fish-shell/src/parse_execution.cpp
Kurtis Rader 79f342b954 lint cleanup: eliminate "redundant" errors
This removes some pointless parentheses but the primary focus is removing
redundancies like unnecessary "else" clauses.
2016-05-04 15:32:04 -07:00

1474 lines
57 KiB
C++

// Provides the "linkage" between a parse_node_tree_t and actual execution structures (job_t, etc.)
//
// A note on error handling: fish has two kind of errors, fatal parse errors non-fatal runtime
// errors. A fatal error prevents execution of the entire file, while a non-fatal error skips that
// job.
//
// Non-fatal errors are printed as soon as they are encountered; otherwise you would have to wait
// for the execution to finish to see them.
#include <assert.h>
#include <errno.h>
#include <stdarg.h>
#include <stdbool.h>
#include <stdio.h>
#include <stdlib.h>
#include <termios.h>
#include <unistd.h>
#include <wchar.h>
#include <wctype.h>
#include <memory>
#include <string>
#include <vector>
#include "builtin.h"
#include "common.h"
#include "complete.h"
#include "env.h"
#include "event.h"
#include "exec.h"
#include "expand.h"
#include "function.h"
#include "io.h"
#include "parse_constants.h"
#include "parse_execution.h"
#include "parse_tree.h"
#include "parse_util.h"
#include "parser.h"
#include "path.h"
#include "proc.h"
#include "reader.h"
#include "tokenizer.h"
#include "util.h"
#include "wildcard.h"
#include "wutil.h"
/// These are the specific statement types that support redirections.
static bool specific_statement_type_is_redirectable_block(const parse_node_t &node) {
return node.type == symbol_block_statement || node.type == symbol_if_statement ||
node.type == symbol_switch_statement;
}
/// Get the name of a redirectable block, for profiling purposes.
static wcstring profiling_cmd_name_for_redirectable_block(const parse_node_t &node,
const parse_node_tree_t &tree,
const wcstring &src) {
assert(specific_statement_type_is_redirectable_block(node));
assert(node.has_source());
// Get the source for the block, and cut it at the next statement terminator.
const size_t src_start = node.source_start;
size_t src_len = node.source_length;
const parse_node_tree_t::parse_node_list_t statement_terminator_nodes =
tree.find_nodes(node, parse_token_type_end, 1);
if (!statement_terminator_nodes.empty()) {
const parse_node_t *term = statement_terminator_nodes.at(0);
assert(term->source_start >= src_start);
src_len = term->source_start - src_start;
}
wcstring result = wcstring(src, src_start, src_len);
result.append(L"...");
return result;
}
parse_execution_context_t::parse_execution_context_t(moved_ref<parse_node_tree_t> t,
const wcstring &s, parser_t *p,
int initial_eval_level)
: tree(t),
src(s),
parser(p),
eval_level(initial_eval_level),
executing_node_idx(NODE_OFFSET_INVALID),
cached_lineno_offset(0),
cached_lineno_count(0) {}
// Utilities
wcstring parse_execution_context_t::get_source(const parse_node_t &node) const {
return node.get_source(this->src);
}
const parse_node_t *parse_execution_context_t::get_child(const parse_node_t &parent,
node_offset_t which,
parse_token_type_t expected_type) const {
return this->tree.get_child(parent, which, expected_type);
}
node_offset_t parse_execution_context_t::get_offset(const parse_node_t &node) const {
// Get the offset of a node via pointer arithmetic, very hackish.
const parse_node_t *addr = &node;
const parse_node_t *base = &this->tree.at(0);
assert(addr >= base);
assert(addr - base < SOURCE_OFFSET_INVALID);
node_offset_t offset = static_cast<node_offset_t>(addr - base);
assert(offset < this->tree.size());
assert(&tree.at(offset) == &node);
return offset;
}
const parse_node_t *parse_execution_context_t::infinite_recursive_statement_in_job_list(
const parse_node_t &job_list, wcstring *out_func_name) const {
assert(job_list.type == symbol_job_list);
// This is a bit fragile. It is a test to see if we are inside of function call, but not inside
// a block in that function call. If, in the future, the rules for what block scopes are pushed
// on function invocation changes, then this check will break.
const block_t *current = parser->block_at_index(0), *parent = parser->block_at_index(1);
bool is_within_function_call =
(current && parent && current->type() == TOP && parent->type() == FUNCTION_CALL);
if (!is_within_function_call) {
return NULL;
}
// Check to see which function call is forbidden.
if (parser->forbidden_function.empty()) {
return NULL;
}
const wcstring &forbidden_function_name = parser->forbidden_function.back();
// Get the first job in the job list.
const parse_node_t *first_job = tree.next_node_in_node_list(job_list, symbol_job, NULL);
if (first_job == NULL) {
return NULL;
}
// Here's the statement node we find that's infinite recursive.
const parse_node_t *infinite_recursive_statement = NULL;
// Get the list of statements.
const parse_node_tree_t::parse_node_list_t statements =
tree.specific_statements_for_job(*first_job);
// Find all the decorated statements. We are interested in statements with no decoration (i.e.
// not command, not builtin) whose command expands to the forbidden function.
for (size_t i = 0; i < statements.size(); i++) {
// We only care about decorated statements, not while statements, etc.
const parse_node_t &statement = *statements.at(i);
if (statement.type != symbol_decorated_statement) {
continue;
}
const parse_node_t &plain_statement = tree.find_child(statement, symbol_plain_statement);
if (tree.decoration_for_plain_statement(plain_statement) !=
parse_statement_decoration_none) {
// This statement has a decoration like 'builtin' or 'command', and therefore is not
// infinite recursion. In particular this is what enables 'wrapper functions'.
continue;
}
// Ok, this is an undecorated plain statement. Get and expand its command.
wcstring cmd;
tree.command_for_plain_statement(plain_statement, src, &cmd);
if (expand_one(cmd, EXPAND_SKIP_CMDSUBST | EXPAND_SKIP_VARIABLES, NULL) &&
cmd == forbidden_function_name) {
// This is it.
infinite_recursive_statement = &statement;
if (out_func_name != NULL) {
*out_func_name = forbidden_function_name;
}
break;
}
}
assert(infinite_recursive_statement == NULL ||
infinite_recursive_statement->type == symbol_decorated_statement);
return infinite_recursive_statement;
}
enum process_type_t parse_execution_context_t::process_type_for_command(
const parse_node_t &plain_statement, const wcstring &cmd) const {
assert(plain_statement.type == symbol_plain_statement);
enum process_type_t process_type = EXTERNAL;
// Determine the process type, which depends on the statement decoration (command, builtin,
// etc).
enum parse_statement_decoration_t decoration =
tree.decoration_for_plain_statement(plain_statement);
if (decoration == parse_statement_decoration_exec) {
// Always exec.
process_type = INTERNAL_EXEC;
} else if (decoration == parse_statement_decoration_command) {
// Always a command.
process_type = EXTERNAL;
} else if (decoration == parse_statement_decoration_builtin) {
// What happens if this builtin is not valid?
process_type = INTERNAL_BUILTIN;
} else if (function_exists(cmd)) {
process_type = INTERNAL_FUNCTION;
} else if (builtin_exists(cmd)) {
process_type = INTERNAL_BUILTIN;
} else {
process_type = EXTERNAL;
}
return process_type;
}
bool parse_execution_context_t::should_cancel_execution(const block_t *block) const {
return cancellation_reason(block) != execution_cancellation_none;
}
parse_execution_context_t::execution_cancellation_reason_t
parse_execution_context_t::cancellation_reason(const block_t *block) const {
if (shell_is_exiting()) {
return execution_cancellation_exit;
}
if (parser && parser->cancellation_requested) {
return execution_cancellation_skip;
}
if (block && block->loop_status != LOOP_NORMAL) {
// Nasty hack - break and continue set the 'skip' flag as well as the loop status flag.
return execution_cancellation_loop_control;
}
if (block && block->skip) {
return execution_cancellation_skip;
}
return execution_cancellation_none;
}
/// Return whether the job contains a single statement, of block type, with no redirections.
bool parse_execution_context_t::job_is_simple_block(const parse_node_t &job_node) const {
assert(job_node.type == symbol_job);
// Must have one statement.
const parse_node_t &statement = *get_child(job_node, 0, symbol_statement);
const parse_node_t &specific_statement = *get_child(statement, 0);
if (!specific_statement_type_is_redirectable_block(specific_statement)) {
// Not an appropriate block type.
return false;
}
// Must be no pipes.
const parse_node_t &continuation = *get_child(job_node, 1, symbol_job_continuation);
if (continuation.child_count > 0) {
// Multiple statements in this job, so there's pipes involved.
return false;
}
// Check for arguments and redirections. All of the above types have an arguments / redirections
// list. It must be empty.
const parse_node_t &args_and_redirections =
tree.find_child(specific_statement, symbol_arguments_or_redirections_list);
if (args_and_redirections.child_count > 0) {
// Non-empty, we have an argument or redirection.
return false;
}
// Ok, we are a simple block!
return true;
}
parse_execution_result_t parse_execution_context_t::run_if_statement(
const parse_node_t &statement) {
assert(statement.type == symbol_if_statement);
// Push an if block.
if_block_t *ib = new if_block_t();
ib->node_offset = this->get_offset(statement);
parser->push_block(ib);
parse_execution_result_t result = parse_execution_success;
// We have a sequence of if clauses, with a final else, resulting in a single job list that we
// execute.
const parse_node_t *job_list_to_execute = NULL;
const parse_node_t *if_clause = get_child(statement, 0, symbol_if_clause);
const parse_node_t *else_clause = get_child(statement, 1, symbol_else_clause);
for (;;) {
if (should_cancel_execution(ib)) {
result = parse_execution_cancelled;
break;
}
// An if condition has a job and a "tail" of andor jobs, e.g. "foo ; and bar; or baz".
assert(if_clause != NULL && else_clause != NULL);
const parse_node_t &condition_head = *get_child(*if_clause, 1, symbol_job);
const parse_node_t &condition_boolean_tail =
*get_child(*if_clause, 3, symbol_andor_job_list);
// Check the condition and the tail. We treat parse_execution_errored here as failure, in
// accordance with historic behavior.
parse_execution_result_t cond_ret = run_1_job(condition_head, ib);
if (cond_ret == parse_execution_success) {
cond_ret = run_job_list(condition_boolean_tail, ib);
}
const bool take_branch =
(cond_ret == parse_execution_success) && proc_get_last_status() == EXIT_SUCCESS;
if (take_branch) {
// Condition succeeded.
job_list_to_execute = get_child(*if_clause, 4, symbol_job_list);
break;
} else if (else_clause->child_count == 0) {
// 'if' condition failed, no else clause, return 0, we're done.
job_list_to_execute = NULL;
proc_set_last_status(STATUS_BUILTIN_OK);
break;
} else {
// We have an 'else continuation' (either else-if or else).
const parse_node_t &else_cont = *get_child(*else_clause, 1, symbol_else_continuation);
const parse_node_t *maybe_if_clause = get_child(else_cont, 0);
if (maybe_if_clause && maybe_if_clause->type == symbol_if_clause) {
// it's an 'else if', go to the next one.
if_clause = maybe_if_clause;
else_clause = get_child(else_cont, 1, symbol_else_clause);
} else {
// It's the final 'else', we're done.
job_list_to_execute = get_child(else_cont, 1, symbol_job_list);
break;
}
}
}
// Execute any job list we got.
if (job_list_to_execute != NULL) {
run_job_list(*job_list_to_execute, ib);
} else {
// No job list means no sucessful conditions, so return 0 (issue #1443).
proc_set_last_status(STATUS_BUILTIN_OK);
}
// It's possible there's a last-minute cancellation (issue #1297).
if (should_cancel_execution(ib)) {
result = parse_execution_cancelled;
}
// Done
parser->pop_block(ib);
// Otherwise, take the exit status of the job list. Reversal of issue #1061.
return result;
}
parse_execution_result_t parse_execution_context_t::run_begin_statement(
const parse_node_t &header, const parse_node_t &contents) {
assert(header.type == symbol_begin_header);
assert(contents.type == symbol_job_list);
// Basic begin/end block. Push a scope block.
scope_block_t *sb = new scope_block_t(BEGIN);
parser->push_block(sb);
// Run the job list.
parse_execution_result_t ret = run_job_list(contents, sb);
// Pop the block.
parser->pop_block(sb);
return ret;
}
// Define a function.
parse_execution_result_t parse_execution_context_t::run_function_statement(
const parse_node_t &header, const parse_node_t &block_end_command) {
assert(header.type == symbol_function_header);
assert(block_end_command.type == symbol_end_command);
// Get arguments.
wcstring_list_t argument_list;
parse_execution_result_t result = this->determine_arguments(header, &argument_list, failglob);
if (result == parse_execution_success) {
// The function definition extends from the end of the header to the function end. It's not
// just the range of the contents because that loses comments - see issue #1710.
assert(block_end_command.has_source());
size_t contents_start = header.source_start + header.source_length;
size_t contents_end =
block_end_command.source_start; // 1 past the last character in the function definition
assert(contents_end >= contents_start);
// Swallow whitespace at both ends.
while (contents_start < contents_end && iswspace(this->src.at(contents_start))) {
contents_start++;
}
while (contents_start < contents_end && iswspace(this->src.at(contents_end - 1))) {
contents_end--;
}
assert(contents_end >= contents_start);
const wcstring contents_str =
wcstring(this->src, contents_start, contents_end - contents_start);
int definition_line_offset = this->line_offset_of_character_at_offset(contents_start);
wcstring error_str;
io_streams_t streams;
int err = define_function(*parser, streams, argument_list, contents_str,
definition_line_offset, &error_str);
proc_set_last_status(err);
if (!error_str.empty()) {
this->report_error(header, L"%ls", error_str.c_str());
result = parse_execution_errored;
}
}
return result;
}
parse_execution_result_t parse_execution_context_t::run_block_statement(
const parse_node_t &statement) {
assert(statement.type == symbol_block_statement);
const parse_node_t &block_header =
*get_child(statement, 0, symbol_block_header); // block header
const parse_node_t &header =
*get_child(block_header, 0); // specific header type (e.g. for loop)
const parse_node_t &contents = *get_child(statement, 1, symbol_job_list); // block contents
parse_execution_result_t ret = parse_execution_success;
switch (header.type) {
case symbol_for_header: {
ret = run_for_statement(header, contents);
break;
}
case symbol_while_header: {
ret = run_while_statement(header, contents);
break;
}
case symbol_function_header: {
const parse_node_t &function_end = *get_child(
statement, 2, symbol_end_command); // the 'end' associated with the block
ret = run_function_statement(header, function_end);
break;
}
case symbol_begin_header: {
ret = run_begin_statement(header, contents);
break;
}
default: {
fprintf(stderr, "Unexpected block header: %ls\n", header.describe().c_str());
PARSER_DIE();
break;
}
}
return ret;
}
parse_execution_result_t parse_execution_context_t::run_for_statement(
const parse_node_t &header, const parse_node_t &block_contents) {
assert(header.type == symbol_for_header);
assert(block_contents.type == symbol_job_list);
// Get the variable name: `for var_name in ...`. We expand the variable name. It better result
// in just one.
const parse_node_t &var_name_node = *get_child(header, 1, parse_token_type_string);
wcstring for_var_name = get_source(var_name_node);
if (!expand_one(for_var_name, 0, NULL)) {
report_error(var_name_node, FAILED_EXPANSION_VARIABLE_NAME_ERR_MSG, for_var_name.c_str());
return parse_execution_errored;
}
// Get the contents to iterate over.
wcstring_list_t argument_sequence;
parse_execution_result_t ret = this->determine_arguments(header, &argument_sequence, nullglob);
if (ret != parse_execution_success) {
return ret;
}
for_block_t *fb = new for_block_t();
parser->push_block(fb);
// Now drive the for loop.
const size_t arg_count = argument_sequence.size();
for (size_t i = 0; i < arg_count; i++) {
if (should_cancel_execution(fb)) {
ret = parse_execution_cancelled;
break;
}
const wcstring &val = argument_sequence.at(i);
env_set(for_var_name, val.c_str(), ENV_LOCAL);
fb->loop_status = LOOP_NORMAL;
fb->skip = 0;
this->run_job_list(block_contents, fb);
if (this->cancellation_reason(fb) == execution_cancellation_loop_control) {
// Handle break or continue.
if (fb->loop_status == LOOP_CONTINUE) {
// Reset the loop state.
fb->loop_status = LOOP_NORMAL;
fb->skip = false;
continue;
} else if (fb->loop_status == LOOP_BREAK) {
break;
}
}
}
parser->pop_block(fb);
return ret;
}
parse_execution_result_t parse_execution_context_t::run_switch_statement(
const parse_node_t &statement) {
assert(statement.type == symbol_switch_statement);
parse_execution_result_t result = parse_execution_success;
// Get the switch variable.
const parse_node_t &switch_value_node = *get_child(statement, 1, symbol_argument);
const wcstring switch_value = get_source(switch_value_node);
// Expand it. We need to offset any errors by the position of the string.
std::vector<completion_t> switch_values_expanded;
parse_error_list_t errors;
int expand_ret =
expand_string(switch_value, &switch_values_expanded, EXPAND_NO_DESCRIPTIONS, &errors);
parse_error_offset_source_start(&errors, switch_value_node.source_start);
switch (expand_ret) {
case EXPAND_ERROR: {
result = report_errors(errors);
break;
}
case EXPAND_WILDCARD_NO_MATCH: {
result = report_unmatched_wildcard_error(switch_value_node);
break;
}
case EXPAND_WILDCARD_MATCH:
case EXPAND_OK: {
break;
}
}
if (result == parse_execution_success && switch_values_expanded.size() != 1) {
result =
report_error(switch_value_node, _(L"switch: Expected exactly one argument, got %lu\n"),
switch_values_expanded.size());
}
if (result == parse_execution_success) {
const wcstring &switch_value_expanded = switch_values_expanded.at(0).completion;
switch_block_t *sb = new switch_block_t();
parser->push_block(sb);
// Expand case statements.
const parse_node_t *case_item_list = get_child(statement, 3, symbol_case_item_list);
// Loop while we don't have a match but do have more of the list.
const parse_node_t *matching_case_item = NULL;
while (matching_case_item == NULL && case_item_list != NULL) {
if (should_cancel_execution(sb)) {
result = parse_execution_cancelled;
break;
}
// Get the next item and the remainder of the list.
const parse_node_t *case_item =
tree.next_node_in_node_list(*case_item_list, symbol_case_item, &case_item_list);
if (case_item == NULL) {
// No more items.
break;
}
// Pull out the argument list.
const parse_node_t &arg_list = *get_child(*case_item, 1, symbol_argument_list);
// Expand arguments. A case item list may have a wildcard that fails to expand to
// anything. We also report case errors, but don't stop execution; i.e. a case item that
// contains an unexpandable process will report and then fail to match.
wcstring_list_t case_args;
parse_execution_result_t case_result =
this->determine_arguments(arg_list, &case_args, failglob);
if (case_result == parse_execution_success) {
for (size_t i = 0; i < case_args.size(); i++) {
const wcstring &arg = case_args.at(i);
// Unescape wildcards so they can be expanded again.
wcstring unescaped_arg = parse_util_unescape_wildcards(arg);
bool match = wildcard_match(switch_value_expanded, unescaped_arg);
// If this matched, we're done.
if (match) {
matching_case_item = case_item;
break;
}
}
}
}
if (result == parse_execution_success && matching_case_item != NULL) {
// Success, evaluate the job list.
const parse_node_t *job_list = get_child(*matching_case_item, 3, symbol_job_list);
result = this->run_job_list(*job_list, sb);
}
parser->pop_block(sb);
}
return result;
}
parse_execution_result_t parse_execution_context_t::run_while_statement(
const parse_node_t &header, const parse_node_t &block_contents) {
assert(header.type == symbol_while_header);
assert(block_contents.type == symbol_job_list);
// Push a while block.
while_block_t *wb = new while_block_t();
wb->node_offset = this->get_offset(header);
parser->push_block(wb);
parse_execution_result_t ret = parse_execution_success;
// The conditions of the while loop.
const parse_node_t &condition_head = *get_child(header, 1, symbol_job);
const parse_node_t &condition_boolean_tail = *get_child(header, 3, symbol_andor_job_list);
// Run while the condition is true.
for (;;) {
// Check the condition.
parse_execution_result_t cond_ret = this->run_1_job(condition_head, wb);
if (cond_ret == parse_execution_success) {
cond_ret = run_job_list(condition_boolean_tail, wb);
}
// We only continue on successful execution and EXIT_SUCCESS.
if (cond_ret != parse_execution_success || proc_get_last_status() != EXIT_SUCCESS) {
break;
}
// Check cancellation.
if (this->should_cancel_execution(wb)) {
ret = parse_execution_cancelled;
break;
}
// The block ought to go inside the loop (see issue #1212).
this->run_job_list(block_contents, wb);
if (this->cancellation_reason(wb) == execution_cancellation_loop_control) {
// Handle break or continue.
if (wb->loop_status == LOOP_CONTINUE) {
// Reset the loop state.
wb->loop_status = LOOP_NORMAL;
wb->skip = false;
continue;
} else if (wb->loop_status == LOOP_BREAK) {
break;
}
}
// no_exec means that fish was invoked with -n or --no-execute. If set, we allow the loop to
// not-execute once so its contents can be checked, and then break.
if (no_exec) {
break;
}
}
/* Done */
parser->pop_block(wb);
return ret;
}
// Reports an error. Always returns parse_execution_errored, so you can assign the result to an
// 'errored' variable.
parse_execution_result_t parse_execution_context_t::report_error(const parse_node_t &node,
const wchar_t *fmt, ...) const {
// Create an error.
parse_error_list_t error_list = parse_error_list_t(1);
parse_error_t *error = &error_list.at(0);
error->source_start = node.source_start;
error->source_length = node.source_length;
error->code = parse_error_syntax; // hackish
va_list va;
va_start(va, fmt);
error->text = vformat_string(fmt, va);
va_end(va);
this->report_errors(error_list);
return parse_execution_errored;
}
parse_execution_result_t parse_execution_context_t::report_errors(
const parse_error_list_t &error_list) const {
if (!parser->cancellation_requested) {
if (error_list.empty()) {
fprintf(stderr, "Bug: Error reported but no error text found.");
}
// Get a backtrace.
wcstring backtrace_and_desc;
parser->get_backtrace(src, error_list, &backtrace_and_desc);
// Print it.
fprintf(stderr, "%ls", backtrace_and_desc.c_str());
}
return parse_execution_errored;
}
/// Reports an unmatched wildcard error and returns parse_execution_errored.
parse_execution_result_t parse_execution_context_t::report_unmatched_wildcard_error(
const parse_node_t &unmatched_wildcard) {
proc_set_last_status(STATUS_UNMATCHED_WILDCARD);
report_error(unmatched_wildcard, WILDCARD_ERR_MSG, get_source(unmatched_wildcard).c_str());
return parse_execution_errored;
}
/// Handle the case of command not found.
parse_execution_result_t parse_execution_context_t::handle_command_not_found(
const wcstring &cmd_str, const parse_node_t &statement_node, int err_code) {
assert(statement_node.type == symbol_plain_statement);
// We couldn't find the specified command. This is a non-fatal error. We want to set the exit
// status to 127, which is the standard number used by other shells like bash and zsh.
const wchar_t *const cmd = cmd_str.c_str();
const wchar_t *const equals_ptr = wcschr(cmd, L'=');
if (equals_ptr != NULL) {
// Try to figure out if this is a pure variable assignment (foo=bar), or if this appears to
// be running a command (foo=bar ruby...).
const wcstring name_str = wcstring(cmd, equals_ptr - cmd); // variable name, up to the =
const wcstring val_str = wcstring(equals_ptr + 1); // variable value, past the =
const parse_node_tree_t::parse_node_list_t args =
tree.find_nodes(statement_node, symbol_argument, 1);
if (!args.empty()) {
const wcstring argument = get_source(*args.at(0));
wcstring ellipsis_str = wcstring(1, ellipsis_char);
if (ellipsis_str == L"$") ellipsis_str = L"...";
// Looks like a command.
this->report_error(statement_node, ERROR_BAD_EQUALS_IN_COMMAND5, argument.c_str(),
name_str.c_str(), val_str.c_str(), argument.c_str(),
ellipsis_str.c_str());
} else {
this->report_error(statement_node, ERROR_BAD_COMMAND_ASSIGN_ERR_MSG, name_str.c_str(),
val_str.c_str());
}
} else if ((cmd[0] == L'$' || cmd[0] == VARIABLE_EXPAND || cmd[0] == VARIABLE_EXPAND_SINGLE) &&
cmd[1] != L'\0') {
this->report_error(statement_node, _(L"Variables may not be used as commands. In fish, "
L"please define a function or use 'eval %ls'."),
cmd);
} else if (wcschr(cmd, L'$')) {
this->report_error(
statement_node,
_(L"Commands may not contain variables. In fish, please use 'eval %ls'."), cmd);
} else if (err_code != ENOENT) {
this->report_error(statement_node, _(L"The file '%ls' is not executable by this user"),
cmd ? cmd : L"UNKNOWN");
} else {
// Handle unrecognized commands with standard command not found handler that can make better
// error messages.
wcstring_list_t event_args;
{
parse_execution_result_t arg_result =
this->determine_arguments(statement_node, &event_args, failglob);
if (arg_result != parse_execution_success) {
return arg_result;
}
event_args.insert(event_args.begin(), cmd_str);
}
event_fire_generic(L"fish_command_not_found", &event_args);
// Here we want to report an error (so it shows a backtrace), but with no text.
this->report_error(statement_node, L"");
}
// Set the last proc status appropriately.
proc_set_last_status(err_code == ENOENT ? STATUS_UNKNOWN_COMMAND : STATUS_NOT_EXECUTABLE);
return parse_execution_errored;
}
/// Creates a 'normal' (non-block) process.
parse_execution_result_t parse_execution_context_t::populate_plain_process(
job_t *job, process_t *proc, const parse_node_t &statement) {
assert(job != NULL);
assert(proc != NULL);
assert(statement.type == symbol_plain_statement);
// We may decide that a command should be an implicit cd.
bool use_implicit_cd = false;
// Get the command. We expect to always get it here.
wcstring cmd;
bool got_cmd = tree.command_for_plain_statement(statement, src, &cmd);
assert(got_cmd);
// Expand it as a command. Return an error on failure.
bool expanded = expand_one(cmd, EXPAND_SKIP_CMDSUBST | EXPAND_SKIP_VARIABLES, NULL);
if (!expanded) {
report_error(statement, ILLEGAL_CMD_ERR_MSG, cmd.c_str());
return parse_execution_errored;
}
// Determine the process type.
enum process_type_t process_type = process_type_for_command(statement, cmd);
// Check for stack overflow.
if (process_type == INTERNAL_FUNCTION &&
parser->forbidden_function.size() > FISH_MAX_STACK_DEPTH) {
this->report_error(statement, CALL_STACK_LIMIT_EXCEEDED_ERR_MSG);
return parse_execution_errored;
}
wcstring path_to_external_command;
if (process_type == EXTERNAL || process_type == INTERNAL_EXEC) {
// Determine the actual command. This may be an implicit cd.
bool has_command = path_get_path(cmd, &path_to_external_command);
// If there was no command, then we care about the value of errno after checking for it, to
// distinguish between e.g. no file vs permissions problem.
const int no_cmd_err_code = errno;
// If the specified command does not exist, and is undecorated, try using an implicit cd.
if (!has_command &&
tree.decoration_for_plain_statement(statement) == parse_statement_decoration_none) {
// Implicit cd requires an empty argument and redirection list.
const parse_node_t *args =
get_child(statement, 1, symbol_arguments_or_redirections_list);
if (args->child_count == 0) {
// Ok, no arguments or redirections; check to see if the first argument is a
// directory.
wcstring implicit_cd_path;
use_implicit_cd = path_can_be_implicit_cd(cmd, &implicit_cd_path);
}
}
if (!has_command && !use_implicit_cd) {
// No command.
return this->handle_command_not_found(cmd, statement, no_cmd_err_code);
}
}
// The argument list and set of IO redirections that we will construct for the process.
io_chain_t process_io_chain;
wcstring_list_t argument_list;
if (use_implicit_cd) {
/* Implicit cd is simple */
argument_list.push_back(L"cd");
argument_list.push_back(cmd);
path_to_external_command.clear();
// If we have defined a wrapper around cd, use it, otherwise use the cd builtin.
process_type = function_exists(L"cd") ? INTERNAL_FUNCTION : INTERNAL_BUILTIN;
} else {
const globspec_t glob_behavior = contains(cmd, L"set", L"count") ? nullglob : failglob;
// Form the list of arguments. The command is the first argument. TODO: count hack, where we
// treat 'count --help' as different from 'count $foo' that expands to 'count --help'. fish
// 1.x never successfully did this, but it tried to!
parse_execution_result_t arg_result =
this->determine_arguments(statement, &argument_list, glob_behavior);
if (arg_result != parse_execution_success) {
return arg_result;
}
argument_list.insert(argument_list.begin(), cmd);
// The set of IO redirections that we construct for the process.
if (!this->determine_io_chain(statement, &process_io_chain)) {
return parse_execution_errored;
}
// Determine the process type.
process_type = process_type_for_command(statement, cmd);
}
// Populate the process.
proc->type = process_type;
proc->set_argv(argument_list);
proc->set_io_chain(process_io_chain);
proc->actual_cmd = path_to_external_command;
return parse_execution_success;
}
// Determine the list of arguments, expanding stuff. Reports any errors caused by expansion. If we
// have a wildcard that could not be expanded, report the error and continue.
parse_execution_result_t parse_execution_context_t::determine_arguments(
const parse_node_t &parent, wcstring_list_t *out_arguments, globspec_t glob_behavior) {
// Get all argument nodes underneath the statement. We guess we'll have that many arguments (but
// may have more or fewer, if there are wildcards involved).
const parse_node_tree_t::parse_node_list_t argument_nodes =
tree.find_nodes(parent, symbol_argument);
out_arguments->reserve(out_arguments->size() + argument_nodes.size());
std::vector<completion_t> arg_expanded;
for (size_t i = 0; i < argument_nodes.size(); i++) {
const parse_node_t &arg_node = *argument_nodes.at(i);
// Expect all arguments to have source.
assert(arg_node.has_source());
const wcstring arg_str = arg_node.get_source(src);
// Expand this string.
parse_error_list_t errors;
arg_expanded.clear();
int expand_ret = expand_string(arg_str, &arg_expanded, EXPAND_NO_DESCRIPTIONS, &errors);
parse_error_offset_source_start(&errors, arg_node.source_start);
switch (expand_ret) {
case EXPAND_ERROR: {
this->report_errors(errors);
return parse_execution_errored;
}
case EXPAND_WILDCARD_NO_MATCH: {
if (glob_behavior == failglob) {
// Report the unmatched wildcard error and stop processing.
report_unmatched_wildcard_error(arg_node);
return parse_execution_errored;
}
break;
}
case EXPAND_WILDCARD_MATCH:
case EXPAND_OK: {
break;
}
}
// Now copy over any expanded arguments. Do it using swap() to avoid extra allocations; this
// is called very frequently.
size_t old_arg_count = out_arguments->size();
size_t new_arg_count = arg_expanded.size();
out_arguments->resize(old_arg_count + new_arg_count);
for (size_t i = 0; i < new_arg_count; i++) {
wcstring &new_arg = arg_expanded.at(i).completion;
out_arguments->at(old_arg_count + i).swap(new_arg);
}
}
return parse_execution_success;
}
bool parse_execution_context_t::determine_io_chain(const parse_node_t &statement_node,
io_chain_t *out_chain) {
io_chain_t result;
bool errored = false;
// We are called with a statement of varying types. We require that the statement have an
// arguments_or_redirections_list child.
const parse_node_t &args_and_redirections_list =
tree.find_child(statement_node, symbol_arguments_or_redirections_list);
// Get all redirection nodes underneath the statement.
const parse_node_tree_t::parse_node_list_t redirect_nodes =
tree.find_nodes(args_and_redirections_list, symbol_redirection);
for (size_t i = 0; i < redirect_nodes.size(); i++) {
const parse_node_t &redirect_node = *redirect_nodes.at(i);
int source_fd = -1; // source fd
wcstring target; // file path or target fd
enum token_type redirect_type =
tree.type_for_redirection(redirect_node, src, &source_fd, &target);
// PCA: I can't justify this EXPAND_SKIP_VARIABLES flag. It was like this when I got here.
bool target_expanded = expand_one(target, no_exec ? EXPAND_SKIP_VARIABLES : 0, NULL);
if (!target_expanded || target.empty()) {
// TODO: Improve this error message.
errored =
report_error(redirect_node, _(L"Invalid redirection target: %ls"), target.c_str());
}
// Generate the actual IO redirection.
shared_ptr<io_data_t> new_io;
assert(redirect_type != TOK_NONE);
switch (redirect_type) {
case TOK_REDIRECT_FD: {
if (target == L"-") {
new_io.reset(new io_close_t(source_fd));
} else {
wchar_t *end = NULL;
errno = 0;
int old_fd = fish_wcstoi(target.c_str(), &end, 10);
if (old_fd < 0 || errno || *end) {
errored =
report_error(redirect_node, _(L"Requested redirection to '%ls', which "
L"is not a valid file descriptor"),
target.c_str());
} else {
new_io.reset(new io_fd_t(source_fd, old_fd, true));
}
}
break;
}
case TOK_REDIRECT_OUT:
case TOK_REDIRECT_APPEND:
case TOK_REDIRECT_IN:
case TOK_REDIRECT_NOCLOB: {
int oflags = oflags_for_redirection_type(redirect_type);
io_file_t *new_io_file = new io_file_t(source_fd, target, oflags);
new_io.reset(new_io_file);
break;
}
default: {
// Should be unreachable.
fprintf(stderr, "Unexpected redirection type %ld. aborting.\n",
(long)redirect_type);
PARSER_DIE();
break;
}
}
// Append the new_io if we got one.
if (new_io.get() != NULL) {
result.push_back(new_io);
}
}
if (out_chain && !errored) {
out_chain->swap(result);
}
return !errored;
}
parse_execution_result_t parse_execution_context_t::populate_boolean_process(
job_t *job, process_t *proc, const parse_node_t &bool_statement) {
// Handle a boolean statement.
bool skip_job = false;
assert(bool_statement.type == symbol_boolean_statement);
switch (parse_node_tree_t::statement_boolean_type(bool_statement)) {
case parse_bool_and: {
// AND. Skip if the last job failed.
skip_job = (proc_get_last_status() != 0);
break;
}
case parse_bool_or: {
// OR. Skip if the last job succeeded.
skip_job = (proc_get_last_status() == 0);
break;
}
case parse_bool_not: {
// NOT. Negate it.
job_set_flag(job, JOB_NEGATE, !job_get_flag(job, JOB_NEGATE));
break;
}
}
if (skip_job) {
return parse_execution_skipped;
}
const parse_node_t &subject = *tree.get_child(bool_statement, 1, symbol_statement);
return this->populate_job_process(job, proc, subject);
}
parse_execution_result_t parse_execution_context_t::populate_block_process(
job_t *job, process_t *proc, const parse_node_t &statement_node) {
// We handle block statements by creating INTERNAL_BLOCK_NODE, that will bounce back to us when
// it's time to execute them.
assert(statement_node.type == symbol_block_statement ||
statement_node.type == symbol_if_statement ||
statement_node.type == symbol_switch_statement);
// The set of IO redirections that we construct for the process.
io_chain_t process_io_chain;
bool errored = !this->determine_io_chain(statement_node, &process_io_chain);
if (errored) return parse_execution_errored;
proc->type = INTERNAL_BLOCK_NODE;
proc->internal_block_node = this->get_offset(statement_node);
proc->set_io_chain(process_io_chain);
return parse_execution_success;
}
// Returns a process_t allocated with new. It's the caller's responsibility to delete it (!).
parse_execution_result_t parse_execution_context_t::populate_job_process(
job_t *job, process_t *proc, const parse_node_t &statement_node) {
assert(statement_node.type == symbol_statement);
assert(statement_node.child_count == 1);
// Get the "specific statement" which is boolean / block / if / switch / decorated.
const parse_node_t &specific_statement = *get_child(statement_node, 0);
parse_execution_result_t result = parse_execution_success;
switch (specific_statement.type) {
case symbol_boolean_statement: {
result = this->populate_boolean_process(job, proc, specific_statement);
break;
}
case symbol_block_statement:
case symbol_if_statement:
case symbol_switch_statement: {
result = this->populate_block_process(job, proc, specific_statement);
break;
}
case symbol_decorated_statement: {
// Get the plain statement. It will pull out the decoration itself.
const parse_node_t &plain_statement =
tree.find_child(specific_statement, symbol_plain_statement);
result = this->populate_plain_process(job, proc, plain_statement);
break;
}
default: {
fprintf(stderr, "'%ls' not handled by new parser yet\n",
specific_statement.describe().c_str());
PARSER_DIE();
break;
}
}
return result;
}
parse_execution_result_t parse_execution_context_t::populate_job_from_job_node(
job_t *j, const parse_node_t &job_node, const block_t *associated_block) {
assert(job_node.type == symbol_job);
// Tell the job what its command is.
j->set_command(get_source(job_node));
// We are going to construct process_t structures for every statement in the job. Get the first
// statement.
const parse_node_t *statement_node = get_child(job_node, 0, symbol_statement);
assert(statement_node != NULL);
parse_execution_result_t result = parse_execution_success;
// Create processes. Each one may fail.
std::vector<process_t *> processes;
processes.push_back(new process_t());
result = this->populate_job_process(j, processes.back(), *statement_node);
// Construct process_ts for job continuations (pipelines), by walking the list until we hit the
// terminal (empty) job continuation.
const parse_node_t *job_cont = get_child(job_node, 1, symbol_job_continuation);
assert(job_cont != NULL);
while (result == parse_execution_success && job_cont->child_count > 0) {
assert(job_cont->type == symbol_job_continuation);
// Handle the pipe, whose fd may not be the obvious stdout.
const parse_node_t &pipe_node = *get_child(*job_cont, 0, parse_token_type_pipe);
int pipe_write_fd = fd_redirected_by_pipe(get_source(pipe_node));
if (pipe_write_fd == -1) {
result = report_error(pipe_node, ILLEGAL_FD_ERR_MSG, get_source(pipe_node).c_str());
break;
}
processes.back()->pipe_write_fd = pipe_write_fd;
// Get the statement node and make a process from it.
const parse_node_t *statement_node = get_child(*job_cont, 1, symbol_statement);
assert(statement_node != NULL);
// Store the new process (and maybe with an error).
processes.push_back(new process_t());
result = this->populate_job_process(j, processes.back(), *statement_node);
// Get the next continuation.
job_cont = get_child(*job_cont, 2, symbol_job_continuation);
assert(job_cont != NULL);
}
// Return what happened.
if (result == parse_execution_success) {
// Link up the processes.
assert(!processes.empty());
j->first_process = processes.at(0);
for (size_t i = 1; i < processes.size(); i++) {
processes.at(i - 1)->next = processes.at(i);
}
} else {
// Clean up processes.
for (size_t i = 0; i < processes.size(); i++) {
const process_t *proc = processes.at(i);
processes.at(i) = NULL;
delete proc;
}
}
return result;
}
parse_execution_result_t parse_execution_context_t::run_1_job(const parse_node_t &job_node,
const block_t *associated_block) {
if (should_cancel_execution(associated_block)) {
return parse_execution_cancelled;
}
// Get terminal modes.
struct termios tmodes = {};
if (get_is_interactive()) {
if (tcgetattr(STDIN_FILENO, &tmodes)) {
// Need real error handling here.
wperror(L"tcgetattr");
return parse_execution_errored;
}
}
// Increment the eval_level for the duration of this command.
scoped_push<int> saved_eval_level(&eval_level, eval_level + 1);
// Save the node index.
scoped_push<node_offset_t> saved_node_offset(&executing_node_idx, this->get_offset(job_node));
// Profiling support.
long long start_time = 0, parse_time = 0, exec_time = 0;
profile_item_t *profile_item = this->parser->create_profile_item();
if (profile_item != NULL) {
start_time = get_time();
}
// When we encounter a block construct (e.g. while loop) in the general case, we create a "block
// process" that has a pointer to its source. This allows us to handle block-level redirections.
// However, if there are no redirections, then we can just jump into the block directly, which
// is significantly faster.
if (job_is_simple_block(job_node)) {
parse_execution_result_t result = parse_execution_success;
const parse_node_t &statement = *get_child(job_node, 0, symbol_statement);
const parse_node_t &specific_statement = *get_child(statement, 0);
assert(specific_statement_type_is_redirectable_block(specific_statement));
switch (specific_statement.type) {
case symbol_block_statement: {
result = this->run_block_statement(specific_statement);
break;
}
case symbol_if_statement: {
result = this->run_if_statement(specific_statement);
break;
}
case symbol_switch_statement: {
result = this->run_switch_statement(specific_statement);
break;
}
default: {
// Other types should be impossible due to the
// specific_statement_type_is_redirectable_block check.
PARSER_DIE();
break;
}
}
if (profile_item != NULL) {
// Block-types profile a little weird. They have no 'parse' time, and their command is
// just the block type.
exec_time = get_time();
profile_item->level = eval_level;
profile_item->parse = 0;
profile_item->exec = (int)(exec_time - start_time);
profile_item->cmd = profiling_cmd_name_for_redirectable_block(specific_statement,
this->tree, this->src);
profile_item->skipped = false;
}
return result;
}
job_t *j = new job_t(acquire_job_id(), block_io);
j->tmodes = tmodes;
job_set_flag(j, JOB_CONTROL,
(job_control_mode == JOB_CONTROL_ALL) ||
((job_control_mode == JOB_CONTROL_INTERACTIVE) && (get_is_interactive())));
job_set_flag(j, JOB_FOREGROUND, !tree.job_should_be_backgrounded(job_node));
job_set_flag(j, JOB_TERMINAL, job_get_flag(j, JOB_CONTROL) && !is_subshell && !is_event);
job_set_flag(j, JOB_SKIP_NOTIFICATION,
is_subshell || is_block || is_event || !get_is_interactive());
// Tell the current block what its job is. This has to happen before we populate it (#1394).
parser->current_block()->job = j;
// Populate the job. This may fail for reasons like command_not_found. If this fails, an error
// will have been printed.
parse_execution_result_t pop_result =
this->populate_job_from_job_node(j, job_node, associated_block);
// Clean up the job on failure or cancellation.
bool populated_job = (pop_result == parse_execution_success);
if (!populated_job || this->should_cancel_execution(associated_block)) {
assert(parser->current_block()->job == j);
parser->current_block()->job = NULL;
delete j;
j = NULL;
populated_job = false;
}
// Store time it took to 'parse' the command.
if (profile_item != NULL) {
parse_time = get_time();
}
if (populated_job) {
// Success. Give the job to the parser - it will clean it up.
parser->job_add(j);
// Check to see if this contained any external commands.
bool job_contained_external_command = false;
for (const process_t *proc = j->first_process; proc != NULL; proc = proc->next) {
if (proc->type == EXTERNAL) {
job_contained_external_command = true;
break;
}
}
// Actually execute the job.
exec_job(*this->parser, j);
// Only external commands require a new fishd barrier.
if (job_contained_external_command) {
set_proc_had_barrier(false);
}
}
if (profile_item != NULL) {
exec_time = get_time();
profile_item->level = eval_level;
profile_item->parse = (int)(parse_time - start_time);
profile_item->exec = (int)(exec_time - parse_time);
profile_item->cmd = j ? j->command() : wcstring();
profile_item->skipped = !populated_job;
}
job_reap(0); // clean up jobs
return parse_execution_success;
}
parse_execution_result_t parse_execution_context_t::run_job_list(const parse_node_t &job_list_node,
const block_t *associated_block) {
assert(job_list_node.type == symbol_job_list || job_list_node.type == symbol_andor_job_list);
parse_execution_result_t result = parse_execution_success;
const parse_node_t *job_list = &job_list_node;
while (job_list != NULL && !should_cancel_execution(associated_block)) {
assert(job_list->type == symbol_job_list || job_list_node.type == symbol_andor_job_list);
// Try pulling out a job.
const parse_node_t *job = tree.next_node_in_node_list(*job_list, symbol_job, &job_list);
if (job != NULL) {
result = this->run_1_job(*job, associated_block);
}
}
// Returns the last job executed.
return result;
}
parse_execution_result_t parse_execution_context_t::eval_node_at_offset(
node_offset_t offset, const block_t *associated_block, const io_chain_t &io) {
// Don't ever expect to have an empty tree if this is called.
assert(!tree.empty());
assert(offset < tree.size());
// Apply this block IO for the duration of this function.
scoped_push<io_chain_t> block_io_push(&block_io, io);
const parse_node_t &node = tree.at(offset);
// Currently, we only expect to execute the top level job list, or a block node. Assert that.
assert(node.type == symbol_job_list || specific_statement_type_is_redirectable_block(node));
enum parse_execution_result_t status = parse_execution_success;
switch (node.type) {
case symbol_job_list: {
// We should only get a job list if it's the very first node. This is because this is
// the entry point for both top-level execution (the first node) and INTERNAL_BLOCK_NODE
// execution (which does block statements, but never job lists).
assert(offset == 0);
wcstring func_name;
const parse_node_t *infinite_recursive_node =
this->infinite_recursive_statement_in_job_list(node, &func_name);
if (infinite_recursive_node != NULL) {
// We have an infinite recursion.
this->report_error(*infinite_recursive_node, INFINITE_FUNC_RECURSION_ERR_MSG,
func_name.c_str());
status = parse_execution_errored;
} else {
// No infinite recursion.
status = this->run_job_list(node, associated_block);
}
break;
}
case symbol_block_statement: {
status = this->run_block_statement(node);
break;
}
case symbol_if_statement: {
status = this->run_if_statement(node);
break;
}
case symbol_switch_statement: {
status = this->run_switch_statement(node);
break;
}
default: {
// In principle, we could support other node types. However we never expect to be passed
// them - see above.
fprintf(stderr, "Unexpected node %ls found in %s\n", node.describe().c_str(),
__FUNCTION__);
PARSER_DIE();
break;
}
}
return status;
}
int parse_execution_context_t::line_offset_of_node_at_offset(node_offset_t requested_index) {
// If we're not executing anything, return -1.
if (requested_index == NODE_OFFSET_INVALID) {
return -1;
}
// If for some reason we're executing a node without source, return -1.
const parse_node_t &node = tree.at(requested_index);
if (!node.has_source()) {
return -1;
}
size_t char_offset = tree.at(requested_index).source_start;
return this->line_offset_of_character_at_offset(char_offset);
}
int parse_execution_context_t::line_offset_of_character_at_offset(size_t offset) {
// Count the number of newlines, leveraging our cache.
assert(offset <= src.size());
// Easy hack to handle 0.
if (offset == 0) {
return 0;
}
// We want to return (one plus) the number of newlines at offsets less than the given offset.
// cached_lineno_count is the number of newlines at indexes less than cached_lineno_offset.
const wchar_t *str = src.c_str();
if (offset > cached_lineno_offset) {
size_t i;
for (i = cached_lineno_offset; str[i] != L'\0' && i < offset; i++) {
// Add one for every newline we find in the range [cached_lineno_offset, offset).
if (str[i] == L'\n') {
cached_lineno_count++;
}
}
cached_lineno_offset =
i; // note: i, not offset, in case offset is beyond the length of the string
} else if (offset < cached_lineno_offset) {
// Subtract one for every newline we find in the range [offset, cached_lineno_offset).
for (size_t i = offset; i < cached_lineno_offset; i++) {
if (str[i] == L'\n') {
cached_lineno_count--;
}
}
cached_lineno_offset = offset;
}
return cached_lineno_count;
}
int parse_execution_context_t::get_current_line_number() {
int line_number = -1;
int line_offset = this->line_offset_of_node_at_offset(this->executing_node_idx);
if (line_offset >= 0) {
// The offset is 0 based; the number is 1 based.
line_number = line_offset + 1;
}
return line_number;
}
int parse_execution_context_t::get_current_source_offset() const {
int result = -1;
if (executing_node_idx != NODE_OFFSET_INVALID) {
const parse_node_t &node = tree.at(executing_node_idx);
if (node.has_source()) {
result = static_cast<int>(node.source_start);
}
}
return result;
}