fish-shell/src/common.cpp
2016-06-28 02:57:14 -07:00

1956 lines
65 KiB
C++

// Various functions, mostly string utilities, that are used by most parts of fish.
#include "config.h"
#include <assert.h>
#include <cxxabi.h>
#include <dlfcn.h>
#include <errno.h>
#include <limits.h>
#include <signal.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdint.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <sys/stat.h>
#include <sys/time.h>
#include <termios.h>
#include <unistd.h>
#include <wchar.h>
#include <wctype.h>
#ifdef HAVE_EXECINFO_H
#include <execinfo.h>
#endif
#ifdef HAVE_SIGINFO_H
#include <siginfo.h>
#endif
#ifdef HAVE_SYS_IOCTL_H
#include <sys/ioctl.h>
#endif
#include <algorithm>
#include <memory> // IWYU pragma: keep
#include "common.h"
#include "expand.h"
#include "fallback.h" // IWYU pragma: keep
#include "wildcard.h"
#include "wutil.h" // IWYU pragma: keep
#define NOT_A_WCHAR (static_cast<wint_t>(WEOF))
struct termios shell_modes;
// Note we foolishly assume that pthread_t is just a primitive. But it might be a struct.
static pthread_t main_thread_id = 0;
static bool thread_assertions_configured_for_testing = false;
wchar_t ellipsis_char;
wchar_t omitted_newline_char;
bool g_profiling_active = false;
const wchar_t *program_name;
int debug_level = 1; // default maximum debug output level (errors and warnings)
int debug_stack_frames = 0; // default number of stack frames to show on debug() calls
/// This allows us to notice when we've forked.
static pid_t initial_pid = 0;
/// Be able to restore the term's foreground process group.
static pid_t initial_foreground_process_group = -1;
/// This struct maintains the current state of the terminal size. It is updated on demand after
/// receiving a SIGWINCH. Do not touch this struct directly, it's managed with a rwlock. Use
/// common_get_width()/common_get_height().
static struct winsize termsize;
static volatile bool termsize_valid;
static rwlock_t termsize_rwlock;
static char *wcs2str_internal(const wchar_t *in, char *out);
static void debug_shared(const wchar_t msg_level, const wcstring &msg);
bool has_working_tty_timestamps = true;
#ifdef HAVE_BACKTRACE_SYMBOLS
// This function produces a stack backtrace with demangled function & method names. It is based on
// https://gist.github.com/fmela/591333 but adapted to the style of the fish project.
static const wcstring_list_t __attribute__((noinline))
demangled_backtrace(int max_frames, int skip_levels) {
void *callstack[128];
const int n_max_frames = sizeof(callstack) / sizeof(callstack[0]);
int n_frames = backtrace(callstack, n_max_frames);
char **symbols = backtrace_symbols(callstack, n_frames);
wchar_t text[1024];
std::vector<wcstring> backtrace_text;
if (skip_levels + max_frames < n_frames) n_frames = skip_levels + max_frames;
for (int i = skip_levels; i < n_frames; i++) {
Dl_info info;
if (dladdr(callstack[i], &info) && info.dli_sname) {
char *demangled = NULL;
int status = -1;
if (info.dli_sname[0] == '_')
demangled = abi::__cxa_demangle(info.dli_sname, NULL, 0, &status);
swprintf(text, sizeof(text) / sizeof(wchar_t), L"%-3d %s + %td", i - skip_levels,
status == 0 ? demangled : info.dli_sname == 0 ? symbols[i] : info.dli_sname,
(char *)callstack[i] - (char *)info.dli_saddr);
free(demangled);
} else {
swprintf(text, sizeof(text) / sizeof(wchar_t), L"%-3d %s", i - skip_levels, symbols[i]);
}
backtrace_text.push_back(text);
}
free(symbols);
return backtrace_text;
}
void __attribute__((noinline))
show_stackframe(const wchar_t msg_level, int frame_count, int skip_levels) {
ASSERT_IS_NOT_FORKED_CHILD();
// TODO: Decide if this is still needed. I'm commenting it out because it caused me some grief
// while trying to debug a test failure. And the tests run just fine without spurious failures
// if this check is not done.
//
// Hack to avoid showing backtraces in the tester.
// if (program_name && !wcscmp(program_name, L"(ignore)")) return;
if (frame_count < 1) frame_count = 999;
debug_shared(msg_level, L"Backtrace:");
std::vector<wcstring> bt = demangled_backtrace(frame_count, skip_levels + 2);
for (int i = 0; i < bt.size(); i++) {
debug_shared(msg_level, bt[i]);
}
}
#else // HAVE_BACKTRACE_SYMBOLS
void __attribute__((noinline))
show_stackframe(const wchar_t msg_level, int frame_count, int skip_levels) {
debug_shared(msg_level, L"Sorry, but your system does not support backtraces");
}
#endif // HAVE_BACKTRACE_SYMBOLS
int fgetws2(wcstring *s, FILE *f) {
int i = 0;
wint_t c;
while (1) {
errno = 0;
c = fgetwc(f);
if (errno == EILSEQ || errno == EINTR) {
continue;
}
switch (c) {
// End of line.
case WEOF:
case L'\n':
case L'\0': {
return i;
}
// Ignore carriage returns.
case L'\r': {
break;
}
default: {
i++;
s->push_back((wchar_t)c);
break;
}
}
}
}
/// Converts the narrow character string \c in into its wide equivalent, and return it.
///
/// The string may contain embedded nulls.
///
/// This function encodes illegal character sequences in a reversible way using the private use
/// area.
static wcstring str2wcs_internal(const char *in, const size_t in_len) {
if (in_len == 0) return wcstring();
assert(in != NULL);
wcstring result;
result.reserve(in_len);
size_t in_pos = 0;
if (MB_CUR_MAX == 1) {
// Single-byte locale, all values are legal.
while (in_pos < in_len) {
result.push_back((unsigned char)in[in_pos]);
in_pos++;
}
return result;
}
mbstate_t state = {};
while (in_pos < in_len) {
bool use_encode_direct = false;
size_t ret;
wchar_t wc = 0;
if ((in[in_pos] & 0xF8) == 0xF8) {
// Protect against broken mbrtowc() implementations which attempt to encode UTF-8
// sequences longer than four bytes (e.g., OS X Snow Leopard).
use_encode_direct = true;
} else if (sizeof(wchar_t) == 2 && (in[in_pos] & 0xF8) == 0xF0) {
// Assume we are in a UTF-16 environment (e.g., Cygwin) using a UTF-8 encoding.
// The bits set check will be true for a four byte UTF-8 sequence that requires
// two UTF-16 chars. Something that doesn't work with our simple use of mbrtowc().
use_encode_direct = true;
} else {
ret = mbrtowc(&wc, &in[in_pos], in_len - in_pos, &state);
// fprintf(stderr, "WTF in_pos %d ret %d\n", in_pos, ret);
// Determine whether to encode this character with our crazy scheme.
if (wc >= ENCODE_DIRECT_BASE && wc < ENCODE_DIRECT_BASE + 256) {
use_encode_direct = true;
} else if (wc == INTERNAL_SEPARATOR) {
use_encode_direct = true;
} else if (ret == (size_t)-2) {
// Incomplete sequence.
use_encode_direct = true;
} else if (ret == (size_t)-1) {
// Invalid data.
use_encode_direct = true;
} else if (ret > in_len - in_pos) {
// Other error codes? Terrifying, should never happen.
use_encode_direct = true;
} else if (sizeof(wchar_t) == 2 && wc >= 0xD800 && wc <= 0xDFFF) {
// If we get a surrogate pair char on a UTF-16 system (e.g., Cygwin) then
// it's guaranteed the UTF-8 decoding is wrong so use direct encoding.
use_encode_direct = true;
}
}
if (use_encode_direct) {
// fprintf(stderr, "WTF use_encode_direct\n");
wc = ENCODE_DIRECT_BASE + (unsigned char)in[in_pos];
result.push_back(wc);
in_pos++;
memset(&state, 0, sizeof state);
} else if (ret == 0) {
// fprintf(stderr, "WTF null byte\n");
// Embedded null byte!
result.push_back(L'\0');
in_pos++;
memset(&state, 0, sizeof state);
} else {
// fprintf(stderr, "WTF null byte\n");
// Normal case.
result.push_back(wc);
in_pos += ret;
}
}
return result;
}
wcstring str2wcstring(const char *in, size_t len) { return str2wcs_internal(in, len); }
wcstring str2wcstring(const char *in) { return str2wcs_internal(in, strlen(in)); }
wcstring str2wcstring(const std::string &in) {
// Handles embedded nulls!
return str2wcs_internal(in.data(), in.size());
}
char *wcs2str(const wchar_t *in) {
if (!in) return NULL;
size_t desired_size = MAX_UTF8_BYTES * wcslen(in) + 1;
char local_buff[512];
if (desired_size <= sizeof local_buff / sizeof *local_buff) {
// Convert into local buff, then use strdup() so we don't waste malloc'd space.
char *result = wcs2str_internal(in, local_buff);
if (result) {
// It converted into the local buffer, so copy it.
result = strdup(result);
if (!result) DIE_MEM();
}
return result;
}
// Here we probably allocate a buffer probably much larger than necessary.
char *out = (char *)malloc(MAX_UTF8_BYTES * wcslen(in) + 1);
if (!out) DIE_MEM();
return wcs2str_internal(in, out);
}
char *wcs2str(const wcstring &in) { return wcs2str(in.c_str()); }
/// This function is distinguished from wcs2str_internal in that it allows embedded null bytes.
std::string wcs2string(const wcstring &input) {
std::string result;
result.reserve(input.size());
mbstate_t state = {};
char converted[MB_LEN_MAX + 1];
for (size_t i = 0; i < input.size(); i++) {
wchar_t wc = input[i];
if (wc == INTERNAL_SEPARATOR) {
// Do nothing.
} else if (wc >= ENCODE_DIRECT_BASE && wc < ENCODE_DIRECT_BASE + 256) {
result.push_back(wc - ENCODE_DIRECT_BASE);
} else if (MB_CUR_MAX == 1) // single-byte locale (C/POSIX/ISO-8859)
{
// If `wc` contains a wide character we emit a question-mark.
if (wc & ~0xFF) {
wc = '?';
}
converted[0] = wc;
result.append(converted, 1);
} else {
memset(converted, 0, sizeof converted);
size_t len = wcrtomb(converted, wc, &state);
if (len == (size_t)(-1)) {
debug(1, L"Wide character %d has no narrow representation", wc);
memset(&state, 0, sizeof(state));
} else {
result.append(converted, len);
}
}
}
return result;
}
/// Converts the wide character string \c in into it's narrow equivalent, stored in \c out. \c out
/// must have enough space to fit the entire string.
///
/// This function decodes illegal character sequences in a reversible way using the private use
/// area.
static char *wcs2str_internal(const wchar_t *in, char *out) {
CHECK(in, 0);
CHECK(out, 0);
size_t in_pos = 0;
size_t out_pos = 0;
mbstate_t state = {};
while (in[in_pos]) {
if (in[in_pos] == INTERNAL_SEPARATOR) {
// Do nothing.
} else if (in[in_pos] >= ENCODE_DIRECT_BASE && in[in_pos] < ENCODE_DIRECT_BASE + 256) {
out[out_pos++] = in[in_pos] - ENCODE_DIRECT_BASE;
} else if (MB_CUR_MAX == 1) // single-byte locale (C/POSIX/ISO-8859)
{
// If `wc` contains a wide character we emit a question-mark.
if (in[in_pos] & ~0xFF) {
out[out_pos++] = '?';
} else {
out[out_pos++] = (unsigned char)in[in_pos];
}
} else {
size_t len = wcrtomb(&out[out_pos], in[in_pos], &state);
if (len == (size_t)-1) {
debug(1, L"Wide character %d has no narrow representation", in[in_pos]);
memset(&state, 0, sizeof(state));
} else {
out_pos += len;
}
}
in_pos++;
}
out[out_pos] = 0;
return out;
}
wcstring format_string(const wchar_t *format, ...) {
va_list va;
va_start(va, format);
wcstring result = vformat_string(format, va);
va_end(va);
return result;
}
void append_formatv(wcstring &target, const wchar_t *format, va_list va_orig) {
const int saved_err = errno;
// As far as I know, there is no way to check if a vswprintf-call failed because of a badly
// formated string option or because the supplied destination string was to small. In GLIBC,
// errno seems to be set to EINVAL either way.
//
// Because of this, on failiure we try to increase the buffer size until the free space is
// larger than max_size, at which point it will conclude that the error was probably due to a
// badly formated string option, and return an error. Make sure to null terminate string before
// that, though.
const size_t max_size = (128 * 1024 * 1024);
wchar_t static_buff[256];
size_t size = 0;
wchar_t *buff = NULL;
int status = -1;
while (status < 0) {
// Reallocate if necessary.
if (size == 0) {
buff = static_buff;
size = sizeof static_buff;
} else {
size *= 2;
if (size >= max_size) {
buff[0] = '\0';
break;
}
buff = (wchar_t *)realloc((buff == static_buff ? NULL : buff), size);
if (buff == NULL) {
DIE_MEM();
}
}
// Try printing.
va_list va;
va_copy(va, va_orig);
status = vswprintf(buff, size / sizeof(wchar_t), format, va);
va_end(va);
}
target.append(buff);
if (buff != static_buff) {
free(buff);
}
errno = saved_err;
}
wcstring vformat_string(const wchar_t *format, va_list va_orig) {
wcstring result;
append_formatv(result, format, va_orig);
return result;
}
void append_format(wcstring &str, const wchar_t *format, ...) {
va_list va;
va_start(va, format);
append_formatv(str, format, va);
va_end(va);
}
const wchar_t *wcsvarname(const wchar_t *str) {
while (*str) {
if ((!iswalnum(*str)) && (*str != L'_')) {
return str;
}
str++;
}
return NULL;
}
const wchar_t *wcsvarname(const wcstring &str) { return wcsvarname(str.c_str()); }
const wchar_t *wcsfuncname(const wcstring &str) { return wcschr(str.c_str(), L'/'); }
bool wcsvarchr(wchar_t chr) { return iswalnum(chr) || chr == L'_'; }
int fish_wcswidth(const wchar_t *str) { return fish_wcswidth(str, wcslen(str)); }
int fish_wcswidth(const wcstring &str) { return fish_wcswidth(str.c_str(), str.size()); }
wchar_t *quote_end(const wchar_t *pos) {
wchar_t c = *pos;
while (1) {
pos++;
if (!*pos) return 0;
if (*pos == L'\\') {
pos++;
if (!*pos) return 0;
} else {
if (*pos == c) {
return (wchar_t *)pos;
}
}
}
return 0;
}
void fish_setlocale() {
// Use ellipsis if on known unicode system, otherwise use $.
ellipsis_char = (fish_wcwidth(L'\x2026') > 0) ? L'\x2026' : L'$';
// U+23CE is the "return" character
omitted_newline_char = (fish_wcwidth(L'\x23CE') > 0) ? L'\x23CE' : L'~';
}
bool contains_internal(const wchar_t *a, int vararg_handle, ...) {
const wchar_t *arg;
va_list va;
bool res = false;
CHECK(a, 0);
va_start(va, vararg_handle);
while ((arg = va_arg(va, const wchar_t *)) != 0) {
if (wcscmp(a, arg) == 0) {
res = true;
break;
}
}
va_end(va);
return res;
}
/// wcstring variant of contains_internal. The first parameter is a wcstring, the rest are const
/// wchar_t *. vararg_handle exists only to give us a POD-value to pass to va_start.
__sentinel bool contains_internal(const wcstring &needle, int vararg_handle, ...) {
const wchar_t *arg;
va_list va;
int res = 0;
const wchar_t *needle_cstr = needle.c_str();
va_start(va, vararg_handle);
while ((arg = va_arg(va, const wchar_t *)) != 0) {
// libc++ has an unfortunate implementation of operator== that unconditonally wcslen's the
// wchar_t* parameter, so prefer wcscmp directly.
if (!wcscmp(needle_cstr, arg)) {
res = 1;
break;
}
}
va_end(va);
return res;
}
long read_blocked(int fd, void *buf, size_t count) {
ssize_t res;
sigset_t chldset, oldset;
sigemptyset(&chldset);
sigaddset(&chldset, SIGCHLD);
VOMIT_ON_FAILURE(pthread_sigmask(SIG_BLOCK, &chldset, &oldset));
res = read(fd, buf, count);
VOMIT_ON_FAILURE(pthread_sigmask(SIG_SETMASK, &oldset, NULL));
return res;
}
ssize_t write_loop(int fd, const char *buff, size_t count) {
size_t out_cum = 0;
while (out_cum < count) {
ssize_t out = write(fd, &buff[out_cum], count - out_cum);
if (out < 0) {
if (errno != EAGAIN && errno != EINTR) {
return -1;
}
} else {
out_cum += (size_t)out;
}
}
return (ssize_t)out_cum;
}
ssize_t read_loop(int fd, void *buff, size_t count) {
ssize_t result;
do {
result = read(fd, buff, count);
} while (result < 0 && (errno == EAGAIN || errno == EINTR));
return result;
}
static bool should_debug(int level) {
if (level > debug_level) return false;
// Hack to not print error messages in the tests.
if (program_name && !wcscmp(program_name, L"(ignore)")) return false;
return true;
}
static void debug_shared(const wchar_t level, const wcstring &msg) {
pid_t current_pid = getpid();
if (current_pid == initial_pid) {
fwprintf(stderr, L"<%lc> %ls: %ls\n", (unsigned long)level, program_name, msg.c_str());
} else {
fwprintf(stderr, L"<%lc> %ls: %d: %ls\n", (unsigned long)level, program_name, current_pid,
msg.c_str());
}
}
static wchar_t level_char[] = {L'E', L'W', L'2', L'3', L'4', L'5'};
void __attribute__((noinline)) debug(int level, const wchar_t *msg, ...) {
if (!should_debug(level)) return;
int errno_old = errno;
va_list va;
va_start(va, msg);
wcstring local_msg = vformat_string(msg, va);
va_end(va);
const wchar_t msg_level = level <= 5 ? level_char[level] : L'9';
debug_shared(msg_level, local_msg);
if (debug_stack_frames > 0) {
show_stackframe(msg_level, debug_stack_frames, 1);
}
errno = errno_old;
}
void __attribute__((noinline)) debug(int level, const char *msg, ...) {
if (!should_debug(level)) return;
int errno_old = errno;
char local_msg[512];
va_list va;
va_start(va, msg);
vsnprintf(local_msg, sizeof local_msg, msg, va);
va_end(va);
const wchar_t msg_level = level <= 5 ? level_char[level] : L'9';
debug_shared(msg_level, str2wcstring(local_msg));
if (debug_stack_frames > 0) {
show_stackframe(msg_level, debug_stack_frames, 1);
}
errno = errno_old;
}
void read_ignore(int fd, void *buff, size_t count) {
size_t ignore __attribute__((unused));
ignore = read(fd, buff, count);
}
void write_ignore(int fd, const void *buff, size_t count) {
size_t ignore __attribute__((unused));
ignore = write(fd, buff, count);
}
void debug_safe(int level, const char *msg, const char *param1, const char *param2,
const char *param3, const char *param4, const char *param5, const char *param6,
const char *param7, const char *param8, const char *param9, const char *param10,
const char *param11, const char *param12) {
const char *const params[] = {param1, param2, param3, param4, param5, param6,
param7, param8, param9, param10, param11, param12};
if (!msg) return;
// Can't call printf, that may allocate memory Just call write() over and over.
if (level > debug_level) return;
int errno_old = errno;
size_t param_idx = 0;
const char *cursor = msg;
while (*cursor != '\0') {
const char *end = strchr(cursor, '%');
if (end == NULL) end = cursor + strlen(cursor);
write_ignore(STDERR_FILENO, cursor, end - cursor);
if (end[0] == '%' && end[1] == 's') {
// Handle a format string.
assert(param_idx < sizeof params / sizeof *params);
const char *format = params[param_idx++];
if (!format) format = "(null)";
write_ignore(STDERR_FILENO, format, strlen(format));
cursor = end + 2;
} else if (end[0] == '\0') {
// Must be at the end of the string.
cursor = end;
} else {
// Some other format specifier, just skip it.
cursor = end + 1;
}
}
// We always append a newline.
write_ignore(STDERR_FILENO, "\n", 1);
errno = errno_old;
}
void format_long_safe(char buff[64], long val) {
if (val == 0) {
strcpy(buff, "0");
} else {
// Generate the string in reverse.
size_t idx = 0;
bool negative = (val < 0);
// Note that we can't just negate val if it's negative, because it may be the most negative
// value. We do rely on round-towards-zero division though.
while (val != 0) {
long rem = val % 10;
buff[idx++] = '0' + (rem < 0 ? -rem : rem);
val /= 10;
}
if (negative) buff[idx++] = '-';
buff[idx] = 0;
size_t left = 0, right = idx - 1;
while (left < right) {
char tmp = buff[left];
buff[left++] = buff[right];
buff[right--] = tmp;
}
}
}
void format_long_safe(wchar_t buff[64], long val) {
if (val == 0) {
wcscpy(buff, L"0");
} else {
// Generate the string in reverse.
size_t idx = 0;
bool negative = (val < 0);
while (val != 0) {
long rem = val % 10;
buff[idx++] = L'0' + (wchar_t)(rem < 0 ? -rem : rem);
val /= 10;
}
if (negative) buff[idx++] = L'-';
buff[idx] = 0;
size_t left = 0, right = idx - 1;
while (left < right) {
wchar_t tmp = buff[left];
buff[left++] = buff[right];
buff[right--] = tmp;
}
}
}
void narrow_string_safe(char buff[64], const wchar_t *s) {
size_t idx = 0;
for (size_t widx = 0; s[widx] != L'\0'; widx++) {
wchar_t c = s[widx];
if (c <= 127) {
buff[idx++] = char(c);
if (idx + 1 == 64) {
break;
}
}
}
buff[idx] = '\0';
}
wcstring reformat_for_screen(const wcstring &msg) {
wcstring buff;
int line_width = 0;
int screen_width = common_get_width();
if (screen_width) {
const wchar_t *start = msg.c_str();
const wchar_t *pos = start;
while (1) {
int overflow = 0;
int tok_width = 0;
// Tokenize on whitespace, and also calculate the width of the token.
while (*pos && (!wcschr(L" \n\r\t", *pos))) {
// Check is token is wider than one line. If so we mark it as an overflow and break
// the token.
if ((tok_width + fish_wcwidth(*pos)) > (screen_width - 1)) {
overflow = 1;
break;
}
tok_width += fish_wcwidth(*pos);
pos++;
}
// If token is zero character long, we don't do anything.
if (pos == start) {
pos = pos + 1;
} else if (overflow) {
// In case of overflow, we print a newline, except if we already are at position 0.
wchar_t *token = wcsndup(start, pos - start);
if (line_width != 0) buff.push_back(L'\n');
buff.append(format_string(L"%ls-\n", token));
free(token);
line_width = 0;
} else {
// Print the token.
wchar_t *token = wcsndup(start, pos - start);
if ((line_width + (line_width != 0 ? 1 : 0) + tok_width) > screen_width) {
buff.push_back(L'\n');
line_width = 0;
}
buff.append(format_string(L"%ls%ls", line_width ? L" " : L"", token));
free(token);
line_width += (line_width != 0 ? 1 : 0) + tok_width;
}
// Break on end of string.
if (!*pos) {
break;
}
start = pos;
}
} else {
buff.append(msg);
}
buff.push_back(L'\n');
return buff;
}
/// Escape a string, storing the result in out_str.
static void escape_string_internal(const wchar_t *orig_in, size_t in_len, wcstring *out_str,
escape_flags_t flags) {
assert(orig_in != NULL);
const wchar_t *in = orig_in;
bool escape_all = !!(flags & ESCAPE_ALL);
bool no_quoted = !!(flags & ESCAPE_NO_QUOTED);
bool no_tilde = !!(flags & ESCAPE_NO_TILDE);
int need_escape = 0;
int need_complex_escape = 0;
// Avoid dereferencing all over the place.
wcstring &out = *out_str;
if (!no_quoted && in_len == 0) {
out.assign(L"''");
return;
}
while (*in != 0) {
if ((*in >= ENCODE_DIRECT_BASE) && (*in < ENCODE_DIRECT_BASE + 256)) {
int val = *in - ENCODE_DIRECT_BASE;
int tmp;
out += L'\\';
out += L'X';
tmp = val / 16;
out += tmp > 9 ? L'a' + (tmp - 10) : L'0' + tmp;
tmp = val % 16;
out += tmp > 9 ? L'a' + (tmp - 10) : L'0' + tmp;
need_escape = need_complex_escape = 1;
} else {
wchar_t c = *in;
switch (c) {
case L'\t': {
out += L'\\';
out += L't';
need_escape = need_complex_escape = 1;
break;
}
case L'\n': {
out += L'\\';
out += L'n';
need_escape = need_complex_escape = 1;
break;
}
case L'\b': {
out += L'\\';
out += L'b';
need_escape = need_complex_escape = 1;
break;
}
case L'\r': {
out += L'\\';
out += L'r';
need_escape = need_complex_escape = 1;
break;
}
case L'\x1b': {
out += L'\\';
out += L'e';
need_escape = need_complex_escape = 1;
break;
}
case L'\\':
case L'\'': {
need_escape = need_complex_escape = 1;
if (escape_all) out += L'\\';
out += *in;
break;
}
case ANY_CHAR: {
// Experimental fix for #1614. The hope is that any time these appear in a
// string, they came from wildcard expansion.
out += L'?';
break;
}
case ANY_STRING: {
out += L'*';
break;
}
case ANY_STRING_RECURSIVE: {
out += L"**";
break;
}
case L'&':
case L'$':
case L' ':
case L'#':
case L'^':
case L'<':
case L'>':
case L'(':
case L')':
case L'[':
case L']':
case L'{':
case L'}':
case L'?':
case L'*':
case L'|':
case L';':
case L'"':
case L'%':
case L'~': {
if (!no_tilde || c != L'~') {
need_escape = 1;
if (escape_all) out += L'\\';
}
out += *in;
break;
}
default: {
if (*in < 32) {
if (*in < 27 && *in > 0) {
out += L'\\';
out += L'c';
out += L'a' + *in - 1;
need_escape = need_complex_escape = 1;
break;
}
int tmp = (*in) % 16;
out += L'\\';
out += L'x';
out += ((*in > 15) ? L'1' : L'0');
out += tmp > 9 ? L'a' + (tmp - 10) : L'0' + tmp;
need_escape = need_complex_escape = 1;
} else {
out += *in;
}
break;
}
}
}
in++;
}
// Use quoted escaping if possible, since most people find it easier to read.
if (!no_quoted && need_escape && !need_complex_escape && escape_all) {
wchar_t single_quote = L'\'';
out.clear();
out.reserve(2 + in_len);
out.push_back(single_quote);
out.append(orig_in, in_len);
out.push_back(single_quote);
}
}
wcstring escape(const wchar_t *in, escape_flags_t flags) {
wcstring result;
escape_string_internal(in, wcslen(in), &result, flags);
return result;
}
wcstring escape_string(const wcstring &in, escape_flags_t flags) {
wcstring result;
escape_string_internal(in.c_str(), in.size(), &result, flags);
return result;
}
/// Helper to return the last character in a string, or NOT_A_WCHAR.
static wint_t string_last_char(const wcstring &str) {
size_t len = str.size();
return len == 0 ? NOT_A_WCHAR : str.at(len - 1);
}
/// Given a null terminated string starting with a backslash, read the escape as if it is unquoted,
/// appending to result. Return the number of characters consumed, or 0 on error.
size_t read_unquoted_escape(const wchar_t *input, wcstring *result, bool allow_incomplete,
bool unescape_special) {
if (input[0] != L'\\') {
return 0; // not an escape
}
// Here's the character we'll ultimately append, or NOT_A_WCHAR for none. Note that L'\0' is a
// valid thing to append.
wint_t result_char_or_none = NOT_A_WCHAR;
bool errored = false;
size_t in_pos = 1; // in_pos always tracks the next character to read (and therefore the number
// of characters read so far)
const wchar_t c = input[in_pos++];
switch (c) {
// A null character after a backslash is an error.
case L'\0': {
// Adjust in_pos to only include the backslash.
assert(in_pos > 0);
in_pos--;
// It's an error, unless we're allowing incomplete escapes.
if (!allow_incomplete) errored = true;
break;
}
// Numeric escape sequences. No prefix means octal escape, otherwise hexadecimal.
case L'0':
case L'1':
case L'2':
case L'3':
case L'4':
case L'5':
case L'6':
case L'7':
case L'u':
case L'U':
case L'x':
case L'X': {
long long res = 0;
size_t chars = 2;
int base = 16;
bool byte_literal = false;
wchar_t max_val = ASCII_MAX;
switch (c) {
case L'u': {
chars = 4;
max_val = UCS2_MAX;
break;
}
case L'U': {
chars = 8;
max_val = WCHAR_MAX;
// Don't exceed the largest Unicode code point - see #1107.
if (0x10FFFF < max_val) max_val = (wchar_t)0x10FFFF;
break;
}
case L'x': {
chars = 2;
max_val = ASCII_MAX;
break;
}
case L'X': {
byte_literal = true;
max_val = BYTE_MAX;
break;
}
default: {
base = 8;
chars = 3;
// Note that in_pos currently is just after the first post-backslash character;
// we want to start our escape from there.
assert(in_pos > 0);
in_pos--;
break;
}
}
for (size_t i = 0; i < chars; i++) {
long d = convert_digit(input[in_pos], base);
if (d < 0) {
break;
}
res = (res * base) + d;
in_pos++;
}
if (res <= max_val) {
result_char_or_none = (wchar_t)((byte_literal ? ENCODE_DIRECT_BASE : 0) + res);
} else {
errored = true;
}
break;
}
// \a means bell (alert).
case L'a': {
result_char_or_none = L'\a';
break;
}
// \b means backspace.
case L'b': {
result_char_or_none = L'\b';
break;
}
// \cX means control sequence X.
case L'c': {
const wchar_t sequence_char = input[in_pos++];
if (sequence_char >= L'a' && sequence_char <= (L'a' + 32)) {
result_char_or_none = sequence_char - L'a' + 1;
} else if (sequence_char >= L'A' && sequence_char <= (L'A' + 32)) {
result_char_or_none = sequence_char - L'A' + 1;
} else {
errored = true;
}
break;
}
// \x1b means escape.
case L'e': {
result_char_or_none = L'\x1b';
break;
}
// \f means form feed.
case L'f': {
result_char_or_none = L'\f';
break;
}
// \n means newline.
case L'n': {
result_char_or_none = L'\n';
break;
}
// \r means carriage return.
case L'r': {
result_char_or_none = L'\r';
break;
}
// \t means tab.
case L't': {
result_char_or_none = L'\t';
break;
}
// \v means vertical tab.
case L'v': {
result_char_or_none = L'\v';
break;
}
// If a backslash is followed by an actual newline, swallow them both.
case L'\n': {
result_char_or_none = NOT_A_WCHAR;
break;
}
default: {
if (unescape_special) result->push_back(INTERNAL_SEPARATOR);
result_char_or_none = c;
break;
}
}
if (!errored && result_char_or_none != NOT_A_WCHAR) {
wchar_t result_char = static_cast<wchar_t>(result_char_or_none);
// If result_char is not NOT_A_WCHAR, it must be a valid wchar.
assert((wint_t)result_char == result_char_or_none);
result->push_back(result_char);
}
return errored ? 0 : in_pos;
}
/// Returns the unescaped version of input_str into output_str (by reference). Returns true if
/// successful. If false, the contents of output_str are undefined (!).
static bool unescape_string_internal(const wchar_t *const input, const size_t input_len,
wcstring *output_str, unescape_flags_t flags) {
// Set up result string, which we'll swap with the output on success.
wcstring result;
result.reserve(input_len);
const bool unescape_special = !!(flags & UNESCAPE_SPECIAL);
const bool allow_incomplete = !!(flags & UNESCAPE_INCOMPLETE);
int bracket_count = 0;
bool errored = false;
enum { mode_unquoted, mode_single_quotes, mode_double_quotes } mode = mode_unquoted;
for (size_t input_position = 0; input_position < input_len && !errored; input_position++) {
const wchar_t c = input[input_position];
// Here's the character we'll append to result, or NOT_A_WCHAR to suppress it.
wint_t to_append_or_none = c;
if (mode == mode_unquoted) {
switch (c) {
case L'\\': {
// Backslashes (escapes) are complicated and may result in errors, or appending
// INTERNAL_SEPARATORs, so we have to handle them specially.
size_t escape_chars = read_unquoted_escape(input + input_position, &result,
allow_incomplete, unescape_special);
if (escape_chars == 0) {
// A 0 return indicates an error.
errored = true;
} else {
// Skip over the characters we read, minus one because the outer loop will
// increment it.
assert(escape_chars > 0);
input_position += escape_chars - 1;
}
// We've already appended, don't append anything else.
to_append_or_none = NOT_A_WCHAR;
break;
}
case L'~': {
if (unescape_special && (input_position == 0)) {
to_append_or_none = HOME_DIRECTORY;
}
break;
}
case L'%': {
if (unescape_special && (input_position == 0)) {
to_append_or_none = PROCESS_EXPAND;
}
break;
}
case L'*': {
if (unescape_special) {
// In general, this is ANY_STRING. But as a hack, if the last appended char
// is ANY_STRING, delete the last char and store ANY_STRING_RECURSIVE to
// reflect the fact that ** is the recursive wildcard.
if (string_last_char(result) == ANY_STRING) {
assert(result.size() > 0);
result.resize(result.size() - 1);
to_append_or_none = ANY_STRING_RECURSIVE;
} else {
to_append_or_none = ANY_STRING;
}
}
break;
}
case L'?': {
if (unescape_special) {
to_append_or_none = ANY_CHAR;
}
break;
}
case L'$': {
if (unescape_special) {
to_append_or_none = VARIABLE_EXPAND;
}
break;
}
case L'{': {
if (unescape_special) {
bracket_count++;
to_append_or_none = BRACKET_BEGIN;
}
break;
}
case L'}': {
if (unescape_special) {
bracket_count--;
to_append_or_none = BRACKET_END;
}
break;
}
case L',': {
// If the last character was a separator, then treat this as a literal comma.
if (unescape_special && bracket_count > 0 &&
string_last_char(result) != BRACKET_SEP) {
to_append_or_none = BRACKET_SEP;
}
break;
}
case L'\'': {
mode = mode_single_quotes;
to_append_or_none = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR;
break;
}
case L'\"': {
mode = mode_double_quotes;
to_append_or_none = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR;
break;
}
}
} else if (mode == mode_single_quotes) {
if (c == L'\\') {
// A backslash may or may not escape something in single quotes.
switch (input[input_position + 1]) {
case '\\':
case L'\'': {
to_append_or_none = input[input_position + 1];
input_position += 1; // skip over the backslash
break;
}
case L'\0': {
if (!allow_incomplete) {
errored = true;
} else {
// PCA this line had the following cryptic comment: 'We may ever escape
// a NULL character, but still appending a \ in case I am wrong.' Not
// sure what it means or the importance of this.
input_position += 1; /* Skip over the backslash */
to_append_or_none = L'\\';
}
break;
}
default: {
// Literal backslash that doesn't escape anything! Leave things alone; we'll
// append the backslash itself.
break;
}
}
} else if (c == L'\'') {
to_append_or_none = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR;
mode = mode_unquoted;
}
} else if (mode == mode_double_quotes) {
switch (c) {
case L'"': {
mode = mode_unquoted;
to_append_or_none = unescape_special ? INTERNAL_SEPARATOR : NOT_A_WCHAR;
break;
}
case '\\': {
switch (input[input_position + 1]) {
case L'\0': {
if (!allow_incomplete) {
errored = true;
} else {
to_append_or_none = L'\0';
}
break;
}
case '\\':
case L'$':
case '"': {
to_append_or_none = input[input_position + 1];
input_position += 1; /* Skip over the backslash */
break;
}
case '\n': {
/* Swallow newline */
to_append_or_none = NOT_A_WCHAR;
input_position += 1; /* Skip over the backslash */
break;
}
default: {
/* Literal backslash that doesn't escape anything! Leave things alone;
* we'll append the backslash itself */
break;
}
}
break;
}
case '$': {
if (unescape_special) {
to_append_or_none = VARIABLE_EXPAND_SINGLE;
}
break;
}
}
}
// Now maybe append the char.
if (to_append_or_none != NOT_A_WCHAR) {
wchar_t to_append_char = static_cast<wchar_t>(to_append_or_none);
// If result_char is not NOT_A_WCHAR, it must be a valid wchar.
assert((wint_t)to_append_char == to_append_or_none);
result.push_back(to_append_char);
}
}
// Return the string by reference, and then success.
if (!errored) {
output_str->swap(result);
}
return !errored;
}
bool unescape_string_in_place(wcstring *str, unescape_flags_t escape_special) {
assert(str != NULL);
wcstring output;
bool success = unescape_string_internal(str->c_str(), str->size(), &output, escape_special);
if (success) {
str->swap(output);
}
return success;
}
bool unescape_string(const wchar_t *input, wcstring *output, unescape_flags_t escape_special) {
bool success = unescape_string_internal(input, wcslen(input), output, escape_special);
if (!success) output->clear();
return success;
}
bool unescape_string(const wcstring &input, wcstring *output, unescape_flags_t escape_special) {
bool success = unescape_string_internal(input.c_str(), input.size(), output, escape_special);
if (!success) output->clear();
return success;
}
void common_handle_winch(int signal) {
// Don't run ioctl() here, it's not safe to use in signals.
termsize_valid = false;
}
/// Updates termsize as needed, and returns a copy of the winsize.
static struct winsize get_current_winsize() {
#ifndef HAVE_WINSIZE
struct winsize retval = {0};
retval.ws_col = 80;
retval.ws_row = 24;
return retval;
#endif
scoped_rwlock guard(termsize_rwlock, true);
struct winsize retval = termsize;
if (!termsize_valid) {
struct winsize size;
if (ioctl(1, TIOCGWINSZ, &size) == 0) {
retval = size;
guard.upgrade();
termsize = retval;
}
termsize_valid = true;
}
return retval;
}
int common_get_width() { return get_current_winsize().ws_col; }
int common_get_height() { return get_current_winsize().ws_row; }
void tokenize_variable_array(const wcstring &val, std::vector<wcstring> &out) {
size_t pos = 0, end = val.size();
while (pos <= end) {
size_t next_pos = val.find(ARRAY_SEP, pos);
if (next_pos == wcstring::npos) {
next_pos = end;
}
out.resize(out.size() + 1);
out.back().assign(val, pos, next_pos - pos);
pos = next_pos + 1; // skip the separator, or skip past the end
}
}
bool string_prefixes_string(const wchar_t *proposed_prefix, const wcstring &value) {
size_t prefix_size = wcslen(proposed_prefix);
return prefix_size <= value.size() && value.compare(0, prefix_size, proposed_prefix) == 0;
}
bool string_prefixes_string(const wcstring &proposed_prefix, const wcstring &value) {
size_t prefix_size = proposed_prefix.size();
return prefix_size <= value.size() && value.compare(0, prefix_size, proposed_prefix) == 0;
}
bool string_prefixes_string_case_insensitive(const wcstring &proposed_prefix,
const wcstring &value) {
size_t prefix_size = proposed_prefix.size();
return prefix_size <= value.size() &&
wcsncasecmp(proposed_prefix.c_str(), value.c_str(), prefix_size) == 0;
}
bool string_suffixes_string(const wcstring &proposed_suffix, const wcstring &value) {
size_t suffix_size = proposed_suffix.size();
return suffix_size <= value.size() &&
value.compare(value.size() - suffix_size, suffix_size, proposed_suffix) == 0;
}
bool string_suffixes_string(const wchar_t *proposed_suffix, const wcstring &value) {
size_t suffix_size = wcslen(proposed_suffix);
return suffix_size <= value.size() &&
value.compare(value.size() - suffix_size, suffix_size, proposed_suffix) == 0;
}
/// Returns true if seq, represented as a subsequence, is contained within string.
static bool subsequence_in_string(const wcstring &seq, const wcstring &str) {
// Impossible if seq is larger than string.
if (seq.size() > str.size()) {
return false;
}
// Empty strings are considered to be subsequences of everything.
if (seq.empty()) {
return true;
}
size_t str_idx, seq_idx;
for (seq_idx = str_idx = 0; seq_idx < seq.size() && str_idx < str.size(); seq_idx++) {
wchar_t c = seq.at(seq_idx);
size_t char_loc = str.find(c, str_idx);
if (char_loc == wcstring::npos) {
break; // didn't find this character
} else {
str_idx = char_loc + 1; // we found it, continue the search just after it
}
}
// We succeeded if we exhausted our sequence.
assert(seq_idx <= seq.size());
return seq_idx == seq.size();
}
string_fuzzy_match_t::string_fuzzy_match_t(enum fuzzy_match_type_t t, size_t distance_first,
size_t distance_second)
: type(t), match_distance_first(distance_first), match_distance_second(distance_second) {}
string_fuzzy_match_t string_fuzzy_match_string(const wcstring &string,
const wcstring &match_against,
fuzzy_match_type_t limit_type) {
// Distances are generally the amount of text not matched.
string_fuzzy_match_t result(fuzzy_match_none, 0, 0);
size_t location;
if (limit_type >= fuzzy_match_exact && string == match_against) {
result.type = fuzzy_match_exact;
} else if (limit_type >= fuzzy_match_prefix && string_prefixes_string(string, match_against)) {
result.type = fuzzy_match_prefix;
assert(match_against.size() >= string.size());
result.match_distance_first = match_against.size() - string.size();
} else if (limit_type >= fuzzy_match_case_insensitive &&
wcscasecmp(string.c_str(), match_against.c_str()) == 0) {
result.type = fuzzy_match_case_insensitive;
} else if (limit_type >= fuzzy_match_prefix_case_insensitive &&
string_prefixes_string_case_insensitive(string, match_against)) {
result.type = fuzzy_match_prefix_case_insensitive;
assert(match_against.size() >= string.size());
result.match_distance_first = match_against.size() - string.size();
} else if (limit_type >= fuzzy_match_substring &&
(location = match_against.find(string)) != wcstring::npos) {
// String is contained within match against.
result.type = fuzzy_match_substring;
assert(match_against.size() >= string.size());
result.match_distance_first = match_against.size() - string.size();
result.match_distance_second = location; // prefer earlier matches
} else if (limit_type >= fuzzy_match_subsequence_insertions_only &&
subsequence_in_string(string, match_against)) {
result.type = fuzzy_match_subsequence_insertions_only;
assert(match_against.size() >= string.size());
result.match_distance_first = match_against.size() - string.size();
// It would be nice to prefer matches with greater matching runs here.
}
return result;
}
template <typename T>
static inline int compare_ints(T a, T b) {
if (a < b) return -1;
if (a == b) return 0;
return 1;
}
/// Compare types; if the types match, compare distances.
int string_fuzzy_match_t::compare(const string_fuzzy_match_t &rhs) const {
if (this->type != rhs.type) {
return compare_ints(this->type, rhs.type);
} else if (this->match_distance_first != rhs.match_distance_first) {
return compare_ints(this->match_distance_first, rhs.match_distance_first);
} else if (this->match_distance_second != rhs.match_distance_second) {
return compare_ints(this->match_distance_second, rhs.match_distance_second);
}
return 0; // equal
}
bool list_contains_string(const wcstring_list_t &list, const wcstring &str) {
return std::find(list.begin(), list.end(), str) != list.end();
}
int create_directory(const wcstring &d) {
int ok = 0;
struct stat buf;
int stat_res = 0;
while ((stat_res = wstat(d, &buf)) != 0) {
if (errno != EAGAIN) break;
}
if (stat_res == 0) {
if (S_ISDIR(buf.st_mode)) {
ok = 1;
}
} else {
if (errno == ENOENT) {
wcstring dir = wdirname(d);
if (!create_directory(dir)) {
if (!wmkdir(d, 0700)) {
ok = 1;
}
}
}
}
return ok ? 0 : -1;
}
__attribute__((noinline)) void bugreport() {
debug(1, _(L"This is a bug. Break on bugreport to debug. "
L"If you can reproduce it, please send a bug report to %s."),
PACKAGE_BUGREPORT);
}
wcstring format_size(long long sz) {
wcstring result;
const wchar_t *sz_name[] = {L"kB", L"MB", L"GB", L"TB", L"PB", L"EB", L"ZB", L"YB", 0};
if (sz < 0) {
result.append(L"unknown");
} else if (sz < 1) {
result.append(_(L"empty"));
} else if (sz < 1024) {
result.append(format_string(L"%lldB", sz));
} else {
int i;
for (i = 0; sz_name[i]; i++) {
if (sz < (1024 * 1024) || !sz_name[i + 1]) {
long isz = ((long)sz) / 1024;
if (isz > 9)
result.append(format_string(L"%d%ls", isz, sz_name[i]));
else
result.append(format_string(L"%.1f%ls", (double)sz / 1024, sz_name[i]));
break;
}
sz /= 1024;
}
}
return result;
}
/// Crappy function to extract the most significant digit of an unsigned long long value.
static char extract_most_significant_digit(unsigned long long *xp) {
unsigned long long place_value = 1;
unsigned long long x = *xp;
while (x >= 10) {
x /= 10;
place_value *= 10;
}
*xp -= (place_value * x);
return x + '0';
}
void append_ull(char *buff, unsigned long long val, size_t *inout_idx, size_t max_len) {
size_t idx = *inout_idx;
while (val > 0 && idx < max_len) buff[idx++] = extract_most_significant_digit(&val);
*inout_idx = idx;
}
void append_str(char *buff, const char *str, size_t *inout_idx, size_t max_len) {
size_t idx = *inout_idx;
while (*str && idx < max_len) buff[idx++] = *str++;
*inout_idx = idx;
}
void format_size_safe(char buff[128], unsigned long long sz) {
const size_t buff_size = 128;
const size_t max_len = buff_size - 1; // need to leave room for a null terminator
memset(buff, 0, buff_size);
size_t idx = 0;
const char *const sz_name[] = {"kB", "MB", "GB", "TB", "PB", "EB", "ZB", "YB", NULL};
if (sz < 1) {
strncpy(buff, "empty", buff_size);
} else if (sz < 1024) {
append_ull(buff, sz, &idx, max_len);
append_str(buff, "B", &idx, max_len);
} else {
for (size_t i = 0; sz_name[i]; i++) {
if (sz < (1024 * 1024) || !sz_name[i + 1]) {
unsigned long long isz = sz / 1024;
if (isz > 9) {
append_ull(buff, isz, &idx, max_len);
} else {
if (isz == 0) {
append_str(buff, "0", &idx, max_len);
} else {
append_ull(buff, isz, &idx, max_len);
}
// Maybe append a single fraction digit.
unsigned long long remainder = sz % 1024;
if (remainder > 0) {
char tmp[3] = {'.', extract_most_significant_digit(&remainder), 0};
append_str(buff, tmp, &idx, max_len);
}
}
append_str(buff, sz_name[i], &idx, max_len);
break;
}
sz /= 1024;
}
}
}
/// Return the number of seconds from the UNIX epoch, with subsecond precision. This function uses
/// the gettimeofday function and will have the same precision as that function.
double timef() {
struct timeval tv;
VOMIT_ON_FAILURE(gettimeofday(&tv, 0));
// return (double)tv.tv_sec + 0.000001 * tv.tv_usec;
return (double)tv.tv_sec + 1e-6 * tv.tv_usec;
}
void exit_without_destructors(int code) { _exit(code); }
/// Helper function to convert from a null_terminated_array_t<wchar_t> to a
/// null_terminated_array_t<char_t>.
void convert_wide_array_to_narrow(const null_terminated_array_t<wchar_t> &wide_arr,
null_terminated_array_t<char> *output) {
const wchar_t *const *arr = wide_arr.get();
if (!arr) {
output->clear();
return;
}
std::vector<std::string> list;
for (size_t i = 0; arr[i]; i++) {
list.push_back(wcs2string(arr[i]));
}
output->set(list);
}
void append_path_component(wcstring &path, const wcstring &component) {
if (path.empty() || component.empty()) {
path.append(component);
} else {
size_t path_len = path.size();
bool path_slash = path.at(path_len - 1) == L'/';
bool comp_slash = component.at(0) == L'/';
if (!path_slash && !comp_slash) {
// Need a slash
path.push_back(L'/');
} else if (path_slash && comp_slash) {
// Too many slashes.
path.erase(path_len - 1, 1);
}
path.append(component);
}
}
extern "C" {
__attribute__((noinline)) void debug_thread_error(void) {
while (1) sleep(9999999);
}
}
void set_main_thread() { main_thread_id = pthread_self(); }
void configure_thread_assertions_for_testing(void) {
thread_assertions_configured_for_testing = true;
}
bool is_forked_child(void) {
// Just bail if nobody's called setup_fork_guards, e.g. some of our tools.
if (!initial_pid) return false;
bool is_child_of_fork = (getpid() != initial_pid);
if (is_child_of_fork) {
printf("Uh-oh: %d\n", getpid());
while (1) sleep(10000);
}
return is_child_of_fork;
}
void setup_fork_guards(void) {
// Notice when we fork by stashing our pid. This seems simpler than pthread_atfork().
initial_pid = getpid();
}
void save_term_foreground_process_group(void) {
initial_foreground_process_group = tcgetpgrp(STDIN_FILENO);
}
void restore_term_foreground_process_group(void) {
if (initial_foreground_process_group != -1) {
// This is called during shutdown and from a signal handler. We don't bother to complain on
// failure.
tcsetpgrp(STDIN_FILENO, initial_foreground_process_group);
}
}
bool is_main_thread() {
assert(main_thread_id != 0);
return main_thread_id == pthread_self();
}
void assert_is_main_thread(const char *who) {
if (!is_main_thread() && !thread_assertions_configured_for_testing) {
fprintf(stderr,
"Warning: %s called off of main thread. Break on debug_thread_error to debug.\n",
who);
debug_thread_error();
}
}
void assert_is_not_forked_child(const char *who) {
if (is_forked_child()) {
fprintf(stderr,
"Warning: %s called in a forked child. Break on debug_thread_error to debug.\n",
who);
debug_thread_error();
}
}
void assert_is_background_thread(const char *who) {
if (is_main_thread() && !thread_assertions_configured_for_testing) {
fprintf(stderr,
"Warning: %s called on the main thread (may block!). Break on debug_thread_error "
"to debug.\n",
who);
debug_thread_error();
}
}
void assert_is_locked(void *vmutex, const char *who, const char *caller) {
pthread_mutex_t *mutex = static_cast<pthread_mutex_t *>(vmutex);
if (0 == pthread_mutex_trylock(mutex)) {
fprintf(stderr,
"Warning: %s is not locked when it should be in '%s'. Break on debug_thread_error "
"to debug.\n",
who, caller);
debug_thread_error();
pthread_mutex_unlock(mutex);
}
}
void scoped_lock::lock(void) {
assert(!locked);
ASSERT_IS_NOT_FORKED_CHILD();
VOMIT_ON_FAILURE_NO_ERRNO(pthread_mutex_lock(lock_obj));
locked = true;
}
void scoped_lock::unlock(void) {
assert(locked);
ASSERT_IS_NOT_FORKED_CHILD();
VOMIT_ON_FAILURE_NO_ERRNO(pthread_mutex_unlock(lock_obj));
locked = false;
}
scoped_lock::scoped_lock(pthread_mutex_t &mutex) : lock_obj(&mutex), locked(false) { this->lock(); }
scoped_lock::scoped_lock(mutex_lock_t &lock) : lock_obj(&lock.mutex), locked(false) {
this->lock();
}
scoped_lock::~scoped_lock() {
if (locked) this->unlock();
}
void scoped_rwlock::lock(void) {
assert(!(locked || locked_shared));
ASSERT_IS_NOT_FORKED_CHILD();
VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_rdlock(rwlock_obj));
locked = true;
}
void scoped_rwlock::unlock(void) {
assert(locked);
ASSERT_IS_NOT_FORKED_CHILD();
VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_unlock(rwlock_obj));
locked = false;
}
void scoped_rwlock::lock_shared(void) {
assert(!(locked || locked_shared));
ASSERT_IS_NOT_FORKED_CHILD();
VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_wrlock(rwlock_obj));
locked_shared = true;
}
void scoped_rwlock::unlock_shared(void) {
assert(locked_shared);
ASSERT_IS_NOT_FORKED_CHILD();
VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_unlock(rwlock_obj));
locked_shared = false;
}
void scoped_rwlock::upgrade(void) {
assert(locked_shared);
ASSERT_IS_NOT_FORKED_CHILD();
VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_unlock(rwlock_obj));
locked = false;
VOMIT_ON_FAILURE_NO_ERRNO(pthread_rwlock_wrlock(rwlock_obj));
locked_shared = true;
}
scoped_rwlock::scoped_rwlock(pthread_rwlock_t &rwlock, bool shared)
: rwlock_obj(&rwlock), locked(false), locked_shared(false) {
if (shared) {
this->lock_shared();
} else {
this->lock();
}
}
scoped_rwlock::scoped_rwlock(rwlock_t &rwlock, bool shared)
: rwlock_obj(&rwlock.rwlock), locked(false), locked_shared(false) {
if (shared) {
this->lock_shared();
} else {
this->lock();
}
}
scoped_rwlock::~scoped_rwlock() {
if (locked) {
this->unlock();
} else if (locked_shared) {
this->unlock_shared();
}
}
wcstokenizer::wcstokenizer(const wcstring &s, const wcstring &separator)
: buffer(), str(), state(), sep(separator) {
buffer = wcsdup(s.c_str());
str = buffer;
state = NULL;
}
bool wcstokenizer::next(wcstring &result) {
wchar_t *tmp = wcstok(str, sep.c_str(), &state);
str = NULL;
if (tmp) result = tmp;
return tmp != NULL;
}
wcstokenizer::~wcstokenizer() { free(buffer); }
template <typename CharType_t>
static CharType_t **make_null_terminated_array_helper(
const std::vector<std::basic_string<CharType_t> > &argv) {
size_t count = argv.size();
// We allocate everything in one giant block. First compute how much space we need.
// N + 1 pointers.
size_t pointers_allocation_len = (count + 1) * sizeof(CharType_t *);
// In the very unlikely event that CharType_t has stricter alignment requirements than does a
// pointer, round us up to the size of a CharType_t.
pointers_allocation_len += sizeof(CharType_t) - 1;
pointers_allocation_len -= pointers_allocation_len % sizeof(CharType_t);
// N null terminated strings.
size_t strings_allocation_len = 0;
for (size_t i = 0; i < count; i++) {
// The size of the string, plus a null terminator.
strings_allocation_len += (argv.at(i).size() + 1) * sizeof(CharType_t);
}
// Now allocate their sum.
unsigned char *base =
static_cast<unsigned char *>(malloc(pointers_allocation_len + strings_allocation_len));
if (!base) return NULL;
// Divvy it up into the pointers and strings.
CharType_t **pointers = reinterpret_cast<CharType_t **>(base);
CharType_t *strings = reinterpret_cast<CharType_t *>(base + pointers_allocation_len);
// Start copying.
for (size_t i = 0; i < count; i++) {
const std::basic_string<CharType_t> &str = argv.at(i);
*pointers++ = strings; // store the current string pointer into self
strings = std::copy(str.begin(), str.end(), strings); // copy the string into strings
*strings++ = (CharType_t)(0); // each string needs a null terminator
}
*pointers++ = NULL; // array of pointers needs a null terminator
// Make sure we know what we're doing.
assert((unsigned char *)pointers - base == (std::ptrdiff_t)pointers_allocation_len);
assert((unsigned char *)strings - (unsigned char *)pointers ==
(std::ptrdiff_t)strings_allocation_len);
assert((unsigned char *)strings - base ==
(std::ptrdiff_t)(pointers_allocation_len + strings_allocation_len));
return reinterpret_cast<CharType_t **>(base);
}
wchar_t **make_null_terminated_array(const wcstring_list_t &lst) {
return make_null_terminated_array_helper(lst);
}
char **make_null_terminated_array(const std::vector<std::string> &lst) {
return make_null_terminated_array_helper(lst);
}
long convert_digit(wchar_t d, int base) {
long res = -1;
if ((d <= L'9') && (d >= L'0')) {
res = d - L'0';
} else if ((d <= L'z') && (d >= L'a')) {
res = d + 10 - L'a';
} else if ((d <= L'Z') && (d >= L'A')) {
res = d + 10 - L'A';
}
if (res >= base) {
res = -1;
}
return res;
}