fish-shell/src/maybe.h
Johannes Altmanninger 1df64a4891 Replace maybe_t::missing_or_empty with a more Rust-friendly helper
There are many places where we want to treat a missing variable the same as
a variable with an empty value.

In C++ we handle this by branching on maybe_t<env_var_t>::missing_or_empty().
If it returns false, we go on to access maybe_t<env_var_t>::value() aka
operator*.

In Rust, Environment::get() will return an Option<EnvVar>.
We could define a MissingOrEmpty trait and implement it for Option<EnvVar>.

However that will still leave us with ugly calls to Option::unwrap()
(by convention Rust does use shorthands like *).

Let's add a variable getter that returns none for empty variables.
2023-04-21 13:57:29 +02:00

258 lines
8.2 KiB
C++

#ifndef FISH_MAYBE_H
#define FISH_MAYBE_H
#include <cassert>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
namespace maybe_detail {
// Template magic to make maybe_t<T> (trivially) copyable iff T is.
// This is an unsafe implementation: it is always trivially copyable.
template <typename T>
struct maybe_impl_trivially_copyable_t {
alignas(T) char storage[sizeof(T)];
bool filled = false;
T &value() {
assert(filled && "maybe_t does not have a value");
return *reinterpret_cast<T *>(storage);
}
const T &value() const {
assert(filled && "maybe_t does not have a value");
return *reinterpret_cast<const T *>(storage);
}
void reset() {
if (this->filled) {
value().~T();
this->filled = false;
}
}
T acquire() {
assert(filled && "maybe_t does not have a value");
T res = std::move(value());
reset();
return res;
}
maybe_impl_trivially_copyable_t() = default;
// Move construction/assignment from a T.
explicit maybe_impl_trivially_copyable_t(T &&v) : filled(true) {
new (storage) T(std::forward<T>(v));
}
maybe_impl_trivially_copyable_t &operator=(T &&v) {
if (filled) {
value() = std::move(v);
} else {
new (storage) T(std::move(v));
filled = true;
}
return *this;
}
// Copy construction/assignment from a T.
explicit maybe_impl_trivially_copyable_t(const T &v) : filled(true) { new (storage) T(v); }
maybe_impl_trivially_copyable_t &operator=(const T &v) {
if (filled) {
value() = v;
} else {
new (storage) T(v);
filled = true;
}
return *this;
}
};
// This is an unsafe implementation: it is always copyable.
template <typename T>
struct maybe_impl_not_trivially_copyable_t : public maybe_impl_trivially_copyable_t<T> {
using base_t = maybe_impl_trivially_copyable_t<T>;
using base_t::maybe_impl_trivially_copyable_t;
using base_t::operator=;
using base_t::filled;
using base_t::reset;
using base_t::storage;
// Move construction/assignment from another instance.
maybe_impl_not_trivially_copyable_t(maybe_impl_not_trivially_copyable_t &&v) {
filled = v.filled;
if (filled) {
new (storage) T(std::move(v.value()));
}
}
maybe_impl_not_trivially_copyable_t &operator=(maybe_impl_not_trivially_copyable_t &&v) {
if (!v.filled) {
reset();
} else {
*this = std::move(v.value());
}
return *this;
}
// Copy construction/assignment from another instance.
maybe_impl_not_trivially_copyable_t(const maybe_impl_not_trivially_copyable_t &v) : base_t() {
filled = v.filled;
if (v.filled) {
new (storage) T(v.value());
}
}
maybe_impl_not_trivially_copyable_t &operator=(const maybe_impl_not_trivially_copyable_t &v) {
if (&v == this) return *this;
if (!v.filled) {
reset();
} else {
*this = v.value();
}
return *this;
}
maybe_impl_not_trivially_copyable_t() = default;
~maybe_impl_not_trivially_copyable_t() { reset(); }
};
struct copyable_t {};
struct noncopyable_t {
noncopyable_t() = default;
noncopyable_t(noncopyable_t &&) = default;
noncopyable_t &operator=(noncopyable_t &&) = default;
noncopyable_t(const noncopyable_t &) = delete;
noncopyable_t &operator=(const noncopyable_t &) = delete;
};
// conditionally_copyable_t is copyable iff T is copyable.
// This enables conditionally copyable wrapper types by inheriting from it.
template <typename T>
using conditionally_copyable_t = typename std::conditional<std::is_copy_constructible<T>::value,
copyable_t, noncopyable_t>::type;
}; // namespace maybe_detail
// A none_t is a helper type used to implicitly initialize maybe_t.
// Example usage:
// maybe_t<int> sqrt(int x) {
// if (x < 0) return none();
// return (int)sqrt(x);
// }
enum class none_t { none = 1 };
inline constexpr none_t none() { return none_t::none; }
// Support for a maybe, also known as Optional.
// This is a value-type class that stores a value of T in aligned storage.
template <typename T>
class maybe_t : private maybe_detail::conditionally_copyable_t<T> {
// Making maybe_t trivially copyable results in some heisenbugs if compiled under gcc 8.3.0
// targeting 32-bit armhf platforms (Debian 10 armhf toolchain). It's confirmed not to happen if
// using clang 7 (under Debian 10 armhf) or gcc 10 (under Debian 11 armhf) so we're also
// excluding gcc 9 unless/until 32-bit armhf builds under GCC 9 are observed to pass all tests
// with this version check lowered. As this is only an optimization, just disable it across the
// board rather than only for armhf targets out of an abundance of caution.
#if __GNUG__ && __GNUC__ < 10
using maybe_impl_t = maybe_detail::maybe_impl_not_trivially_copyable_t<T>;
#else
using maybe_impl_t =
typename std::conditional<std::is_trivially_copyable<T>::value,
maybe_detail::maybe_impl_trivially_copyable_t<T>,
maybe_detail::maybe_impl_not_trivially_copyable_t<T> >::type;
#endif
maybe_impl_t impl_;
public:
// return whether the receiver contains a value.
bool has_value() const { return impl_.filled; }
// A bool operator as a shortcut to test if the maybe_t has a value.
// Not enabled if the type T is already bool-convertible to prevent accidental misuse,
// otherwise the "typename std::enable_if<....>::type" evaluates to bool, giving us a definition
// of `explicit operator bool() const { ... }`
template <typename U = T>
explicit operator typename std::enable_if<!std::is_convertible<U, bool>::value, bool>::type()
const {
return impl_.filled;
}
// The default constructor constructs a maybe with no value.
maybe_t() = default;
// Construct a maybe_t from a none_t
/* implicit */ maybe_t(none_t) {}
// Construct a maybe_t from a value T.
/* implicit */ maybe_t(T &&v) : impl_(std::move(v)) {}
// Construct a maybe_t from a value T.
/* implicit */ maybe_t(const T &v) : impl_(v) {}
// Copy and move constructors.
maybe_t(const maybe_t &) = default;
maybe_t(maybe_t &&) = default;
/* implicit */ maybe_t(std::unique_ptr<T> v) : maybe_t() {
if (v) *this = std::move(*v);
}
// Construct a value in-place.
template <class... Args>
void emplace(Args &&...args) {
reset();
impl_.filled = true;
new (impl_.storage) T(std::forward<Args>(args)...);
}
// Access the value.
T &value() { return impl_.value(); }
const T &value() const { return impl_.value(); }
// Transfer the value to the caller.
T acquire() { return impl_.acquire(); }
// Return (a copy of) our value, or the given value if we are empty.
T value_or(T v) const {
if (this->has_value()) {
return this->value();
}
return v;
}
// Clear the value.
void reset() { impl_.reset(); }
// Assign a new value.
maybe_t &operator=(T &&v) {
impl_ = std::move(v);
return *this;
}
// Note that defaulting these allows these to be conditionally deleted via
// conditionally_copyable_t().
maybe_t &operator=(const maybe_t &) = default;
maybe_t &operator=(maybe_t &&) = default;
// Dereference support.
const T *operator->() const { return &value(); }
T *operator->() { return &value(); }
const T &operator*() const { return value(); }
T &operator*() { return value(); }
// Compare values for equality.
bool operator==(const maybe_t &rhs) const {
if (this->has_value() && rhs.has_value()) return this->value() == rhs.value();
return this->has_value() == rhs.has_value();
}
bool operator!=(const maybe_t &rhs) const { return !(*this == rhs); }
bool operator==(const T &rhs) const { return this->has_value() && this->value() == rhs; }
bool operator!=(const T &rhs) const { return !(*this == rhs); }
};
#endif