
|
|
for (i = 1; i <= ur; i++) {
|
|
if (result > ULONG_MAX / (un - ur + i)) return INFINITY;
|
|
result *= un - ur + i;
|
|
result /= i;
|
|
}
|
|
return result;
|
|
}
|
|
|
|
static double npr(double n, double r) { return ncr(n, r) * fac(r); }
|
|
|
|
static constexpr double bit_and(double a, double b) {
|
|
return static_cast<double>(static_cast<long long>(a) & static_cast<long long>(b));
|
|
}
|
|
|
|
static constexpr double bit_or(double a, double b) {
|
|
return static_cast<double>(static_cast<long long>(a) | static_cast<long long>(b));
|
|
}
|
|
|
|
static constexpr double bit_xor(double a, double b) {
|
|
return static_cast<double>(static_cast<long long>(a) ^ static_cast<long long>(b));
|
|
}
|
|
|
|
static const te_builtin functions[] = {
|
|
/* must be in alphabetical order */
|
|
{L"abs", reinterpret_cast<const void *>(static_cast<te_fun1>(fabs)), TE_FUNCTION1},
|
|
{L"acos", reinterpret_cast<const void *>(static_cast<te_fun1>(acos)), TE_FUNCTION1},
|
|
{L"asin", reinterpret_cast<const void *>(static_cast<te_fun1>(asin)), TE_FUNCTION1},
|
|
{L"atan", reinterpret_cast<const void *>(static_cast<te_fun1>(atan)), TE_FUNCTION1},
|
|
{L"atan2", reinterpret_cast<const void *>(static_cast<te_fun2>(atan2)), TE_FUNCTION2},
|
|
{L"bitand", reinterpret_cast<const void *>(static_cast<te_fun2>(bit_and)), TE_FUNCTION2},
|
|
{L"bitor", reinterpret_cast<const void *>(static_cast<te_fun2>(bit_or)), TE_FUNCTION2},
|
|
{L"bitxor", reinterpret_cast<const void *>(static_cast<te_fun2>(bit_xor)), TE_FUNCTION2},
|
|
{L"ceil", reinterpret_cast<const void *>(static_cast<te_fun1>(ceil)), TE_FUNCTION1},
|
|
{L"cos", reinterpret_cast<const void *>(static_cast<te_fun1>(cos)), TE_FUNCTION1},
|
|
{L"cosh", reinterpret_cast<const void *>(static_cast<te_fun1>(cosh)), TE_FUNCTION1},
|
|
{L"e", reinterpret_cast<const void *>(static_cast<te_fun0>(e)), TE_FUNCTION0},
|
|
{L"exp", reinterpret_cast<const void *>(static_cast<te_fun1>(exp)), TE_FUNCTION1},
|
|
{L"fac", reinterpret_cast<const void *>(static_cast<te_fun1>(fac)), TE_FUNCTION1},
|
|
{L"floor", reinterpret_cast<const void *>(static_cast<te_fun1>(floor)), TE_FUNCTION1},
|
|
{L"ln", reinterpret_cast<const void *>(static_cast<te_fun1>(log)), TE_FUNCTION1},
|
|
{L"log", reinterpret_cast<const void *>(static_cast<te_fun1>(log10)), TE_FUNCTION1},
|
|
{L"log10", reinterpret_cast<const void *>(static_cast<te_fun1>(log10)), TE_FUNCTION1},
|
|
{L"ncr", reinterpret_cast<const void *>(static_cast<te_fun2>(ncr)), TE_FUNCTION2},
|
|
{L"npr", reinterpret_cast<const void *>(static_cast<te_fun2>(npr)), TE_FUNCTION2},
|
|
{L"pi", reinterpret_cast<const void *>(static_cast<te_fun0>(pi)), TE_FUNCTION0},
|
|
{L"pow", reinterpret_cast<const void *>(static_cast<te_fun2>(pow)), TE_FUNCTION2},
|
|
{L"round", reinterpret_cast<const void *>(static_cast<te_fun1>(round)), TE_FUNCTION1},
|
|
{L"sin", reinterpret_cast<const void *>(static_cast<te_fun1>(sin)), TE_FUNCTION1},
|
|
{L"sinh", reinterpret_cast<const void *>(static_cast<te_fun1>(sinh)), TE_FUNCTION1},
|
|
{L"sqrt", reinterpret_cast<const void *>(static_cast<te_fun1>(sqrt)), TE_FUNCTION1},
|
|
{L"tan", reinterpret_cast<const void *>(static_cast<te_fun1>(tan)), TE_FUNCTION1},
|
|
{L"tanh", reinterpret_cast<const void *>(static_cast<te_fun1>(tanh)), TE_FUNCTION1},
|
|
{L"tau", reinterpret_cast<const void *>(static_cast<te_fun0>(tau)), TE_FUNCTION0},
|
|
};
|
|
|
|
static const te_builtin *find_builtin(const wchar_t *name, int len) {
|
|
const auto end = std::end(functions);
|
|
const te_builtin *found = std::lower_bound(std::begin(functions), end, name,
|
|
[len](const te_builtin &lhs, const wchar_t *rhs) {
|
|
// The length is important because that's where
|
|
// the parens start
|
|
return std::wcsncmp(lhs.name, rhs, len) < 0;
|
|
});
|
|
// We need to compare again because we might have gotten the first "larger" element.
|
|
if (found != end && std::wcsncmp(found->name, name, len) == 0 && found->name[len] == 0)
|
|
return found;
|
|
return nullptr;
|
|
}
|
|
|
|
static constexpr double add(double a, double b) { return a + b; }
|
|
static constexpr double sub(double a, double b) { return a - b; }
|
|
static constexpr double mul(double a, double b) { return a * b; }
|
|
static constexpr double divide(double a, double b) {
|
|
// If b isn't zero, divide.
|
|
// If a isn't zero, return signed INFINITY.
|
|
// Else, return NAN.
|
|
return b ? a / b : a ? copysign(1, a) * copysign(1, b) * INFINITY : NAN;
|
|
}
|
|
|
|
static constexpr double negate(double a) { return -a; }
|
|
|
|
static void next_token(state *s) {
|
|
s->type = TOK_NULL;
|
|
|
|
do {
|
|
if (!*s->next) {
|
|
s->type = TOK_END;
|
|
return;
|
|
}
|
|
|
|
/* Try reading a number. */
|
|
if ((s->next[0] >= '0' && s->next[0] <= '9') || s->next[0] == '.') {
|
|
s->value = fish_wcstod(s->next, const_cast<wchar_t **>(&s->next));
|
|
s->type = TOK_NUMBER;
|
|
} else {
|
|
/* Look for a function call. */
|
|
// But not when it's an "x" followed by whitespace
|
|
// - that's the alternative multiplication operator.
|
|
if (s->next[0] >= 'a' && s->next[0] <= 'z' &&
|
|
!(s->next[0] == 'x' && isspace(s->next[1]))) {
|
|
const wchar_t *start;
|
|
start = s->next;
|
|
while ((s->next[0] >= 'a' && s->next[0] <= 'z') ||
|
|
(s->next[0] >= '0' && s->next[0] <= '9') || (s->next[0] == '_'))
|
|
s->next++;
|
|
|
|
const te_builtin *var = find_builtin(start, s->next - start);
|
|
|
|
if (var) {
|
|
switch (var->type) {
|
|
case TE_FUNCTION0:
|
|
case TE_FUNCTION1:
|
|
case TE_FUNCTION2:
|
|
case TE_FUNCTION3:
|
|
s->type = var->type;
|
|
s->function = var->address;
|
|
break;
|
|
}
|
|
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
|
|
// Our error is more specific, so it takes precedence.
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_UNKNOWN_FUNCTION;
|
|
}
|
|
} else {
|
|
/* Look for an operator or special character. */
|
|
switch (s->next++[0]) {
|
|
// The "te_fun2" casts are necessary to pick the right overload.
|
|
case '+':
|
|
s->type = TOK_INFIX;
|
|
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(add));
|
|
break;
|
|
case '-':
|
|
s->type = TOK_INFIX;
|
|
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(sub));
|
|
break;
|
|
case 'x':
|
|
case '*':
|
|
// We've already checked for whitespace above.
|
|
s->type = TOK_INFIX;
|
|
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(mul));
|
|
break;
|
|
case '/':
|
|
s->type = TOK_INFIX;
|
|
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(divide));
|
|
break;
|
|
case '^':
|
|
s->type = TOK_INFIX;
|
|
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(pow));
|
|
break;
|
|
case '%':
|
|
s->type = TOK_INFIX;
|
|
s->function = reinterpret_cast<const void *>(static_cast<te_fun2>(fmod));
|
|
break;
|
|
case '(':
|
|
s->type = TOK_OPEN;
|
|
break;
|
|
case ')':
|
|
s->type = TOK_CLOSE;
|
|
break;
|
|
case ',':
|
|
s->type = TOK_SEP;
|
|
break;
|
|
case ' ':
|
|
case '\t':
|
|
case '\n':
|
|
case '\r':
|
|
break;
|
|
case '=':
|
|
case '>':
|
|
case '<':
|
|
case '&':
|
|
case '|':
|
|
case '!':
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_LOGICAL_OPERATOR;
|
|
break;
|
|
default:
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_MISSING_OPERATOR;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
} while (s->type == TOK_NULL);
|
|
}
|
|
|
|
static te_expr *expr(state *s);
|
|
static te_expr *power(state *s);
|
|
|
|
static te_expr *base(state *s) {
|
|
/* <base> = <constant> | <function-0> {"(" ")"} | <function-1> <power> |
|
|
* <function-X> "(" <expr> {"," <expr>} ")" | "(" <list> ")" */
|
|
te_expr *ret;
|
|
int arity;
|
|
|
|
switch (s->type) {
|
|
case TOK_NUMBER:
|
|
ret = new_expr(TE_CONSTANT, nullptr);
|
|
ret->value = s->value;
|
|
next_token(s);
|
|
break;
|
|
|
|
case TE_FUNCTION0:
|
|
ret = new_expr(s->type, nullptr);
|
|
ret->function = s->function;
|
|
next_token(s);
|
|
if (s->type == TOK_OPEN) {
|
|
next_token(s);
|
|
if (s->type == TOK_CLOSE) {
|
|
next_token(s);
|
|
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
|
|
}
|
|
}
|
|
break;
|
|
|
|
case TE_FUNCTION1:
|
|
case TE_FUNCTION2:
|
|
case TE_FUNCTION3:
|
|
arity = get_arity(s->type);
|
|
|
|
ret = new_expr(s->type, nullptr);
|
|
ret->function = s->function;
|
|
next_token(s);
|
|
|
|
if (s->type == TOK_OPEN) {
|
|
int i;
|
|
for (i = 0; i < arity; i++) {
|
|
next_token(s);
|
|
ret->parameters[i] = expr(s);
|
|
if (s->type != TOK_SEP) {
|
|
break;
|
|
}
|
|
}
|
|
if (s->type == TOK_CLOSE && i == arity - 1) {
|
|
next_token(s);
|
|
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNEXPECTED_TOKEN) {
|
|
// If we had the right number of arguments, we're missing a closing paren.
|
|
if (i == arity - 1 && s->type != TOK_ERROR) {
|
|
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
|
|
} else {
|
|
// Otherwise we complain about the number of arguments *first*,
|
|
// a closing parenthesis should be more obvious.
|
|
s->error = i < arity ? TE_ERROR_TOO_FEW_ARGS : TE_ERROR_TOO_MANY_ARGS;
|
|
}
|
|
s->type = TOK_ERROR;
|
|
}
|
|
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_MISSING_OPENING_PAREN;
|
|
}
|
|
|
|
break;
|
|
|
|
case TOK_OPEN:
|
|
next_token(s);
|
|
ret = expr(s);
|
|
if (s->type == TOK_CLOSE) {
|
|
next_token(s);
|
|
} else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_MISSING_CLOSING_PAREN;
|
|
}
|
|
break;
|
|
|
|
case TOK_END:
|
|
// The expression ended before we expected it.
|
|
// e.g. `2 - `.
|
|
// This means we have too few things.
|
|
// Instead of introducing another error, just call it
|
|
// "too few args".
|
|
ret = new_expr(0, nullptr);
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_TOO_FEW_ARGS;
|
|
ret->value = NAN;
|
|
break;
|
|
default:
|
|
ret = new_expr(0, nullptr);
|
|
if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) {
|
|
s->type = TOK_ERROR;
|
|
s->error = TE_ERROR_UNEXPECTED_TOKEN;
|
|
}
|
|
ret->value = NAN;
|
|
break;
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static te_expr *power(state *s) {
|
|
/* <power> = {("-" | "+")} <base> */
|
|
int sign = 1;
|
|
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
|
|
if (s->function == sub) sign = -sign;
|
|
next_token(s);
|
|
}
|
|
|
|
te_expr *ret;
|
|
|
|
if (sign == 1) {
|
|
ret = base(s);
|
|
} else {
|
|
ret = NEW_EXPR(TE_FUNCTION1, base(s));
|
|
ret->function = reinterpret_cast<const void *>(negate);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static te_expr *factor(state *s) {
|
|
/* <factor> = <power> {"^" <power>} */
|
|
te_expr *ret = power(s);
|
|
|
|
te_expr *insertion = nullptr;
|
|
|
|
while (s->type == TOK_INFIX &&
|
|
(s->function == reinterpret_cast<const void *>(static_cast<te_fun2>(pow)))) {
|
|
auto t = reinterpret_cast<te_fun2>(const_cast<void *>(s->function));
|
|
next_token(s);
|
|
|
|
if (insertion) {
|
|
/* Make exponentiation go right-to-left. */
|
|
te_expr *insert = NEW_EXPR(TE_FUNCTION2, insertion->parameters[1], power(s));
|
|
insert->function = reinterpret_cast<const void *>(t);
|
|
insertion->parameters[1] = insert;
|
|
insertion = insert;
|
|
} else {
|
|
ret = NEW_EXPR(TE_FUNCTION2, ret, power(s));
|
|
ret->function = reinterpret_cast<const void *>(t);
|
|
insertion = ret;
|
|
}
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static te_expr *term(state *s) {
|
|
/* <term> = <factor> {("*" | "/" | "%") <factor>} */
|
|
te_expr *ret = factor(s);
|
|
|
|
while (s->type == TOK_INFIX &&
|
|
(s->function == reinterpret_cast<const void *>(static_cast<te_fun2>(mul)) ||
|
|
s->function == reinterpret_cast<const void *>(static_cast<te_fun2>(divide)) ||
|
|
s->function == reinterpret_cast<const void *>(static_cast<te_fun2>(fmod)))) {
|
|
auto t = reinterpret_cast<te_fun2>(const_cast<void *>(s->function));
|
|
next_token(s);
|
|
ret = NEW_EXPR(TE_FUNCTION2, ret, factor(s));
|
|
ret->function = reinterpret_cast<const void *>(t);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
static te_expr *expr(state *s) {
|
|
/* <expr> = <term> {("+" | "-") <term>} */
|
|
te_expr *ret = term(s);
|
|
|
|
while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) {
|
|
auto t = reinterpret_cast<te_fun2>(const_cast<void *>(s->function));
|
|
next_token(s);
|
|
ret = NEW_EXPR(TE_FUNCTION2, ret, term(s));
|
|
ret->function = reinterpret_cast<const void *>(t);
|
|
}
|
|
|
|
return ret;
|
|
}
|
|
|
|
#define TE_FUN(...) ((double (*)(__VA_ARGS__))n->function)
|
|
#define M(e) te_eval(n->parameters[e])
|
|
|
|
double te_eval(const te_expr *n) {
|
|
if (!n) return NAN;
|
|
|
|
switch (n->type) {
|
|
case TE_CONSTANT:
|
|
return n->value;
|
|
case TE_FUNCTION0:
|
|
return TE_FUN(void)();
|
|
case TE_FUNCTION1:
|
|
return TE_FUN(double)(M(0));
|
|
case TE_FUNCTION2:
|
|
return TE_FUN(double, double)(M(0), M(1));
|
|
case TE_FUNCTION3:
|
|
return TE_FUN(double, double, double)(M(0), M(1), M(2));
|
|
default:
|
|
return NAN;
|
|
}
|
|
}
|
|
|
|
#undef TE_FUN
|
|
#undef M
|
|
|
|
static void optimize(te_expr *n) {
|
|
/* Evaluates as much as possible. */
|
|
if (n->type == TE_CONSTANT) return;
|
|
|
|
const int arity = get_arity(n->type);
|
|
bool known = true;
|
|
for (int i = 0; i < arity; ++i) {
|
|
optimize(n->parameters[i]);
|
|
if ((n->parameters[i])->type != TE_CONSTANT) {
|
|
known = false;
|
|
}
|
|
}
|
|
if (known) {
|
|
const double value = te_eval(n);
|
|
te_free_parameters(n);
|
|
n->type = TE_CONSTANT;
|
|
n->value = value;
|
|
}
|
|
}
|
|
|
|
te_expr *te_compile(const wchar_t *expression, te_error_t *error) {
|
|
state s;
|
|
s.start = s.next = expression;
|
|
s.error = TE_ERROR_NONE;
|
|
|
|
next_token(&s);
|
|
te_expr *root = expr(&s);
|
|
|
|
if (s.type != TOK_END) {
|
|
te_free(root);
|
|
if (error) {
|
|
error->position = (s.next - s.start) + 1;
|
|
if (s.error != TE_ERROR_NONE) {
|
|
error->type = s.error;
|
|
} else {
|
|
// If we're not at the end but there's no error, then that means we have a
|
|
// superfluous token that we have no idea what to do with. This occurs in e.g. `2 +
|
|
// 2 4` - the "4" is just not part of the expression. We can report either "too many
|
|
// arguments" or "expected operator", but the operator should be reported between
|
|
// the "2" and the "4". So we report TOO_MANY_ARGS on the "4".
|
|
error->type = TE_ERROR_TOO_MANY_ARGS;
|
|
}
|
|
}
|
|
return nullptr;
|
|
} else {
|
|
optimize(root);
|
|
if (error) error->position = 0;
|
|
return root;
|
|
}
|
|
}
|
|
|
|
double te_interp(const wchar_t *expression, te_error_t *error) {
|
|
te_expr *n = te_compile(expression, error);
|
|
double ret;
|
|
if (n) {
|
|
ret = te_eval(n);
|
|
te_free(n);
|
|
} else {
|
|
ret = NAN;
|
|
}
|
|
return ret;
|
|
}
|