fish-shell/src/postfork.cpp
2021-11-08 12:21:11 -08:00

545 lines
20 KiB
C++

// Functions that we may safely call after fork().
#include "config.h" // IWYU pragma: keep
#include <errno.h>
#include <fcntl.h>
#include <paths.h>
#include <signal.h>
#include <stdio.h>
#include <time.h>
#include <cstring>
#include <memory>
#ifdef HAVE_SPAWN_H
#include <spawn.h>
#endif
#include <cwchar>
#include "common.h"
#include "exec.h"
#include "flog.h"
#include "io.h"
#include "iothread.h"
#include "job_group.h"
#include "postfork.h"
#include "proc.h"
#include "redirection.h"
#include "signal.h"
#include "wutil.h" // IWYU pragma: keep
#ifndef JOIN_THREADS_BEFORE_FORK
#define JOIN_THREADS_BEFORE_FORK 0
#endif
/// The number of times to try to call fork() before giving up.
#define FORK_LAPS 5
/// The number of nanoseconds to sleep between attempts to call fork().
#define FORK_SLEEP_TIME 1000000
extern bool is_thompson_shell_script(const char *path);
static char *get_interpreter(const char *command, char *buffer, size_t buff_size);
/// Report the error code \p err for a failed setpgid call.
void report_setpgid_error(int err, bool is_parent, pid_t desired_pgid, const job_t *j,
const process_t *p) {
char pid_buff[128];
char job_id_buff[128];
char getpgid_buff[128];
char job_pgid_buff[128];
char argv0[64];
char command[64];
format_long_safe(pid_buff, p->pid);
format_long_safe(job_id_buff, j->job_id());
format_long_safe(getpgid_buff, getpgid(p->pid));
format_long_safe(job_pgid_buff, desired_pgid);
narrow_string_safe(argv0, p->argv0());
narrow_string_safe(command, j->command_wcstr());
FLOGF_SAFE(warning, "Could not send %s %s, '%s' in job %s, '%s' from group %s to group %s",
is_parent ? "child" : "self", pid_buff, argv0, job_id_buff, command, getpgid_buff,
job_pgid_buff);
if (is_windows_subsystem_for_linux() && errno == EPERM) {
FLOGF_SAFE(warning,
"Please update to Windows 10 1809/17763 or higher to address known issues "
"with process groups and zombie processes.");
}
errno = err;
switch (errno) {
case EACCES: {
FLOGF_SAFE(error, "setpgid: Process %s has already exec'd", pid_buff);
break;
}
case EINVAL: {
FLOGF_SAFE(error, "setpgid: pgid %s unsupported", getpgid_buff);
break;
}
case EPERM: {
FLOGF_SAFE(error, "setpgid: Process %s is a session leader or pgid %s does not match",
pid_buff, getpgid_buff);
break;
}
case ESRCH: {
FLOGF_SAFE(error, "setpgid: Process ID %s does not match", pid_buff);
break;
}
default: {
char errno_buff[64];
format_long_safe(errno_buff, errno);
FLOGF_SAFE(error, "setpgid: Unknown error number %s", errno_buff);
break;
}
}
}
int execute_setpgid(pid_t pid, pid_t pgroup, bool is_parent) {
// Historically we have looped here to support WSL.
unsigned eperm_count = 0;
for (;;) {
if (setpgid(pid, pgroup) == 0) {
return 0;
}
int err = errno;
if (err == EACCES && is_parent) {
// We are the parent process and our child has called exec().
// This is an unavoidable benign race.
return 0;
} else if (err == EINTR) {
// Paranoia.
continue;
} else if (err == EPERM && eperm_count++ < 100) {
// The setpgid(2) man page says that EPERM is returned only if attempts are made
// to move processes into groups across session boundaries (which can never be
// the case in fish, anywhere) or to change the process group ID of a session
// leader (again, can never be the case). I'm pretty sure this is a WSL bug, as
// we see the same with tcsetpgrp(2) in other places and it disappears on retry.
FLOGF_SAFE(proc_pgroup, "setpgid(2) returned EPERM. Retrying");
continue;
}
#if defined(__BSD__) || defined(__APPLE__)
// POSIX.1 doesn't specify that zombie processes are required to be considered extant and/or
// children of the parent for purposes of setpgid(2). In particular, FreeBSD (at least up to
// 12.2) does not consider a child that has already forked, exec'd, and exited to "exist"
// and returns ESRCH (process not found) instead of EACCES (child has called exec).
// See https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=251227
else if (err == ESRCH && is_parent) {
// Handle this just like we would EACCES above, as we're virtually certain that
// setpgid(2) was called against a process that was at least at one point in time a
// valid child.
return 0;
}
#endif
return err;
}
}
int child_setup_process(pid_t new_termowner, pid_t fish_pgrp, const job_t &job, bool is_forked,
const dup2_list_t &dup2s) {
// Note we are called in a forked child.
for (const auto &act : dup2s.get_actions()) {
int err;
if (act.target < 0) {
err = close(act.src);
} else if (act.target != act.src) {
// Normal redirection.
err = dup2(act.src, act.target);
} else {
// This is a weird case like /bin/cmd 6< file.txt
// The opened file (which is CLO_EXEC) wants to be dup2'd to its own fd.
// We need to unset the CLO_EXEC flag.
err = set_cloexec(act.src, false);
}
if (err < 0) {
if (is_forked) {
FLOGF_SAFE(warning, "failed to set up file descriptors in child_setup_process");
exit_without_destructors(1);
}
return err;
}
}
if (new_termowner != INVALID_PID && new_termowner != fish_pgrp) {
// Assign the terminal within the child to avoid the well-known race between tcsetgrp() in
// the parent and the child executing. We are not interested in error handling here, except
// we try to avoid this for non-terminals; in particular pipelines often make non-terminal
// stdin.
// Only do this if the tty currently belongs to fish's pgrp. Don't try to steal it away from
// another process which may happen if we are run in the background with job control
// enabled. Note if stdin is not a tty, then tcgetpgrp() will return -1 and we will not
// enter this.
if (tcgetpgrp(STDIN_FILENO) == fish_pgrp) {
// Ensure this doesn't send us to the background (see #5963)
signal(SIGTTIN, SIG_IGN);
signal(SIGTTOU, SIG_IGN);
(void)tcsetpgrp(STDIN_FILENO, new_termowner);
}
}
sigset_t sigmask;
sigemptyset(&sigmask);
if (blocked_signals_for_job(job, &sigmask)) {
sigprocmask(SIG_SETMASK, &sigmask, nullptr);
}
// Set the handling for job control signals back to the default.
// Do this after any tcsetpgrp call so that we swallow SIGTTIN.
signal_reset_handlers();
return 0;
}
/// This function is a wrapper around fork. If the fork calls fails with EAGAIN, it is retried
/// FORK_LAPS times, with a very slight delay between each lap. If fork fails even then, the process
/// will exit with an error message.
pid_t execute_fork() {
if (JOIN_THREADS_BEFORE_FORK) {
// Make sure we have no outstanding threads before we fork. This is a pretty sketchy thing
// to do here, both because exec.cpp shouldn't have to know about iothreads, and because the
// completion handlers may do unexpected things.
FLOGF_SAFE(iothread, "waiting for threads to drain.");
iothread_drain_all();
}
pid_t pid;
struct timespec pollint;
int i;
for (i = 0; i < FORK_LAPS; i++) {
pid = fork();
if (pid >= 0) {
return pid;
}
if (errno != EAGAIN) {
break;
}
pollint.tv_sec = 0;
pollint.tv_nsec = FORK_SLEEP_TIME;
// Don't sleep on the final lap - sleeping might change the value of errno, which will break
// the error reporting below.
if (i != FORK_LAPS - 1) {
nanosleep(&pollint, nullptr);
}
}
// These are all the errno numbers for fork() I can find.
// Also ENOSYS, but I doubt anyone is running
// fish on a platform without an MMU.
switch (errno) {
case EAGAIN: {
// We should have retried these already?
FLOGF_SAFE(error, "fork: Out of resources. Check RLIMIT_NPROC and pid_max.");
break;
}
case ENOMEM: {
FLOGF_SAFE(error, "fork: Out of memory.");
break;
}
default: {
char errno_buff[64];
format_long_safe(errno_buff, errno);
FLOGF_SAFE(error, "fork: Unknown error number %s", errno_buff);
break;
}
}
FATAL_EXIT();
return 0;
}
#if FISH_USE_POSIX_SPAWN
// Given an error code, if it is the first error, record it.
// \return whether we have any error.
bool posix_spawner_t::check_fail(int err) {
if (error_ == 0) error_ = err;
return error_ != 0;
}
posix_spawner_t::~posix_spawner_t() {
if (attr_) {
posix_spawnattr_destroy(this->attr());
}
if (actions_) {
posix_spawn_file_actions_destroy(this->actions());
}
}
posix_spawner_t::posix_spawner_t(const job_t *j, const dup2_list_t &dup2s) {
// Initialize our fields. This may fail.
{
posix_spawnattr_t attr;
if (check_fail(posix_spawnattr_init(&attr))) return;
this->attr_ = attr;
}
{
posix_spawn_file_actions_t actions;
if (check_fail(posix_spawn_file_actions_init(&actions))) return;
this->actions_ = actions;
}
// desired_pgid tracks the pgroup for the process. If it is none, the pgroup is left unchanged.
// If it is zero, create a new pgroup from the pid. If it is >0, join that pgroup.
maybe_t<pid_t> desired_pgid = none();
if (auto job_pgid = j->group->get_pgid()) {
desired_pgid = *job_pgid;
} else {
assert(j->group->needs_pgid_assignment() && "We should be expecting a pgid");
// We are the first external proc in the job group. Set the desired_pgid to 0 to indicate we
// should creating a new process group.
desired_pgid = 0;
}
// Set the handling for job control signals back to the default.
bool reset_signal_handlers = true;
// Remove all signal blocks.
bool reset_sigmask = true;
// Set our flags.
short flags = 0;
if (reset_signal_handlers) flags |= POSIX_SPAWN_SETSIGDEF;
if (reset_sigmask) flags |= POSIX_SPAWN_SETSIGMASK;
if (desired_pgid.has_value()) flags |= POSIX_SPAWN_SETPGROUP;
if (check_fail(posix_spawnattr_setflags(attr(), flags))) return;
if (desired_pgid.has_value()) {
if (check_fail(posix_spawnattr_setpgroup(attr(), *desired_pgid))) return;
}
// Everybody gets default handlers.
if (reset_signal_handlers) {
sigset_t sigdefault;
get_signals_with_handlers(&sigdefault);
if (check_fail(posix_spawnattr_setsigdefault(attr(), &sigdefault))) return;
}
// No signals blocked.
if (reset_sigmask) {
sigset_t sigmask;
sigemptyset(&sigmask);
blocked_signals_for_job(*j, &sigmask);
if (check_fail(posix_spawnattr_setsigmask(attr(), &sigmask))) return;
}
// Apply our dup2s.
for (const auto &act : dup2s.get_actions()) {
if (act.target < 0) {
if (check_fail(posix_spawn_file_actions_addclose(actions(), act.src))) return;
} else {
if (check_fail(posix_spawn_file_actions_adddup2(actions(), act.src, act.target)))
return;
}
}
}
maybe_t<pid_t> posix_spawner_t::spawn(const char *cmd, char *const argv[], char *const envp[]) {
if (get_error()) return none();
pid_t pid = -1;
if (check_fail(posix_spawn(&pid, cmd, &*actions_, &*attr_, argv, envp))) {
// The shebang wasn't introduced until UNIX Seventh Edition, so if
// the kernel won't run the binary we hand it off to the intpreter
// after performing a binary safety check, recommended by POSIX: a
// line needs to exist before the first \0 with a lowercase letter
if (error_ == ENOEXEC && is_thompson_shell_script(cmd)) {
error_ = 0;
// Create a new argv with /bin/sh prepended.
std::vector<char *> argv2;
char interp[] = _PATH_BSHELL;
argv2.push_back(interp);
for (size_t i = 0; argv[i] != nullptr; i++) {
argv2.push_back(argv[i]);
}
argv2.push_back(nullptr);
if (check_fail(posix_spawn(&pid, interp, &*actions_, &*attr_, &argv2[0], envp))) {
return none();
}
} else {
return none();
}
}
return pid;
}
#endif // FISH_USE_POSIX_SPAWN
void safe_report_exec_error(int err, const char *actual_cmd, const char *const *argv,
const char *const *envv) {
switch (err) {
case E2BIG: {
char sz1[128], sz2[128];
long arg_max = -1;
size_t sz = 0;
const char *const *p;
for (p = argv; *p; p++) {
sz += std::strlen(*p) + 1;
}
for (p = envv; *p; p++) {
sz += std::strlen(*p) + 1;
}
format_size_safe(sz1, sz);
arg_max = sysconf(_SC_ARG_MAX);
if (arg_max > 0) {
if (sz >= static_cast<unsigned long long>(arg_max)) {
format_size_safe(sz2, static_cast<unsigned long long>(arg_max));
FLOGF_SAFE(exec,
"Failed to execute process '%s': the size of argument and "
"environment lists %s exceeds the OS limit of %s.",
actual_cmd, sz1, sz2);
} else {
// MAX_ARG_STRLEN, a linux thing that limits the size of one argument. It's
// defined in binfmts.h, but we don't want to include that just to be able to
// print the real limit.
FLOGF_SAFE(exec,
"Failed to execute process '%s': An argument exceeds the OS "
"argument length limit.");
}
} else {
FLOGF_SAFE(exec,
"Failed to execute process '%s': The total size of the argument and "
"environment lists (%s) exceeds the "
"operating system limit.",
actual_cmd, sz1);
}
break;
}
case ENOEXEC: {
FLOGF_SAFE(exec,
"The file '%s' is marked as an executable but could not be run by the "
"operating system.",
actual_cmd);
break;
}
case ENOENT: {
// ENOENT is returned by exec() when the path fails, but also returned by posix_spawn if
// an open file action fails. These cases appear to be impossible to distinguish. We
// address this by not using posix_spawn for file redirections, so all the ENOENTs we
// find must be errors from exec().
char interpreter_buff[128] = {};
const char *interpreter =
get_interpreter(actual_cmd, interpreter_buff, sizeof interpreter_buff);
if (interpreter && 0 != access(interpreter, X_OK)) {
// Detect windows line endings and complain specifically about them.
auto len = strlen(interpreter);
if (len && interpreter[len - 1] == '\r') {
FLOGF_SAFE(exec,
"Failed to execute process '%s': The file uses windows line "
"endings (\\r\\n). Run dos2unix or similar to fix it.",
actual_cmd);
} else {
FLOGF_SAFE(exec,
"Failed to execute process '%s': The file specified the interpreter "
"'%s', which is not an "
"executable command.",
actual_cmd, interpreter);
}
} else {
FLOGF_SAFE(exec,
"Failed to execute process '%s': The file does not exist or could not "
"be executed.",
actual_cmd);
}
break;
}
case ENOMEM: {
FLOGF_SAFE(exec, "Out of memory");
break;
}
case EACCES: {
FLOGF_SAFE(exec, "Failed to execute process '%s': The file could not be accessed.",
actual_cmd);
break;
}
case ETXTBSY: {
FLOGF_SAFE(exec, "Failed to execute process '%s': File is currently open for writing.",
actual_cmd);
break;
}
case ELOOP: {
FLOGF_SAFE(
exec,
"Failed to execute process '%s': Too many layers of symbolic links. Maybe a loop?",
actual_cmd);
break;
}
case EINVAL: {
FLOGF_SAFE(exec, "Failed to execute process '%s': Unsupported format.", actual_cmd);
break;
}
case EISDIR: {
FLOGF_SAFE(exec, "Failed to execute process '%s': File is a directory.", actual_cmd);
break;
}
case ENOTDIR: {
FLOGF_SAFE(exec, "Failed to execute process '%s': A path component is not a directory.",
actual_cmd);
break;
}
case EMFILE: {
FLOGF_SAFE(exec, "Failed to execute process '%s': Too many open files in this process.",
actual_cmd);
break;
}
case ENFILE: {
FLOGF_SAFE(exec, "Failed to execute process '%s': Too many open files on the system.",
actual_cmd);
break;
}
case ENAMETOOLONG: {
FLOGF_SAFE(exec, "Failed to execute process '%s': Name is too long.", actual_cmd);
break;
}
case EPERM: {
FLOGF_SAFE(exec,
"Failed to execute process '%s': No permission. Either suid/sgid is "
"forbidden or you lack capabilities.",
actual_cmd);
break;
}
default: {
char errnum_buff[64];
format_long_safe(errnum_buff, err);
FLOGF_SAFE(exec, "Failed to execute process '%s', unknown error number %s", actual_cmd,
errnum_buff);
break;
}
}
}
/// Returns the interpreter for the specified script. Returns NULL if file is not a script with a
/// shebang.
static char *get_interpreter(const char *command, char *buffer, size_t buff_size) {
// OK to not use CLO_EXEC here because this is only called after fork.
int fd = open(command, O_RDONLY);
if (fd >= 0) {
size_t idx = 0;
while (idx + 1 < buff_size) {
char ch;
ssize_t amt = read(fd, &ch, sizeof ch);
if (amt <= 0) break;
if (ch == '\n') break;
buffer[idx++] = ch;
}
buffer[idx++] = '\0';
close(fd);
}
if (std::strncmp(buffer, "#! /", const_strlen("#! /")) == 0) {
return buffer + 3;
} else if (std::strncmp(buffer, "#!/", const_strlen("#!/")) == 0) {
return buffer + 2;
}
return nullptr;
};