fish-shell/src/io.cpp
ridiculousfish d0aba9d42c Port builtin_test tests to Rust
fish_tests has a bunch of tests for the 'test' builtin. Port these to Rust.
2023-05-21 11:50:24 -07:00

435 lines
17 KiB
C++

// Utilities for io redirection.
#include "config.h" // IWYU pragma: keep
#include "io.h"
#include <errno.h>
#include <fcntl.h>
#include <stdio.h>
#include <sys/stat.h>
#include <unistd.h>
#include <cwchar>
#include <functional>
#include "common.h"
#include "fallback.h" // IWYU pragma: keep
#include "fd_monitor.rs.h"
#include "fds.h"
#include "fds.rs.h"
#include "flog.h"
#include "maybe.h"
#include "path.h"
#include "redirection.h"
#include "threads.rs.h"
#include "wutil.h" // IWYU pragma: keep
/// File redirection error message.
#define FILE_ERROR _(L"An error occurred while redirecting file '%ls'")
#define NOCLOB_ERROR _(L"The file '%ls' already exists")
/// Base open mode to pass to calls to open.
#define OPEN_MASK 0666
/// Provide the fd monitor used for background fillthread operations.
static fd_monitor_t &fd_monitor() {
// Deliberately leaked to avoid shutdown dtors.
static auto fdm = make_fd_monitor_t();
return *fdm;
}
io_data_t::~io_data_t() = default;
io_pipe_t::~io_pipe_t() = default;
io_fd_t::~io_fd_t() = default;
io_close_t::~io_close_t() = default;
io_file_t::~io_file_t() = default;
io_bufferfill_t::~io_bufferfill_t() = default;
void io_close_t::print() const { std::fwprintf(stderr, L"close %d\n", fd); }
void io_fd_t::print() const { std::fwprintf(stderr, L"FD map %d -> %d\n", source_fd, fd); }
void io_file_t::print() const { std::fwprintf(stderr, L"file %d -> %d\n", file_fd_.fd(), fd); }
void io_pipe_t::print() const {
std::fwprintf(stderr, L"pipe {%d} (input: %s) -> %d\n", source_fd, is_input_ ? "yes" : "no",
fd);
}
void io_bufferfill_t::print() const {
std::fwprintf(stderr, L"bufferfill %d -> %d\n", write_fd_.fd(), fd);
}
ssize_t io_buffer_t::read_once(int fd, acquired_lock<separated_buffer_t> &buffer) {
assert(fd >= 0 && "Invalid fd");
errno = 0;
char bytes[4096 * 4];
// We want to swallow EINTR only; in particular EAGAIN needs to be returned back to the caller.
ssize_t amt;
do {
amt = read(fd, bytes, sizeof bytes);
} while (amt < 0 && errno == EINTR);
if (amt < 0 && errno != EAGAIN && errno != EWOULDBLOCK) {
wperror(L"read");
} else if (amt > 0) {
buffer->append(bytes, static_cast<size_t>(amt));
}
return amt;
}
struct callback_args_t {
io_buffer_t *instance;
std::shared_ptr<std::promise<void>> promise;
};
extern "C" {
static void item_callback_trampoline(autoclose_fd_t2 &fd, item_wake_reason_t reason,
callback_args_t *args) {
(args->instance)->item_callback(fd, (uint8_t)reason, args);
}
}
void io_buffer_t::begin_filling(autoclose_fd_t fd) {
assert(!fillthread_running() && "Already have a fillthread");
// We want to fill buffer_ by reading from fd. fd is the read end of a pipe; the write end is
// owned by another process, or something else writing in fish.
// Pass fd to an fd_monitor. It will add fd to its select() loop, and give us a callback when
// the fd is readable, or when our item is poked. The usual path is that we will get called
// back, read a bit from the fd, and append it to the buffer. Eventually the write end of the
// pipe will be closed - probably the other process exited - and fd will be widowed; read() will
// then return 0 and we will stop reading.
// In exotic circumstances the write end of the pipe will not be closed; this may happen in
// e.g.:
// cmd ( background & ; echo hi )
// Here the background process will inherit the write end of the pipe and hold onto it forever.
// In this case, when complete_background_fillthread() is called, the callback will be invoked
// with item_wake_reason_t::poke, and we will notice that the shutdown flag is set (this
// indicates that the command substitution is done); in this case we will read until we get
// EAGAIN and then give up.
// Construct a promise. We will fulfill it in our fill thread, and wait for it in
// complete_background_fillthread(). Note that TSan complains if the promise's dtor races with
// the future's call to wait(), so we store the promise, not just its future (#7681).
auto promise = std::make_shared<std::promise<void>>();
this->fill_waiter_ = promise;
// Run our function to read until the receiver is closed.
// It's OK to capture 'this' by value because 'this' waits for the promise in its dtor.
auto args = new callback_args_t;
args->instance = this;
args->promise = std::move(promise);
item_id_ = fd_monitor().add_item(fd.acquire(), kNoTimeout, (uint8_t *)item_callback_trampoline,
(uint8_t *)args);
}
/// This is a hack to work around the difficulties in passing a capturing lambda across FFI
/// boundaries. A static function that takes a generic/untyped callback parameter is easy to
/// marshall with the basic C ABI.
void io_buffer_t::item_callback(autoclose_fd_t2 &fd, uint8_t r, callback_args_t *args) {
item_wake_reason_t reason = (item_wake_reason_t)r;
auto &promise = *args->promise;
// Only check the shutdown flag if we timed out or were poked.
// It's important that if select() indicated we were readable, that we call select() again
// allowing it to time out. Note the typical case is that the fd will be closed, in which
// case select will return immediately.
bool done = false;
if (reason == item_wake_reason_t::Readable) {
// select() reported us as readable; read a bit.
auto buffer = buffer_.acquire();
ssize_t ret = read_once(fd.fd(), buffer);
done = (ret == 0 || (ret < 0 && errno != EAGAIN && errno != EWOULDBLOCK));
} else if (shutdown_fillthread_) {
// Here our caller asked us to shut down; read while we keep getting data.
// This will stop when the fd is closed or if we get EAGAIN.
auto buffer = buffer_.acquire();
ssize_t ret;
do {
ret = read_once(fd.fd(), buffer);
} while (ret > 0);
done = true;
}
if (done) {
fd.close();
promise.set_value();
// When we close the fd, we signal to the caller that the fd should be removed from its set
// and that this callback should never be called again.
// Manual memory management is not nice but this is just during the cpp-to-rust transition.
delete args;
}
};
separated_buffer_t io_buffer_t::complete_background_fillthread_and_take_buffer() {
// Mark that our fillthread is done, then wake it up.
assert(fillthread_running() && "Should have a fillthread");
assert(this->item_id_ > 0 && "Should have a valid item ID");
shutdown_fillthread_ = true;
fd_monitor().poke_item(this->item_id_);
// Wait for the fillthread to fulfill its promise, and then clear the future so we know we no
// longer have one.
fill_waiter_->get_future().wait();
fill_waiter_.reset();
// Return our buffer, transferring ownership.
auto locked_buff = buffer_.acquire();
separated_buffer_t result = std::move(*locked_buff);
locked_buff->clear();
return result;
}
shared_ptr<io_bufferfill_t> io_bufferfill_t::create(size_t buffer_limit, int target) {
assert(target >= 0 && "Invalid target fd");
// Construct our pipes.
auto pipes = make_autoclose_pipes();
if (!pipes) {
return nullptr;
}
// Our buffer will read from the read end of the pipe. This end must be non-blocking. This is
// because our fillthread needs to poll to decide if it should shut down, and also accept input
// from direct buffer transfers.
if (make_fd_nonblocking(pipes->read.fd())) {
FLOGF(warning, PIPE_ERROR);
wperror(L"fcntl");
return nullptr;
}
// Our fillthread gets the read end of the pipe; out_pipe gets the write end.
auto buffer = std::make_shared<io_buffer_t>(buffer_limit);
buffer->begin_filling(std::move(pipes->read));
return std::make_shared<io_bufferfill_t>(target, std::move(pipes->write), buffer);
}
separated_buffer_t io_bufferfill_t::finish(std::shared_ptr<io_bufferfill_t> &&filler) {
// The io filler is passed in. This typically holds the only instance of the write side of the
// pipe used by the buffer's fillthread (except for that side held by other processes). Get the
// buffer out of the bufferfill and clear the shared_ptr; this will typically widow the pipe.
// Then allow the buffer to finish.
assert(filler && "Null pointer in finish");
auto buffer = filler->buffer();
filler.reset();
return buffer->complete_background_fillthread_and_take_buffer();
}
io_buffer_t::~io_buffer_t() {
assert(!fillthread_running() && "io_buffer_t destroyed with outstanding fillthread");
}
void io_chain_t::remove(const shared_ptr<const io_data_t> &element) {
// See if you can guess why std::find doesn't work here.
for (auto iter = this->begin(); iter != this->end(); ++iter) {
if (*iter == element) {
this->erase(iter);
break;
}
}
}
void io_chain_t::push_back(io_data_ref_t element) {
// Ensure we never push back NULL.
assert(element.get() != nullptr);
std::vector<io_data_ref_t>::push_back(std::move(element));
}
bool io_chain_t::append(const io_chain_t &chain) {
assert(&chain != this && "Cannot append self to self");
this->insert(this->end(), chain.begin(), chain.end());
return true;
}
bool io_chain_t::append_from_specs(const redirection_spec_list_t &specs, const wcstring &pwd) {
bool have_error = false;
for (size_t i = 0; i < specs.size(); i++) {
const redirection_spec_t *spec = specs.at(i);
switch (spec->mode()) {
case redirection_mode_t::fd: {
if (spec->is_close()) {
this->push_back(make_unique<io_close_t>(spec->fd()));
} else {
auto target_fd = spec->get_target_as_fd();
assert(target_fd && "fd redirection should have been validated already");
this->push_back(make_unique<io_fd_t>(spec->fd(), *target_fd));
}
break;
}
default: {
// We have a path-based redireciton. Resolve it to a file.
// Mark it as CLO_EXEC because we don't want it to be open in any child.
wcstring path = path_apply_working_directory(*spec->target(), pwd);
int oflags = spec->oflags();
autoclose_fd_t file{wopen_cloexec(path, oflags, OPEN_MASK)};
if (!file.valid()) {
if ((oflags & O_EXCL) && (errno == EEXIST)) {
FLOGF(warning, NOCLOB_ERROR, spec->target()->c_str());
} else {
if (should_flog(warning)) {
FLOGF(warning, FILE_ERROR, spec->target()->c_str());
auto err = errno;
// If the error is that the file doesn't exist
// or there's a non-directory component,
// find the first problematic component for a better message.
if (err == ENOENT || err == ENOTDIR) {
auto dname = *spec->target();
struct stat buf;
while (!dname.empty()) {
auto next = wdirname(dname);
if (!wstat(next, &buf)) {
if (!S_ISDIR(buf.st_mode)) {
FLOGF(warning, _(L"Path '%ls' is not a directory"),
next.c_str());
} else {
FLOGF(warning, _(L"Path '%ls' does not exist"),
dname.c_str());
}
break;
}
dname = next;
}
} else {
wperror(L"open");
}
}
}
// If opening a file fails, insert a closed FD instead of the file redirection
// and return false. This lets execution potentially recover and at least gives
// the shell a chance to gracefully regain control of the shell (see #7038).
this->push_back(make_unique<io_close_t>(spec->fd()));
have_error = true;
break;
}
this->push_back(std::make_shared<io_file_t>(spec->fd(), std::move(file)));
break;
}
}
}
return !have_error;
}
void io_chain_t::print() const {
if (this->empty()) {
std::fwprintf(stderr, L"Empty chain %p\n", this);
return;
}
std::fwprintf(stderr, L"Chain %p (%ld items):\n", this, static_cast<long>(this->size()));
for (size_t i = 0; i < this->size(); i++) {
const auto &io = this->at(i);
if (io == nullptr) {
std::fwprintf(stderr, L"\t(null)\n");
} else {
std::fwprintf(stderr, L"\t%lu: fd:%d, ", static_cast<unsigned long>(i), io->fd);
io->print();
}
}
}
shared_ptr<const io_data_t> io_chain_t::io_for_fd(int fd) const {
for (auto iter = rbegin(); iter != rend(); ++iter) {
const auto &data = *iter;
if (data->fd == fd) {
return data;
}
}
return nullptr;
}
dup2_list_t dup2_list_resolve_chain_shim(const io_chain_t &io_chain) {
ASSERT_IS_NOT_FORKED_CHILD();
std::vector<dup2_action_t> chain;
for (const auto &io_data : io_chain) {
chain.push_back(dup2_action_t{io_data->source_fd, io_data->fd});
}
return dup2_list_resolve_chain(chain);
}
bool output_stream_t::append_narrow_buffer(const separated_buffer_t &buffer) {
for (const auto &rhs_elem : buffer.elements()) {
if (!append_with_separation(str2wcstring(rhs_elem.contents), rhs_elem.separation, false)) {
return false;
}
}
return true;
}
bool output_stream_t::append_with_separation(const wchar_t *s, size_t len, separation_type_t type,
bool want_newline) {
if (type == separation_type_t::explicitly && want_newline) {
// Try calling "append" less - it might write() to an fd
wcstring buf{s, len};
buf.push_back(L'\n');
return append(buf);
} else {
return append(s, len);
}
}
const wcstring &output_stream_t::contents() const { return g_empty_string; }
int output_stream_t::flush_and_check_error() { return STATUS_CMD_OK; }
fd_output_stream_t::fd_output_stream_t(int fd) : fd_(fd), sigcheck_(topic_t::sighupint) {
assert(fd_ >= 0 && "Invalid fd");
}
bool fd_output_stream_t::append(const wchar_t *s, size_t amt) {
if (errored_) return false;
int res = wwrite_to_fd(s, amt, this->fd_);
if (res < 0) {
// Some of our builtins emit multiple screens worth of data sent to a pager (the primary
// example being the `history` builtin) and receiving SIGINT should be considered normal and
// non-exceptional (user request to abort via Ctrl-C), meaning we shouldn't print an error.
if (errno == EINTR && sigcheck_.check()) {
// We have two options here: we can either return false without setting errored_ to
// true (*this* write will be silently aborted but the onus is on the caller to check
// the return value and skip future calls to `append()`) or we can flag the entire
// output stream as errored, causing us to both return false and skip any future writes.
// We're currently going with the latter, especially seeing as no callers currently
// check the result of `append()` (since it was always a void function before).
} else if (errno != EPIPE) {
wperror(L"write");
}
errored_ = true;
}
return !errored_;
}
int fd_output_stream_t::flush_and_check_error() {
// Return a generic 1 on any write failure.
return errored_ ? STATUS_CMD_ERROR : STATUS_CMD_OK;
}
bool null_output_stream_t::append(const wchar_t *, size_t) { return true; }
std::unique_ptr<io_streams_t> make_null_io_streams_ffi() {
// Temporary test helper.
static null_output_stream_t *null = new null_output_stream_t();
return std::make_unique<io_streams_t>(*null, *null);
}
bool string_output_stream_t::append(const wchar_t *s, size_t amt) {
contents_.append(s, amt);
return true;
}
const wcstring &string_output_stream_t::contents() const { return contents_; }
bool buffered_output_stream_t::append(const wchar_t *s, size_t amt) {
return buffer_->append(wcs2string(s, amt));
}
bool buffered_output_stream_t::append_with_separation(const wchar_t *s, size_t len,
separation_type_t type, bool want_newline) {
UNUSED(want_newline);
return buffer_->append(wcs2string(s, len), type);
}
int buffered_output_stream_t::flush_and_check_error() {
if (buffer_->discarded()) {
return STATUS_READ_TOO_MUCH;
}
return 0;
}