fish-shell/src/wcstringutil.cpp
2021-09-30 11:33:03 -07:00

329 lines
11 KiB
C++

// Helper functions for working with wcstring.
#include "config.h" // IWYU pragma: keep
#include "wcstringutil.h"
#include <wctype.h>
#include <locale>
#include "common.h"
#include "flog.h"
wcstring truncate(const wcstring &input, int max_len, ellipsis_type etype) {
if (input.size() <= static_cast<size_t>(max_len)) {
return input;
}
if (etype == ellipsis_type::None) {
return input.substr(0, max_len);
}
if (etype == ellipsis_type::Prettiest) {
const wchar_t *ellipsis_str = get_ellipsis_str();
return input.substr(0, max_len - std::wcslen(ellipsis_str)).append(ellipsis_str);
}
wcstring output = input.substr(0, max_len - 1);
output.push_back(get_ellipsis_char());
return output;
}
wcstring trim(wcstring input) { return trim(std::move(input), L"\t\v \r\n"); }
wcstring trim(wcstring input, const wchar_t *any_of) {
wcstring result = std::move(input);
size_t suffix = result.find_last_not_of(any_of);
if (suffix == wcstring::npos) {
return wcstring{};
}
result.erase(suffix + 1);
auto prefix = result.find_first_not_of(any_of);
assert(prefix != wcstring::npos && "Should have one non-trimmed character");
result.erase(0, prefix);
return result;
}
wcstring wcstolower(wcstring input) {
wcstring result = std::move(input);
std::transform(result.begin(), result.end(), result.begin(), towlower);
return result;
}
size_t count_preceding_backslashes(const wcstring &text, size_t idx) {
assert(idx <= text.size() && "Out of bounds");
size_t backslashes = 0;
while (backslashes < idx && text.at(idx - backslashes - 1) == L'\\') {
backslashes++;
}
return backslashes;
}
bool string_prefixes_string(const wchar_t *proposed_prefix, const wcstring &value) {
return string_prefixes_string(proposed_prefix, value.c_str());
}
bool string_prefixes_string(const wcstring &proposed_prefix, const wcstring &value) {
size_t prefix_size = proposed_prefix.size();
return prefix_size <= value.size() && value.compare(0, prefix_size, proposed_prefix) == 0;
}
bool string_prefixes_string(const wchar_t *proposed_prefix, const wchar_t *value) {
for (size_t idx = 0; proposed_prefix[idx] != L'\0'; idx++) {
// Note if the prefix is longer than value, then we will compare a nonzero prefix character
// against a zero value character, and so we'll return false;
if (proposed_prefix[idx] != value[idx]) return false;
}
// We must have that proposed_prefix[idx] == L'\0', so we have a prefix match.
return true;
}
bool string_prefixes_string(const char *proposed_prefix, const std::string &value) {
return string_prefixes_string(proposed_prefix, value.c_str());
}
bool string_prefixes_string(const char *proposed_prefix, const char *value) {
for (size_t idx = 0; proposed_prefix[idx] != L'\0'; idx++) {
if (proposed_prefix[idx] != value[idx]) return false;
}
return true;
}
bool string_prefixes_string_case_insensitive(const wcstring &proposed_prefix,
const wcstring &value) {
size_t prefix_size = proposed_prefix.size();
return prefix_size <= value.size() &&
wcsncasecmp(proposed_prefix.c_str(), value.c_str(), prefix_size) == 0;
}
bool string_suffixes_string(const wcstring &proposed_suffix, const wcstring &value) {
size_t suffix_size = proposed_suffix.size();
return suffix_size <= value.size() &&
value.compare(value.size() - suffix_size, suffix_size, proposed_suffix) == 0;
}
bool string_suffixes_string(const wchar_t *proposed_suffix, const wcstring &value) {
size_t suffix_size = std::wcslen(proposed_suffix);
return suffix_size <= value.size() &&
value.compare(value.size() - suffix_size, suffix_size, proposed_suffix) == 0;
}
bool string_suffixes_string_case_insensitive(const wcstring &proposed_suffix,
const wcstring &value) {
size_t suffix_size = proposed_suffix.size();
return suffix_size <= value.size() && wcsncasecmp(value.c_str() + (value.size() - suffix_size),
proposed_suffix.c_str(), suffix_size) == 0;
}
/// Returns true if needle, represented as a subsequence, is contained within haystack.
/// Note subsequence is not substring: "foo" is a subsequence of "follow" for example.
static bool subsequence_in_string(const wcstring &needle, const wcstring &haystack) {
// Impossible if haystack is larger than string.
if (haystack.size() > haystack.size()) {
return false;
}
// Empty strings are considered to be subsequences of everything.
if (needle.empty()) {
return true;
}
auto ni = needle.begin();
for (auto hi = haystack.begin(); ni != needle.end() && hi != haystack.end(); ++hi) {
if (*ni == *hi) {
++ni;
}
}
// We succeeded if we exhausted our sequence.
assert(ni <= needle.end());
return ni == needle.end();
}
// static
maybe_t<string_fuzzy_match_t> string_fuzzy_match_t::try_create(const wcstring &string,
const wcstring &match_against,
bool anchor_start) {
// Helper to lazily compute if case insensitive matches should use icase or smartcase.
// Use icase if the input contains any uppercase characters, smartcase otherwise.
auto get_case_fold = [&] {
for (wchar_t c : string) {
if (towlower(c) != static_cast<wint_t>(c)) return case_fold_t::icase;
}
return case_fold_t::smartcase;
};
// A string cannot fuzzy match against a shorter string.
if (string.size() > match_against.size()) {
return none();
}
// exact samecase
if (string == match_against) {
return string_fuzzy_match_t{contain_type_t::exact, case_fold_t::samecase};
}
// prefix samecase
if (string_prefixes_string(string, match_against)) {
return string_fuzzy_match_t{contain_type_t::prefix, case_fold_t::samecase};
}
// exact icase
if (wcscasecmp(string.c_str(), match_against.c_str()) == 0) {
return string_fuzzy_match_t{contain_type_t::exact, get_case_fold()};
}
// prefix icase
if (string_prefixes_string_case_insensitive(string, match_against)) {
return string_fuzzy_match_t{contain_type_t::prefix, get_case_fold()};
}
// If anchor_start is set, this is as far as we go.
if (anchor_start) {
return none();
}
// substr samecase
if (match_against.find(string) != wcstring::npos) {
return string_fuzzy_match_t{contain_type_t::substr, case_fold_t::samecase};
}
// substr icase
if (ifind(match_against, string, true /* fuzzy */) != wcstring::npos) {
return string_fuzzy_match_t{contain_type_t::substr, get_case_fold()};
}
// subseq samecase
if (subsequence_in_string(string, match_against)) {
return string_fuzzy_match_t{contain_type_t::subseq, case_fold_t::samecase};
}
// We do not currently test subseq icase.
return none();
}
uint32_t string_fuzzy_match_t::rank() const {
// Combine our type and our case fold into a single number, such that better matches are
// smaller. Treat 'exact' types the same as 'prefix' types; this is because we do not
// prefer exact matches to prefix matches when presenting completions to the user.
// Treat smartcase the same as samecase; see #3978.
auto effective_type = (type == contain_type_t::exact ? contain_type_t::prefix : type);
auto effective_case = (case_fold == case_fold_t::smartcase ? case_fold_t::samecase : case_fold);
// Type dominates fold.
return static_cast<uint32_t>(effective_type) * 8 + static_cast<uint32_t>(effective_case);
}
template <bool Fuzzy, typename T>
static size_t ifind_impl(const T &haystack, const T &needle) {
using char_t = typename T::value_type;
std::locale locale;
auto ieq = [&locale](char_t c1, char_t c2) {
if (c1 == c2 || std::toupper(c1, locale) == std::toupper(c2, locale)) return true;
// In fuzzy matching treat treat `-` and `_` as equal (#3584).
if (Fuzzy) {
if ((c1 == '-' || c1 == '_') && (c2 == '-' || c2 == '_')) return true;
}
return false;
};
auto result = std::search(haystack.begin(), haystack.end(), needle.begin(), needle.end(), ieq);
if (result != haystack.end()) {
return result - haystack.begin();
}
return T::npos;
}
size_t ifind(const wcstring &haystack, const wcstring &needle, bool fuzzy) {
return fuzzy ? ifind_impl<true>(haystack, needle) : ifind_impl<false>(haystack, needle);
}
size_t ifind(const std::string &haystack, const std::string &needle, bool fuzzy) {
return fuzzy ? ifind_impl<true>(haystack, needle) : ifind_impl<false>(haystack, needle);
}
wcstring_list_t split_string(const wcstring &val, wchar_t sep) {
wcstring_list_t out;
size_t pos = 0, end = val.size();
while (pos <= end) {
size_t next_pos = val.find(sep, pos);
if (next_pos == wcstring::npos) {
next_pos = end;
}
out.emplace_back(val, pos, next_pos - pos);
pos = next_pos + 1; // skip the separator, or skip past the end
}
return out;
}
wcstring_list_t split_string_tok(const wcstring &val, const wcstring &seps, size_t max_results) {
wcstring_list_t out;
size_t end = val.size();
size_t pos = 0;
while (pos < end && out.size() + 1 < max_results) {
// Skip leading seps.
pos = val.find_first_not_of(seps, pos);
if (pos == wcstring::npos) break;
// Find next sep.
size_t next_sep = val.find_first_of(seps, pos);
if (next_sep == wcstring::npos) {
next_sep = end;
}
out.emplace_back(val, pos, next_sep - pos);
// Note we skip exactly one sep here. This is because on the last iteration we retain all
// but the first leading separators. This is historical.
pos = next_sep + 1;
}
if (pos < end && max_results > 0) {
assert(out.size() + 1 == max_results && "Should have split the max");
out.emplace_back(val, pos);
}
assert(out.size() <= max_results && "Got too many results");
return out;
}
wcstring join_strings(const wcstring_list_t &vals, wchar_t sep) {
if (vals.empty()) return wcstring{};
// Reserve the size we will need.
// count-1 separators, plus the length of all strings.
size_t size = vals.size() - 1;
for (const wcstring &s : vals) {
size += s.size();
}
// Construct the string.
wcstring result;
result.reserve(size);
bool first = true;
for (const wcstring &s : vals) {
if (!first) {
result.push_back(sep);
}
result.append(s);
first = false;
}
return result;
}
void wcs2string_bad_char(wchar_t wc) {
FLOGF(char_encoding, L"Wide character U+%4X has no narrow representation", wc);
}
int fish_wcwidth_visible(wchar_t widechar) {
if (widechar == L'\b') return -1;
return std::max(0, fish_wcwidth(widechar));
}
int fish_wcswidth_visible(const wcstring &str) {
size_t res = 0;
for (wchar_t ch : str) {
if (ch == L'\b') {
res += -1;
} else {
res += std::max(0, fish_wcwidth(ch));
}
}
return res;
}