fish-shell/src/io.h
ridiculousfish a765026c4c Adopt fd_monitor in bufferfill
This switches bufferfills from using an exclusively-owned thread, to
sharing an fd_monitor. This allows multiple bufferfills to all use the same
thread.
2020-02-05 12:05:39 -08:00

461 lines
15 KiB
C++

#ifndef FISH_IO_H
#define FISH_IO_H
#include <pthread.h>
#include <stdarg.h>
#include <stddef.h>
#include <stdlib.h>
#include <atomic>
#include <future>
#include <memory>
#include <mutex>
#include <vector>
#include "common.h"
#include "env.h"
#include "flog.h"
#include "global_safety.h"
#include "maybe.h"
#include "redirection.h"
using std::shared_ptr;
/// A simple set of FDs.
struct fd_set_t {
std::vector<bool> fds;
void add(int fd) {
assert(fd >= 0 && "Invalid fd");
if ((size_t)fd >= fds.size()) {
fds.resize(fd + 1);
}
fds[fd] = true;
}
bool contains(int fd) const {
assert(fd >= 0 && "Invalid fd");
return (size_t)fd < fds.size() && fds[fd];
}
};
/// separated_buffer_t is composed of a sequence of elements, some of which may be explicitly
/// separated (e.g. through string spit0) and some of which the separation is inferred. This enum
/// tracks the type.
enum class separation_type_t {
/// This element's separation should be inferred, e.g. through IFS.
inferred,
/// This element was explicitly separated and should not be separated further.
explicitly
};
/// A separated_buffer_t contains a list of elements, some of which may be separated explicitly and
/// others which must be separated further by the user (e.g. via IFS).
template <typename StringType>
class separated_buffer_t {
public:
struct element_t {
StringType contents;
separation_type_t separation;
element_t(StringType contents, separation_type_t sep)
: contents(std::move(contents)), separation(sep) {}
bool is_explicitly_separated() const { return separation == separation_type_t::explicitly; }
};
private:
/// Limit on how much data we'll buffer. Zero means no limit.
size_t buffer_limit_;
/// Current size of all contents.
size_t contents_size_{0};
/// List of buffer elements.
std::vector<element_t> elements_;
/// True if we're discarding input because our buffer_limit has been exceeded.
bool discard = false;
/// Mark that we are about to add the given size \p delta to the buffer. \return true if we
/// succeed, false if we exceed buffer_limit.
bool try_add_size(size_t delta) {
if (discard) return false;
contents_size_ += delta;
if (contents_size_ < delta) {
// Overflow!
set_discard();
return false;
}
if (buffer_limit_ > 0 && contents_size_ > buffer_limit_) {
set_discard();
return false;
}
return true;
}
/// separated_buffer_t may not be copied.
separated_buffer_t(const separated_buffer_t &) = delete;
void operator=(const separated_buffer_t &) = delete;
public:
/// Construct a separated_buffer_t with the given buffer limit \p limit, or 0 for no limit.
separated_buffer_t(size_t limit) : buffer_limit_(limit) {}
/// \return the buffer limit size, or 0 for no limit.
size_t limit() const { return buffer_limit_; }
/// \return the contents size.
size_t size() const { return contents_size_; }
/// \return whether the output has been discarded.
bool discarded() const { return discard; }
/// Mark the contents as discarded.
void set_discard() {
elements_.clear();
contents_size_ = 0;
discard = true;
}
/// Serialize the contents to a single string, where explicitly separated elements have a
/// newline appended.
StringType newline_serialized() const {
StringType result;
result.reserve(size());
for (const auto &elem : elements_) {
result.append(elem.contents);
if (elem.is_explicitly_separated()) {
result.push_back('\n');
}
}
return result;
}
/// \return the list of elements.
const std::vector<element_t> &elements() const { return elements_; }
/// Append an element with range [begin, end) and the given separation type \p sep.
template <typename Iterator>
void append(Iterator begin, Iterator end, separation_type_t sep = separation_type_t::inferred) {
if (!try_add_size(std::distance(begin, end))) return;
// Try merging with the last element.
if (sep == separation_type_t::inferred && !elements_.empty() &&
!elements_.back().is_explicitly_separated()) {
elements_.back().contents.append(begin, end);
} else {
elements_.emplace_back(StringType(begin, end), sep);
}
}
/// Append a string \p str with the given separation type \p sep.
void append(const StringType &str, separation_type_t sep = separation_type_t::inferred) {
append(str.begin(), str.end(), sep);
}
// Given that this is a narrow stream, convert a wide stream \p rhs to narrow and then append
// it.
template <typename RHSStringType>
void append_wide_buffer(const separated_buffer_t<RHSStringType> &rhs) {
for (const auto &rhs_elem : rhs.elements()) {
append(wcs2string(rhs_elem.contents), rhs_elem.separation);
}
}
};
/// Describes what type of IO operation an io_data_t represents.
enum class io_mode_t { file, pipe, fd, close, bufferfill };
/// Represents an FD redirection.
class io_data_t {
// No assignment or copying allowed.
io_data_t(const io_data_t &rhs) = delete;
void operator=(const io_data_t &rhs) = delete;
protected:
io_data_t(io_mode_t m, int fd, int source_fd) : io_mode(m), fd(fd), source_fd(source_fd) {}
public:
/// Type of redirect.
const io_mode_t io_mode;
/// FD to redirect.
const int fd;
/// Source fd. This is dup2'd to fd, or if it is -1, then fd is closed.
/// That is, we call dup2(source_fd, fd).
const int source_fd;
virtual void print() const = 0;
virtual ~io_data_t() = 0;
};
class io_close_t : public io_data_t {
public:
explicit io_close_t(int f) : io_data_t(io_mode_t::close, f, -1) {}
void print() const override;
~io_close_t() override;
};
class io_fd_t : public io_data_t {
public:
void print() const override;
~io_fd_t() override;
/// fd to redirect specified fd to. For example, in 2>&1, source_fd is 1, and io_data_t::fd
/// is 2.
io_fd_t(int f, int source_fd) : io_data_t(io_mode_t::fd, f, source_fd) {}
};
/// Represents a redirection to or from an opened file.
class io_file_t : public io_data_t {
public:
void print() const override;
io_file_t(int fd, autoclose_fd_t file)
: io_data_t(io_mode_t::file, fd, file.fd()), file_fd_(std::move(file)) {
assert(file_fd_.valid() && "File is not valid");
}
~io_file_t() override;
private:
// The fd for the file which we are writing to or reading from.
autoclose_fd_t file_fd_;
};
/// Represents (one end) of a pipe.
class io_pipe_t : public io_data_t {
// The pipe's fd. Conceptually this is dup2'd to io_data_t::fd.
autoclose_fd_t pipe_fd_;
/// Whether this is an input pipe. This is used only for informational purposes.
const bool is_input_;
public:
void print() const override;
io_pipe_t(int fd, bool is_input, autoclose_fd_t pipe_fd)
: io_data_t(io_mode_t::pipe, fd, pipe_fd.fd()),
pipe_fd_(std::move(pipe_fd)),
is_input_(is_input) {
assert(pipe_fd_.valid() && "Pipe is not valid");
}
~io_pipe_t() override;
};
class io_buffer_t;
class io_chain_t;
/// Represents filling an io_buffer_t. Very similar to io_pipe_t.
/// Bufferfills always target stdout.
class io_bufferfill_t : public io_data_t {
/// Write end. The other end is connected to an io_buffer_t.
const autoclose_fd_t write_fd_;
/// The receiving buffer.
const std::shared_ptr<io_buffer_t> buffer_;
public:
void print() const override;
// The ctor is public to support make_shared() in the static create function below.
// Do not invoke this directly.
io_bufferfill_t(autoclose_fd_t write_fd, std::shared_ptr<io_buffer_t> buffer)
: io_data_t(io_mode_t::bufferfill, STDOUT_FILENO, write_fd.fd()),
write_fd_(std::move(write_fd)),
buffer_(std::move(buffer)) {
assert(write_fd_.valid() && "fd is not valid");
}
~io_bufferfill_t() override;
std::shared_ptr<io_buffer_t> buffer() const { return buffer_; }
/// Create an io_bufferfill_t which, when written from, fills a buffer with the contents.
/// \returns nullptr on failure, e.g. too many open fds.
///
/// \param conflicts A set of fds. The function ensures that any pipe it makes does
/// not conflict with an fd redirection in this list.
static shared_ptr<io_bufferfill_t> create(const fd_set_t &conflicts, size_t buffer_limit = 0);
/// Reset the receiver (possibly closing the write end of the pipe), and complete the fillthread
/// of the buffer. \return the buffer.
static std::shared_ptr<io_buffer_t> finish(std::shared_ptr<io_bufferfill_t> &&filler);
};
class output_stream_t;
/// An io_buffer_t is a buffer which can populate itself by reading from an fd.
/// It is not an io_data_t.
class io_buffer_t {
private:
friend io_bufferfill_t;
/// Buffer storing what we have read.
separated_buffer_t<std::string> buffer_;
/// Atomic flag indicating our fillthread should shut down.
relaxed_atomic_bool_t shutdown_fillthread_{false};
/// The future allowing synchronization with the background fillthread, if the fillthread is
/// running. The fillthread fulfills the corresponding promise when it exits.
std::future<void> fillthread_waiter_{};
/// Lock for appending.
std::mutex append_lock_{};
/// Read a bit, filling the buffer. The append lock must be held.
/// \return positive on success, 0 if closed, -1 on error (in which case errno will be set).
ssize_t read_once(int fd);
/// Begin the fill operation, reading from the given fd in the background.
void begin_filling(autoclose_fd_t readfd);
/// End the background fillthread operation.
void complete_background_fillthread();
/// Helper to return whether the fillthread is running.
bool fillthread_running() const { return fillthread_waiter_.valid(); }
public:
explicit io_buffer_t(size_t limit) : buffer_(limit) {}
~io_buffer_t();
/// Access the underlying buffer.
/// This requires that the background fillthread be none.
const separated_buffer_t<std::string> &buffer() const {
assert(!fillthread_running() && "Cannot access buffer during background fill");
return buffer_;
}
/// Function to append to the buffer.
void append(const char *ptr, size_t count) {
scoped_lock locker(append_lock_);
buffer_.append(ptr, ptr + count);
}
/// Appends data from a given output_stream_t.
/// Marks the receiver as discarded if the stream was discarded.
void append_from_stream(const output_stream_t &stream);
};
using io_data_ref_t = std::shared_ptr<const io_data_t>;
class io_chain_t : public std::vector<io_data_ref_t> {
public:
using std::vector<io_data_ref_t>::vector;
// user-declared ctor to allow const init. Do not default this, it will break the build.
io_chain_t() {}
void remove(const io_data_ref_t &element);
void push_back(io_data_ref_t element);
void append(const io_chain_t &chain);
/// \return the last io redirection in the chain for the specified file descriptor, or nullptr
/// if none.
io_data_ref_t io_for_fd(int fd) const;
/// Attempt to resolve a list of redirection specs to IOs, appending to 'this'.
/// \return true on success, false on error, in which case an error will have been printed.
bool append_from_specs(const redirection_spec_list_t &specs, const wcstring &pwd);
/// Output debugging information to stderr.
void print() const;
/// \return the set of redirected FDs.
fd_set_t fd_set() const;
};
/// Helper type returned from making autoclose pipes.
struct autoclose_pipes_t {
/// Read end of the pipe.
autoclose_fd_t read;
/// Write end of the pipe.
autoclose_fd_t write;
autoclose_pipes_t() = default;
autoclose_pipes_t(autoclose_fd_t r, autoclose_fd_t w)
: read(std::move(r)), write(std::move(w)) {}
};
/// Call pipe(), populating autoclose fds, avoiding conflicts.
/// The pipes are marked CLO_EXEC.
/// \return pipes on success, none() on error.
maybe_t<autoclose_pipes_t> make_autoclose_pipes(const fd_set_t &fdset);
/// If the given fd is present in \p fdset, duplicates it repeatedly until an fd not used in the set
/// is found or we run out. If we return a new fd or an error, closes the old one. Marks the fd as
/// cloexec. \returns invalid fd on failure (in which case the given fd is still closed).
autoclose_fd_t move_fd_to_unused(autoclose_fd_t fd, const fd_set_t &fdset);
/// Class representing the output that a builtin can generate.
class output_stream_t {
private:
/// Storage for our data.
separated_buffer_t<wcstring> buffer_;
// No copying.
output_stream_t(const output_stream_t &s) = delete;
void operator=(const output_stream_t &s) = delete;
public:
output_stream_t(size_t buffer_limit) : buffer_(buffer_limit) {}
void append(const wcstring &s) { buffer_.append(s.begin(), s.end()); }
separated_buffer_t<wcstring> &buffer() { return buffer_; }
const separated_buffer_t<wcstring> &buffer() const { return buffer_; }
void append(const wchar_t *s) { append(s, std::wcslen(s)); }
void append(wchar_t s) { append(&s, 1); }
void append(const wchar_t *s, size_t amt) { buffer_.append(s, s + amt); }
void push_back(wchar_t c) { append(c); }
void append_format(const wchar_t *format, ...) {
va_list va;
va_start(va, format);
append_formatv(format, va);
va_end(va);
}
void append_formatv(const wchar_t *format, va_list va) { append(vformat_string(format, va)); }
wcstring contents() const { return buffer_.newline_serialized(); }
};
struct io_streams_t {
output_stream_t out;
output_stream_t err;
// fd representing stdin. This is not closed by the destructor.
int stdin_fd{-1};
// Whether stdin is "directly redirected," meaning it is the recipient of a pipe (foo | cmd) or
// direct redirection (cmd < foo.txt). An "indirect redirection" would be e.g. begin ; cmd ; end
// < foo.txt
bool stdin_is_directly_redirected{false};
// Indicates whether stdout and stderr are redirected (e.g. to a file or piped).
bool out_is_redirected{false};
bool err_is_redirected{false};
// Actual IO redirections. This is only used by the source builtin. Unowned.
const io_chain_t *io_chain{nullptr};
// io_streams_t cannot be copied.
io_streams_t(const io_streams_t &) = delete;
void operator=(const io_streams_t &) = delete;
explicit io_streams_t(size_t read_limit) : out(read_limit), err(read_limit), stdin_fd(-1) {}
};
#endif