fish-shell/src/postfork.cpp
2019-03-12 15:09:36 -07:00

381 lines
14 KiB
C++

// Functions that we may safely call after fork().
#include "config.h" // IWYU pragma: keep
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <stdio.h>
#include <cstring>
#include <time.h>
#include <memory>
#if FISH_USE_POSIX_SPAWN
#include <spawn.h>
#endif
#include <cwchar>
#include "common.h"
#include "exec.h"
#include "io.h"
#include "iothread.h"
#include "postfork.h"
#include "proc.h"
#include "redirection.h"
#include "signal.h"
#include "wutil.h" // IWYU pragma: keep
#ifndef JOIN_THREADS_BEFORE_FORK
#define JOIN_THREADS_BEFORE_FORK 0
#endif
/// The number of times to try to call fork() before giving up.
#define FORK_LAPS 5
/// The number of nanoseconds to sleep between attempts to call fork().
#define FORK_SLEEP_TIME 1000000
/// Fork error message.
#define FORK_ERROR "Could not create child process - exiting"
/// Called only by the child to set its own process group (possibly creating a new group in the
/// process if it is the first in a JOB_CONTROL job.
/// Returns true on sucess, false on failiure.
bool child_set_group(job_t *j, process_t *p) {
if (j->get_flag(job_flag_t::JOB_CONTROL)) {
if (j->pgid == INVALID_PID) {
j->pgid = p->pid;
}
for (int i = 0; setpgid(p->pid, j->pgid) != 0; ++i) {
// Put a cap on how many times we retry so we are never stuck here
if (i < 100) {
if (errno == EPERM) {
// The setpgid(2) man page says that EPERM is returned only if attempts are made to
// move processes into groups across session boundaries (which can never be the case
// in fish, anywhere) or to change the process group ID of a session leader (again,
// can never be the case). I'm pretty sure this is a WSL bug, as we see the same
// with tcsetpgrp(2) in other places and it disappears on retry.
debug_safe(2, "setpgid(2) returned EPERM. Retrying");
continue;
} else if (errno == EINTR) {
// I don't think signals are blocked here. The parent (fish) redirected the signal
// handlers and `setup_child_process()` calls `signal_reset_handlers()` after we're
// done here (and not `signal_unblock()`). We're already in a loop, so let's just
// handle EINTR just in case.
continue;
}
}
char pid_buff[128];
char job_id_buff[128];
char getpgid_buff[128];
char job_pgid_buff[128];
char argv0[64];
char command[64];
format_long_safe(pid_buff, p->pid);
format_long_safe(job_id_buff, j->job_id);
format_long_safe(getpgid_buff, getpgid(p->pid));
format_long_safe(job_pgid_buff, j->pgid);
narrow_string_safe(argv0, p->argv0());
narrow_string_safe(command, j->command_wcstr());
debug_safe(
1, "Could not send own process %s, '%s' in job %s, '%s' from group %s to group %s",
pid_buff, argv0, job_id_buff, command, getpgid_buff, job_pgid_buff);
if (is_windows_subsystem_for_linux() && errno == EPERM) {
debug_safe(1, "Please update to Windows 10 1809/17763 or higher to address known issues "
"with process groups and zombie processes.");
}
safe_perror("setpgid");
return false;
}
} else {
// The child does not actually use this field.
j->pgid = getpgrp();
}
return true;
}
/// Called only by the parent only after a child forks and successfully calls child_set_group,
/// guaranteeing the job control process group has been created and that the child belongs to the
/// correct process group. Here we can update our job_t structure to reflect the correct process
/// group in the case of JOB_CONTROL, and we can give the new process group control of the terminal
/// if it's to run in the foreground.
bool set_child_group(job_t *j, pid_t child_pid) {
if (j->get_flag(job_flag_t::JOB_CONTROL)) {
assert (j->pgid != INVALID_PID
&& "set_child_group called with JOB_CONTROL before job pgid determined!");
// The parent sets the child's group. This incurs the well-known unavoidable race with the
// child exiting, so ignore ESRCH and EPERM (in case the pid was recycled).
// Additionally ignoring EACCES. See #4715 and #4884.
if (setpgid(child_pid, j->pgid) < 0) {
if (errno != ESRCH && errno != EPERM && errno != EACCES) {
safe_perror("setpgid");
return false;
}
else {
// Just in case it's ever not right to ignore the setpgid call, (i.e. if this
// ever leads to a terminal hang due if both this setpgid call AND posix_spawn's
// internal setpgid calls failed), write to the debug log so a future developer
// doesn't go crazy trying to track this down.
debug(2, "Error %d while calling setpgid for child %d (probably harmless)",
errno, child_pid);
}
}
} else {
j->pgid = getpgrp();
}
return true;
}
bool maybe_assign_terminal(const job_t *j) {
if (j->get_flag(job_flag_t::TERMINAL) && j->is_foreground()) { //!OCLINT(early exit)
if (tcgetpgrp(STDIN_FILENO) == j->pgid) {
// We've already assigned the process group control of the terminal when the first
// process in the job was started. There's no need to do so again, and on some platforms
// this can cause an EPERM error. In addition, if we've given control of the terminal to
// a process group, attempting to call tcsetpgrp from the background will cause SIGTTOU
// to be sent to everything in our process group (unless we handle it).
debug(4, L"Process group %d already has control of terminal\n", j->pgid);
} else {
// No need to duplicate the code here, a function already exists that does just this.
return terminal_give_to_job(j, false /*new job, so not continuing*/);
}
}
return true;
}
int setup_child_process(process_t *p, const dup2_list_t &dup2s) {
for (const auto &act : dup2s.get_actions()) {
int err = act.target < 0 ? close(act.src) : dup2(act.src, act.target);
if (err < 0) {
// We have a null p if this is for the exec (non-fork) path.
if (p != nullptr) {
debug_safe(4, "redirect_in_child_after_fork failed in setup_child_process");
exit_without_destructors(1);
}
return err;
}
}
// Set the handling for job control signals back to the default.
signal_reset_handlers();
return 0;
}
int g_fork_count = 0;
/// This function is a wrapper around fork. If the fork calls fails with EAGAIN, it is retried
/// FORK_LAPS times, with a very slight delay between each lap. If fork fails even then, the process
/// will exit with an error message.
pid_t execute_fork(bool wait_for_threads_to_die) {
ASSERT_IS_MAIN_THREAD();
if (wait_for_threads_to_die || JOIN_THREADS_BEFORE_FORK) {
// Make sure we have no outstanding threads before we fork. This is a pretty sketchy thing
// to do here, both because exec.cpp shouldn't have to know about iothreads, and because the
// completion handlers may do unexpected things.
debug_safe(4, "waiting for threads to drain.");
iothread_drain_all();
}
pid_t pid;
struct timespec pollint;
int i;
g_fork_count++;
for (i = 0; i < FORK_LAPS; i++) {
pid = fork();
if (pid >= 0) {
return pid;
}
if (errno != EAGAIN) {
break;
}
pollint.tv_sec = 0;
pollint.tv_nsec = FORK_SLEEP_TIME;
// Don't sleep on the final lap - sleeping might change the value of errno, which will break
// the error reporting below.
if (i != FORK_LAPS - 1) {
nanosleep(&pollint, NULL);
}
}
debug_safe(0, FORK_ERROR);
safe_perror("fork");
FATAL_EXIT();
return 0;
}
#if FISH_USE_POSIX_SPAWN
bool fork_actions_make_spawn_properties(posix_spawnattr_t *attr,
posix_spawn_file_actions_t *actions, const job_t *j,
const dup2_list_t &dup2s) {
// Initialize the output.
if (posix_spawnattr_init(attr) != 0) {
return false;
}
if (posix_spawn_file_actions_init(actions) != 0) {
posix_spawnattr_destroy(attr);
return false;
}
bool should_set_process_group_id = false;
int desired_process_group_id = 0;
if (j->get_flag(job_flag_t::JOB_CONTROL)) {
should_set_process_group_id = true;
// set_child_group puts each job into its own process group
// do the same here if there is no PGID yet (i.e. PGID == -2)
desired_process_group_id = j->pgid;
if (desired_process_group_id == INVALID_PID) {
desired_process_group_id = 0;
}
}
// Set the handling for job control signals back to the default.
bool reset_signal_handlers = true;
// Remove all signal blocks.
bool reset_sigmask = true;
// Set our flags.
short flags = 0;
if (reset_signal_handlers) flags |= POSIX_SPAWN_SETSIGDEF;
if (reset_sigmask) flags |= POSIX_SPAWN_SETSIGMASK;
if (should_set_process_group_id) flags |= POSIX_SPAWN_SETPGROUP;
int err = 0;
if (!err) err = posix_spawnattr_setflags(attr, flags);
if (!err && should_set_process_group_id)
err = posix_spawnattr_setpgroup(attr, desired_process_group_id);
// Everybody gets default handlers.
if (!err && reset_signal_handlers) {
sigset_t sigdefault;
get_signals_with_handlers(&sigdefault);
err = posix_spawnattr_setsigdefault(attr, &sigdefault);
}
// No signals blocked.
sigset_t sigmask;
sigemptyset(&sigmask);
if (!err && reset_sigmask) err = posix_spawnattr_setsigmask(attr, &sigmask);
// Apply our dup2s.
for (const auto &act : dup2s.get_actions()) {
if (err) break;
if (act.target < 0) {
err = posix_spawn_file_actions_addclose(actions, act.src);
} else {
err = posix_spawn_file_actions_adddup2(actions, act.src, act.target);
}
}
// Clean up on error.
if (err) {
posix_spawnattr_destroy(attr);
posix_spawn_file_actions_destroy(actions);
}
return !err;
}
#endif // FISH_USE_POSIX_SPAWN
void safe_report_exec_error(int err, const char *actual_cmd, const char *const *argv,
const char *const *envv) {
debug_safe(0, "Failed to execute process '%s'. Reason:", actual_cmd);
switch (err) {
case E2BIG: {
char sz1[128], sz2[128];
long arg_max = -1;
size_t sz = 0;
const char *const *p;
for (p = argv; *p; p++) {
sz += std::strlen(*p) + 1;
}
for (p = envv; *p; p++) {
sz += std::strlen(*p) + 1;
}
format_size_safe(sz1, sz);
arg_max = sysconf(_SC_ARG_MAX);
if (arg_max > 0) {
format_size_safe(sz2, static_cast<unsigned long long>(arg_max));
debug_safe(0,
"The total size of the argument and environment lists %s exceeds the "
"operating system limit of %s.",
sz1, sz2);
} else {
debug_safe(0,
"The total size of the argument and environment lists (%s) exceeds the "
"operating system limit.",
sz1);
}
debug_safe(0, "Try running the command again with fewer arguments.");
break;
}
case ENOEXEC: {
const char *err = safe_strerror(errno);
debug_safe(0, "exec: %s", err);
debug_safe(0,
"The file '%s' is marked as an executable but could not be run by the "
"operating system.",
actual_cmd);
break;
}
case ENOENT: {
// ENOENT is returned by exec() when the path fails, but also returned by posix_spawn if
// an open file action fails. These cases appear to be impossible to distinguish. We
// address this by not using posix_spawn for file redirections, so all the ENOENTs we
// find must be errors from exec().
char interpreter_buff[128] = {}, *interpreter;
interpreter = get_interpreter(actual_cmd, interpreter_buff, sizeof interpreter_buff);
if (interpreter && 0 != access(interpreter, X_OK)) {
debug_safe(0,
"The file '%s' specified the interpreter '%s', which is not an "
"executable command.",
actual_cmd, interpreter);
} else {
debug_safe(0, "The file '%s' does not exist or could not be executed.", actual_cmd);
}
break;
}
case ENOMEM: {
debug_safe(0, "Out of memory");
break;
}
default: {
const char *err = safe_strerror(errno);
debug_safe(0, "exec: %s", err);
// debug(0, L"The file '%ls' is marked as an executable but could not be run by the
// operating system.", p->actual_cmd);
break;
}
}
}