fish-shell/src/builtin_test.cpp
Aaron Gyes 1cb8b2a87b Show how fish was executed, using argv[0] for program_name
... rather than hard code it to "fish". This affects
what is found in $_ and improves the errors:

For example, if fish was ran with ./fish, instead of
something like:

  fish: Expected 3 surprises, only got 2 surprises

we'll see:

 ./fish: Expected 3 surprises, only got 2 surprises

like most other shell utilities. It's just a tiny bit
of detail that can avoid confusion.
2018-11-27 11:57:09 -08:00

862 lines
32 KiB
C++

// Functions used for implementing the test builtin.
//
// Implemented from scratch (yes, really) by way of IEEE 1003.1 as reference.
#include "config.h" // IWYU pragma: keep
#include <errno.h>
#include <stdarg.h>
#include <sys/stat.h>
#include <sys/types.h>
#include <unistd.h>
#include <wchar.h>
#include <cmath>
#include <memory>
#include <string>
#include <type_traits>
#include <utility>
#include "builtin.h"
#include "common.h"
#include "io.h"
#include "wutil.h" // IWYU pragma: keep
using std::unique_ptr;
using std::move;
namespace {
namespace test_expressions {
enum token_t {
test_unknown, // arbitrary string
test_bang, // "!", inverts sense
test_filetype_b, // "-b", for block special files
test_filetype_c, // "-c", for character special files
test_filetype_d, // "-d", for directories
test_filetype_e, // "-e", for files that exist
test_filetype_f, // "-f", for for regular files
test_filetype_G, // "-G", for check effective group id
test_filetype_g, // "-g", for set-group-id
test_filetype_h, // "-h", for symbolic links
test_filetype_k, // "-k", for sticky bit
test_filetype_L, // "-L", same as -h
test_filetype_O, // "-O", for check effective user id
test_filetype_p, // "-p", for FIFO
test_filetype_S, // "-S", socket
test_filesize_s, // "-s", size greater than zero
test_filedesc_t, // "-t", whether the fd is associated with a terminal
test_fileperm_r, // "-r", read permission
test_fileperm_u, // "-u", whether file is setuid
test_fileperm_w, // "-w", whether file write permission is allowed
test_fileperm_x, // "-x", whether file execute/search is allowed
test_string_n, // "-n", non-empty string
test_string_z, // "-z", true if length of string is 0
test_string_equal, // "=", true if strings are identical
test_string_not_equal, // "!=", true if strings are not identical
test_number_equal, // "-eq", true if numbers are equal
test_number_not_equal, // "-ne", true if numbers are not equal
test_number_greater, // "-gt", true if first number is larger than second
test_number_greater_equal, // "-ge", true if first number is at least second
test_number_lesser, // "-lt", true if first number is smaller than second
test_number_lesser_equal, // "-le", true if first number is at most second
test_combine_and, // "-a", true if left and right are both true
test_combine_or, // "-o", true if either left or right is true
test_paren_open, // "(", open paren
test_paren_close, // ")", close paren
};
/// Our number type. We support both doubles and long longs. We have to support these separately
/// because some integers are not representable as doubles; these may come up in practice (e.g.
/// inodes).
class number_t {
// A number has an integral base and a floating point delta.
// Conceptually the number is base + delta.
// We enforce the property that 0 <= delta < 1.
long long base;
double delta;
public:
number_t(long long base, double delta) : base(base), delta(delta) {
assert(0.0 <= delta && delta < 1.0 && "Invalid delta");
}
number_t() : number_t(0, 0.0) {}
// Compare two numbers. Returns an integer -1, 0, 1 corresponding to whether we are less than,
// equal to, or greater than the rhs.
int compare(number_t rhs) const {
if (this->base != rhs.base) return (this->base > rhs.base) - (this->base < rhs.base);
return (this->delta > rhs.delta) - (this->delta < rhs.delta);
}
// Return true if the number is a tty()/
bool isatty() const {
if (delta != 0.0 || base > INT_MAX || base < INT_MIN) return false;
return ::isatty(static_cast<int>(base));
}
};
static bool binary_primary_evaluate(test_expressions::token_t token, const wcstring &left,
const wcstring &right, wcstring_list_t &errors);
static bool unary_primary_evaluate(test_expressions::token_t token, const wcstring &arg,
wcstring_list_t &errors);
enum { UNARY_PRIMARY = 1 << 0, BINARY_PRIMARY = 1 << 1 };
struct token_info_t {
token_t tok;
unsigned int flags;
};
const token_info_t * const token_for_string(const wcstring &str) {
static const std::map<wcstring, const token_info_t> token_infos = {
{L"", {test_unknown, 0}},
{L"!", {test_bang, 0}},
{L"-b", {test_filetype_b, UNARY_PRIMARY}},
{L"-c", {test_filetype_c, UNARY_PRIMARY}},
{L"-d", {test_filetype_d, UNARY_PRIMARY}},
{L"-e", {test_filetype_e, UNARY_PRIMARY}},
{L"-f", {test_filetype_f, UNARY_PRIMARY}},
{L"-G", {test_filetype_G, UNARY_PRIMARY}},
{L"-g", {test_filetype_g, UNARY_PRIMARY}},
{L"-h", {test_filetype_h, UNARY_PRIMARY}},
{L"-k", {test_filetype_k, UNARY_PRIMARY}},
{L"-L", {test_filetype_L, UNARY_PRIMARY}},
{L"-O", {test_filetype_O, UNARY_PRIMARY}},
{L"-p", {test_filetype_p, UNARY_PRIMARY}},
{L"-S", {test_filetype_S, UNARY_PRIMARY}},
{L"-s", {test_filesize_s, UNARY_PRIMARY}},
{L"-t", {test_filedesc_t, UNARY_PRIMARY}},
{L"-r", {test_fileperm_r, UNARY_PRIMARY}},
{L"-u", {test_fileperm_u, UNARY_PRIMARY}},
{L"-w", {test_fileperm_w, UNARY_PRIMARY}},
{L"-x", {test_fileperm_x, UNARY_PRIMARY}},
{L"-n", {test_string_n, UNARY_PRIMARY}},
{L"-z", {test_string_z, UNARY_PRIMARY}},
{L"=", {test_string_equal, BINARY_PRIMARY}},
{L"!=", {test_string_not_equal, BINARY_PRIMARY}},
{L"-eq", {test_number_equal, BINARY_PRIMARY}},
{L"-ne", {test_number_not_equal, BINARY_PRIMARY}},
{L"-gt", {test_number_greater, BINARY_PRIMARY}},
{L"-ge", {test_number_greater_equal, BINARY_PRIMARY}},
{L"-lt", {test_number_lesser, BINARY_PRIMARY}},
{L"-le", {test_number_lesser_equal, BINARY_PRIMARY}},
{L"-a", {test_combine_and, 0}},
{L"-o", {test_combine_or, 0}},
{L"(", {test_paren_open, 0}},
{L")", {test_paren_close, 0}}};
auto t = token_infos.find(str);
if (t != token_infos.end()) return &t->second;
return &token_infos.find(L"")->second;
}
// Grammar.
//
// <expr> = <combining_expr>
//
// <combining_expr> = <unary_expr> and/or <combining_expr> |
// <unary_expr>
//
// <unary_expr> = bang <unary_expr> |
// <primary>
//
// <primary> = <unary_primary> arg |
// arg <binary_primary> arg |
// '(' <expr> ')'
class expression;
class test_parser {
private:
wcstring_list_t strings;
wcstring_list_t errors;
unique_ptr<expression> error(const wchar_t *fmt, ...);
void add_error(const wchar_t *fmt, ...);
const wcstring &arg(unsigned int idx) { return strings.at(idx); }
public:
explicit test_parser(wcstring_list_t val) : strings(std::move(val)) {}
unique_ptr<expression> parse_expression(unsigned int start, unsigned int end);
unique_ptr<expression> parse_3_arg_expression(unsigned int start, unsigned int end);
unique_ptr<expression> parse_4_arg_expression(unsigned int start, unsigned int end);
unique_ptr<expression> parse_combining_expression(unsigned int start, unsigned int end);
unique_ptr<expression> parse_unary_expression(unsigned int start, unsigned int end);
unique_ptr<expression> parse_primary(unsigned int start, unsigned int end);
unique_ptr<expression> parse_parenthentical(unsigned int start, unsigned int end);
unique_ptr<expression> parse_unary_primary(unsigned int start, unsigned int end);
unique_ptr<expression> parse_binary_primary(unsigned int start, unsigned int end);
unique_ptr<expression> parse_just_a_string(unsigned int start, unsigned int end);
static unique_ptr<expression> parse_args(const wcstring_list_t &args, wcstring &err,
wchar_t *program_name);
};
struct range_t {
unsigned int start;
unsigned int end;
range_t(unsigned s, unsigned e) : start(s), end(e) {}
};
/// Base class for expressions.
class expression {
protected:
expression(token_t what, range_t where) : token(what), range(std::move(where)) {}
public:
const token_t token;
range_t range;
virtual ~expression() = default;
/// Evaluate returns true if the expression is true (i.e. STATUS_CMD_OK).
virtual bool evaluate(wcstring_list_t &errors) = 0;
};
/// Single argument like -n foo or "just a string".
class unary_primary : public expression {
public:
wcstring arg;
unary_primary(token_t tok, range_t where, wcstring what)
: expression(tok, where), arg(std::move(what)) {}
bool evaluate(wcstring_list_t &errors) override;
};
/// Two argument primary like foo != bar.
class binary_primary : public expression {
public:
wcstring arg_left;
wcstring arg_right;
binary_primary(token_t tok, range_t where, wcstring left, wcstring right)
: expression(tok, where), arg_left(std::move(left)), arg_right(std::move(right)) {}
bool evaluate(wcstring_list_t &errors) override;
};
/// Unary operator like bang.
class unary_operator : public expression {
public:
unique_ptr<expression> subject;
unary_operator(token_t tok, range_t where, unique_ptr<expression> exp)
: expression(tok, where), subject(move(exp)) {}
bool evaluate(wcstring_list_t &errors) override;
};
/// Combining expression. Contains a list of AND or OR expressions. It takes more than two so that
/// we don't have to worry about precedence in the parser.
class combining_expression : public expression {
public:
const std::vector<unique_ptr<expression>> subjects;
const std::vector<token_t> combiners;
combining_expression(token_t tok, range_t where, std::vector<unique_ptr<expression>> exprs,
const std::vector<token_t> &combs)
: expression(tok, where), subjects(std::move(exprs)), combiners(std::move(combs)) {
// We should have one more subject than combiner.
assert(subjects.size() == combiners.size() + 1);
}
~combining_expression() override = default;
bool evaluate(wcstring_list_t &errors) override;
};
/// Parenthetical expression.
class parenthetical_expression : public expression {
public:
unique_ptr<expression> contents;
parenthetical_expression(token_t tok, range_t where, unique_ptr<expression> expr)
: expression(tok, where), contents(move(expr)) {}
bool evaluate(wcstring_list_t &errors) override;
};
void test_parser::add_error(const wchar_t *fmt, ...) {
assert(fmt != NULL);
va_list va;
va_start(va, fmt);
this->errors.push_back(vformat_string(fmt, va));
va_end(va);
}
unique_ptr<expression> test_parser::error(const wchar_t *fmt, ...) {
assert(fmt != NULL);
va_list va;
va_start(va, fmt);
this->errors.push_back(vformat_string(fmt, va));
va_end(va);
return NULL;
}
unique_ptr<expression> test_parser::parse_unary_expression(unsigned int start, unsigned int end) {
if (start >= end) {
return error(L"Missing argument at index %u", start);
}
token_t tok = token_for_string(arg(start))->tok;
if (tok == test_bang) {
unique_ptr<expression> subject(parse_unary_expression(start + 1, end));
if (subject.get()) {
return make_unique<unary_operator>(tok, range_t(start, subject->range.end),
move(subject));
}
return NULL;
}
return parse_primary(start, end);
}
/// Parse a combining expression (AND, OR).
unique_ptr<expression> test_parser::parse_combining_expression(unsigned int start,
unsigned int end) {
if (start >= end) return NULL;
std::vector<unique_ptr<expression>> subjects;
std::vector<token_t> combiners;
unsigned int idx = start;
bool first = true;
while (idx < end) {
if (!first) {
// This is not the first expression, so we expect a combiner.
token_t combiner = token_for_string(arg(idx))->tok;
if (combiner != test_combine_and && combiner != test_combine_or) {
/* Not a combiner, we're done */
this->errors.insert(
this->errors.begin(),
format_string(L"Expected a combining operator like '-a' at index %u", idx));
break;
}
combiners.push_back(combiner);
idx++;
}
// Parse another expression.
unique_ptr<expression> expr = parse_unary_expression(idx, end);
if (!expr) {
add_error(L"Missing argument at index %u", idx);
if (!first) {
// Clean up the dangling combiner, since it never got its right hand expression.
combiners.pop_back();
}
break;
}
// Go to the end of this expression.
idx = expr->range.end;
subjects.push_back(move(expr));
first = false;
}
if (subjects.empty()) {
return NULL; // no subjects
}
// Our new expression takes ownership of all expressions we created. The token we pass is
// irrelevant.
return make_unique<combining_expression>(test_combine_and, range_t(start, idx), move(subjects),
move(combiners));
}
unique_ptr<expression> test_parser::parse_unary_primary(unsigned int start, unsigned int end) {
// We need two arguments.
if (start >= end) {
return error(L"Missing argument at index %u", start);
}
if (start + 1 >= end) {
return error(L"Missing argument at index %u", start + 1);
}
// All our unary primaries are prefix, so the operator is at start.
const token_info_t *info = token_for_string(arg(start));
if (!(info->flags & UNARY_PRIMARY)) return NULL;
return make_unique<unary_primary>(info->tok, range_t(start, start + 2), arg(start + 1));
}
unique_ptr<expression> test_parser::parse_just_a_string(unsigned int start, unsigned int end) {
// Handle a string as a unary primary that is not a token of any other type. e.g. 'test foo -a
// bar' should evaluate to true We handle this with a unary primary of test_string_n.
// We need one argument.
if (start >= end) {
return error(L"Missing argument at index %u", start);
}
const token_info_t *info = token_for_string(arg(start));
if (info->tok != test_unknown) {
return error(L"Unexpected argument type at index %u", start);
}
// This is hackish; a nicer way to implement this would be with a "just a string" expression
// type.
return make_unique<unary_primary>(test_string_n, range_t(start, start + 1), arg(start));
}
unique_ptr<expression> test_parser::parse_binary_primary(unsigned int start, unsigned int end) {
// We need three arguments.
for (unsigned int idx = start; idx < start + 3; idx++) {
if (idx >= end) {
return error(L"Missing argument at index %u", idx);
}
}
// All our binary primaries are infix, so the operator is at start + 1.
const token_info_t *info = token_for_string(arg(start + 1));
if (!(info->flags & BINARY_PRIMARY)) return NULL;
return make_unique<binary_primary>(info->tok, range_t(start, start + 3), arg(start),
arg(start + 2));
}
unique_ptr<expression> test_parser::parse_parenthentical(unsigned int start, unsigned int end) {
// We need at least three arguments: open paren, argument, close paren.
if (start + 3 >= end) return NULL;
// Must start with an open expression.
const token_info_t *open_paren = token_for_string(arg(start));
if (open_paren->tok != test_paren_open) return NULL;
// Parse a subexpression.
unique_ptr<expression> subexpr = parse_expression(start + 1, end);
if (!subexpr) return NULL;
// Parse a close paren.
unsigned close_index = subexpr->range.end;
assert(close_index <= end);
if (close_index == end) {
return error(L"Missing close paren at index %u", close_index);
}
const token_info_t *close_paren = token_for_string(arg(close_index));
if (close_paren->tok != test_paren_close) {
return error(L"Expected close paren at index %u", close_index);
}
// Success.
return make_unique<parenthetical_expression>(test_paren_open, range_t(start, close_index + 1),
move(subexpr));
}
unique_ptr<expression> test_parser::parse_primary(unsigned int start, unsigned int end) {
if (start >= end) {
return error(L"Missing argument at index %u", start);
}
unique_ptr<expression> expr = NULL;
if (!expr) expr = parse_parenthentical(start, end);
if (!expr) expr = parse_unary_primary(start, end);
if (!expr) expr = parse_binary_primary(start, end);
if (!expr) expr = parse_just_a_string(start, end);
return expr;
}
// See IEEE 1003.1 breakdown of the behavior for different parameter counts.
unique_ptr<expression> test_parser::parse_3_arg_expression(unsigned int start, unsigned int end) {
assert(end - start == 3);
unique_ptr<expression> result = NULL;
const token_info_t *center_token = token_for_string(arg(start + 1));
if (center_token->flags & BINARY_PRIMARY) {
result = parse_binary_primary(start, end);
} else if (center_token->tok == test_combine_and || center_token->tok == test_combine_or) {
unique_ptr<expression> left(parse_unary_expression(start, start + 1));
unique_ptr<expression> right(parse_unary_expression(start + 2, start + 3));
if (left.get() && right.get()) {
// Transfer ownership to the vector of subjects.
std::vector<token_t> combiners = {center_token->tok};
std::vector<unique_ptr<expression>> subjects;
subjects.push_back(move(left));
subjects.push_back(move(right));
result = make_unique<combining_expression>(center_token->tok, range_t(start, end),
move(subjects), move(combiners));
}
} else {
result = parse_unary_expression(start, end);
}
return result;
}
unique_ptr<expression> test_parser::parse_4_arg_expression(unsigned int start, unsigned int end) {
assert(end - start == 4);
unique_ptr<expression> result = NULL;
token_t first_token = token_for_string(arg(start))->tok;
if (first_token == test_bang) {
unique_ptr<expression> subject(parse_3_arg_expression(start + 1, end));
if (subject.get()) {
result = make_unique<unary_operator>(first_token, range_t(start, subject->range.end),
move(subject));
}
} else if (first_token == test_paren_open) {
result = parse_parenthentical(start, end);
} else {
result = parse_combining_expression(start, end);
}
return result;
}
unique_ptr<expression> test_parser::parse_expression(unsigned int start, unsigned int end) {
if (start >= end) {
return error(L"Missing argument at index %u", start);
}
unsigned int argc = end - start;
switch (argc) {
case 0: {
DIE("argc should not be zero"); // should have been caught by the above test
break;
}
case 1: {
return error(L"Missing argument at index %u", start + 1);
}
case 2: {
return parse_unary_expression(start, end);
}
case 3: {
return parse_3_arg_expression(start, end);
}
case 4: {
return parse_4_arg_expression(start, end);
}
default: { return parse_combining_expression(start, end); }
}
}
unique_ptr<expression> test_parser::parse_args(const wcstring_list_t &args, wcstring &err,
wchar_t *program_name) {
// Empty list and one-arg list should be handled by caller.
assert(args.size() > 1);
test_parser parser(args);
unique_ptr<expression> result = parser.parse_expression(0, (unsigned int)args.size());
// Handle errors.
// For now we only show the first error.
if (!parser.errors.empty()) {
err.append(program_name);
err.append(L": ");
err.append(parser.errors.at(0));
err.push_back(L'\n');
}
if (result) {
// It's also an error if there are any unused arguments. This is not detected by
// parse_expression().
assert(result->range.end <= args.size());
if (result->range.end < args.size()) {
if (err.empty()) {
append_format(err, L"%s: unexpected argument at index %lu: '%ls'\n", program_name,
(unsigned long)result->range.end, args.at(result->range.end).c_str());
}
result.reset(NULL);
}
}
return result;
}
bool unary_primary::evaluate(wcstring_list_t &errors) {
return unary_primary_evaluate(token, arg, errors);
}
bool binary_primary::evaluate(wcstring_list_t &errors) {
return binary_primary_evaluate(token, arg_left, arg_right, errors);
}
bool unary_operator::evaluate(wcstring_list_t &errors) {
if (token == test_bang) {
assert(subject.get());
return !subject->evaluate(errors);
}
errors.push_back(format_string(L"Unknown token type in %s", __func__));
return false;
}
bool combining_expression::evaluate(wcstring_list_t &errors) {
if (token == test_combine_and || token == test_combine_or) {
assert(!subjects.empty()); //!OCLINT(multiple unary operator)
assert(combiners.size() + 1 == subjects.size());
// One-element case.
if (subjects.size() == 1) return subjects.at(0)->evaluate(errors);
// Evaluate our lists, remembering that AND has higher precedence than OR. We can
// visualize this as a sequence of OR expressions of AND expressions.
size_t idx = 0, max = subjects.size();
bool or_result = false;
while (idx < max) {
if (or_result) { // short circuit
break;
}
// Evaluate a stream of AND starting at given subject index. It may only have one
// element.
bool and_result = true;
for (; idx < max; idx++) {
// Evaluate it, short-circuiting.
and_result = and_result && subjects.at(idx)->evaluate(errors);
// If the combiner at this index (which corresponding to how we combine with the
// next subject) is not AND, then exit the loop.
if (idx + 1 < max && combiners.at(idx) != test_combine_and) {
idx++;
break;
}
}
// OR it in.
or_result = or_result || and_result;
}
return or_result;
}
errors.push_back(format_string(L"Unknown token type in %s", __func__));
return STATUS_INVALID_ARGS;
}
bool parenthetical_expression::evaluate(wcstring_list_t &errors) {
return contents->evaluate(errors);
}
// Parse a double from arg. Return true on success, false on failure.
static bool parse_double(const wchar_t *arg, double *out_res) {
// Consume leading spaces.
while (arg && *arg != L'\0' && iswspace(*arg)) arg++;
errno = 0;
wchar_t *end = NULL;
*out_res = fish_wcstod(arg, &end);
// Consume trailing spaces.
while (end && *end != L'\0' && iswspace(*end)) end++;
return errno == 0 && end > arg && *end == L'\0';
}
// IEEE 1003.1 says nothing about what it means for two strings to be "algebraically equal". For
// example, should we interpret 0x10 as 0, 10, or 16? Here we use only base 10 and use wcstoll,
// which allows for leading + and -, and whitespace. This is consistent, albeit a bit more lenient
// since we allow trailing whitespace, with other implementations such as bash.
static bool parse_number(const wcstring &arg, number_t *number, wcstring_list_t &errors) {
const wchar_t *argcs = arg.c_str();
double floating = 0;
bool got_float = parse_double(argcs, &floating);
errno = 0;
long long integral = fish_wcstoll(argcs);
bool got_int = (errno == 0);
if (got_int) {
// Here the value is just an integer; ignore the floating point parse because it may be
// invalid (e.g. not a representable integer).
*number = number_t{integral, 0.0};
return true;
} else if (got_float) {
// Here we parsed an (in range) floating point value that could not be parsed as an integer.
// Break the floating point value into base and delta. Ensure that base is <= the floating
// point value.
double intpart = std::floor(floating);
double delta = floating - intpart;
*number = number_t{static_cast<long long>(intpart), delta};
return true;
} else {
// We could not parse a float or an int.
errors.push_back(format_string(_(L"invalid number '%ls'"), arg.c_str()));
return false;
}
}
static bool binary_primary_evaluate(test_expressions::token_t token, const wcstring &left,
const wcstring &right, wcstring_list_t &errors) {
using namespace test_expressions;
number_t ln, rn;
switch (token) {
case test_string_equal: {
return left == right;
}
case test_string_not_equal: {
return left != right;
}
case test_number_equal: {
return parse_number(left, &ln, errors) && parse_number(right, &rn, errors) &&
ln.compare(rn) == 0;
}
case test_number_not_equal: {
return parse_number(left, &ln, errors) && parse_number(right, &rn, errors) &&
ln.compare(rn) != 0;
}
case test_number_greater: {
return parse_number(left, &ln, errors) && parse_number(right, &rn, errors) &&
ln.compare(rn) > 0;
}
case test_number_greater_equal: {
return parse_number(left, &ln, errors) && parse_number(right, &rn, errors) &&
ln.compare(rn) >= 0;
}
case test_number_lesser: {
return parse_number(left, &ln, errors) && parse_number(right, &rn, errors) &&
ln.compare(rn) < 0;
}
case test_number_lesser_equal: {
return parse_number(left, &ln, errors) && parse_number(right, &rn, errors) &&
ln.compare(rn) <= 0;
}
default: {
errors.push_back(format_string(L"Unknown token type in %s", __func__));
return false;
}
}
}
static bool unary_primary_evaluate(test_expressions::token_t token, const wcstring &arg,
wcstring_list_t &errors) {
using namespace test_expressions;
struct stat buf;
switch (token) {
case test_filetype_b: { // "-b", for block special files
return !wstat(arg, &buf) && S_ISBLK(buf.st_mode);
}
case test_filetype_c: { // "-c", for character special files
return !wstat(arg, &buf) && S_ISCHR(buf.st_mode);
}
case test_filetype_d: { // "-d", for directories
return !wstat(arg, &buf) && S_ISDIR(buf.st_mode);
}
case test_filetype_e: { // "-e", for files that exist
return !wstat(arg, &buf);
}
case test_filetype_f: { // "-f", for for regular files
return !wstat(arg, &buf) && S_ISREG(buf.st_mode);
}
case test_filetype_G: { // "-G", for check effective group id
return !wstat(arg, &buf) && getegid() == buf.st_gid;
}
case test_filetype_g: { // "-g", for set-group-id
return !wstat(arg, &buf) && (S_ISGID & buf.st_mode);
}
case test_filetype_h: // "-h", for symbolic links
case test_filetype_L: { // "-L", same as -h
return !lwstat(arg, &buf) && S_ISLNK(buf.st_mode);
}
case test_filetype_k: { // "-k", for sticky bit
#ifdef S_ISVTX
return !lwstat(arg, &buf) && buf.st_mode & S_ISVTX;
#else
return false;
#endif
}
case test_filetype_O: { // "-O", for check effective user id
return !wstat(arg, &buf) && geteuid() == buf.st_uid;
}
case test_filetype_p: { // "-p", for FIFO
return !wstat(arg, &buf) && S_ISFIFO(buf.st_mode);
}
case test_filetype_S: { // "-S", socket
return !wstat(arg, &buf) && S_ISSOCK(buf.st_mode);
}
case test_filesize_s: { // "-s", size greater than zero
return !wstat(arg, &buf) && buf.st_size > 0;
}
case test_filedesc_t: { // "-t", whether the fd is associated with a terminal
number_t num;
return parse_number(arg, &num, errors) && num.isatty();
}
case test_fileperm_r: { // "-r", read permission
return !waccess(arg, R_OK);
}
case test_fileperm_u: { // "-u", whether file is setuid
return !wstat(arg, &buf) && (S_ISUID & buf.st_mode);
}
case test_fileperm_w: { // "-w", whether file write permission is allowed
return !waccess(arg, W_OK);
}
case test_fileperm_x: { // "-x", whether file execute/search is allowed
return !waccess(arg, X_OK);
}
case test_string_n: { // "-n", non-empty string
return !arg.empty();
}
case test_string_z: { // "-z", true if length of string is 0
return arg.empty();
}
default: {
errors.push_back(format_string(L"Unknown token type in %s", __func__));
return false;
}
}
}
}; // namespace test_expressions
}; // anonymous namespace
/// Evaluate a conditional expression given the arguments. If fromtest is set, the caller is the
/// test or [ builtin; with the pointer giving the name of the command. for POSIX conformance this
/// supports a more limited range of functionality.
///
/// Return status is the final shell status, i.e. 0 for true, 1 for false and 2 for error.
int builtin_test(parser_t &parser, io_streams_t &streams, wchar_t **argv) {
UNUSED(parser);
using namespace test_expressions;
// The first argument should be the name of the command ('test').
if (!argv[0]) return STATUS_INVALID_ARGS;
// Whether we are invoked with bracket '[' or not.
wchar_t *program_name = argv[0];
const bool is_bracket = !wcscmp(program_name, L"[");
size_t argc = 0;
while (argv[argc + 1]) argc++;
// If we're bracket, the last argument ought to be ]; we ignore it. Note that argc is the number
// of arguments after the command name; thus argv[argc] is the last argument.
if (is_bracket) {
if (!wcscmp(argv[argc], L"]")) {
// Ignore the closing bracket from now on.
argc--;
} else {
streams.err.append(L"[: the last argument must be ']'\n");
return STATUS_INVALID_ARGS;
}
}
// Collect the arguments into a list.
const wcstring_list_t args(argv + 1, argv + 1 + argc);
if (argc == 0) {
return STATUS_CMD_ERROR; // Per 1003.1, exit false.
} else if (argc == 1) {
// Per 1003.1, exit true if the arg is non-empty.
return args.at(0).empty() ? STATUS_CMD_ERROR : STATUS_CMD_OK;
}
// Try parsing
wcstring err;
unique_ptr<expression> expr = test_parser::parse_args(args, err, program_name);
if (!expr) {
#if 0
streams.err.append(L"Oops! test was given args:\n");
for (size_t i=0; i < argc; i++) {
streams.err.append_format(L"\t%ls\n", args.at(i).c_str());
}
streams.err.append_format(L"and returned parse error: %ls\n", err.c_str());
#endif
streams.err.append(err);
return STATUS_CMD_ERROR;
}
wcstring_list_t eval_errors;
bool result = expr->evaluate(eval_errors);
if (!eval_errors.empty() && !should_suppress_stderr_for_tests()) {
streams.err.append(L"test returned eval errors:\n");
for (size_t i = 0; i < eval_errors.size(); i++) {
streams.err.append_format(L"\t%ls\n", eval_errors.at(i).c_str());
}
}
return result ? STATUS_CMD_OK : STATUS_CMD_ERROR;
}