fish-shell/src/builtin_printf.cpp
Kurtis Rader 521546a986 fix some lint warnings
This fixes some of the IWYU and cppcheck lint warnings. And only on
macOS (formerly OS X). Fixing these types of warnings on a broader set
of platforms should be done but this is a baby step to making `make
lint-all` have few, if any, warnings. This reduces the number of lines
in the `make lint-all` output on macOS by over 500 lines.
2016-11-15 21:15:22 -08:00

737 lines
24 KiB
C++

// printf - format and print data
// Copyright (C) 1990-2007 Free Software Foundation, Inc.
//
// This program is free software; you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation; either version 2, or (at your option)
// any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program; if not, write to the Free Software Foundation,
// Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. */
// Usage: printf format [argument...]
//
// A front end to the printf function that lets it be used from the shell.
//
// Backslash escapes:
//
// \" = double quote
// \\ = backslash
// \a = alert (bell)
// \b = backspace
// \c = produce no further output
// \e = escape
// \f = form feed
// \n = new line
// \r = carriage return
// \t = horizontal tab
// \v = vertical tab
// \ooo = octal number (ooo is 1 to 3 digits)
// \xhh = hexadecimal number (hhh is 1 to 2 digits)
// \uhhhh = 16-bit Unicode character (hhhh is 4 digits)
// \Uhhhhhhhh = 32-bit Unicode character (hhhhhhhh is 8 digits)
//
// Additional directive:
//
// %b = print an argument string, interpreting backslash escapes,
// except that octal escapes are of the form \0 or \0ooo.
//
// The `format' argument is re-used as many times as necessary
// to convert all of the given arguments.
//
// David MacKenzie <djm@gnu.ai.mit.edu>
// This file has been imported from source code of printf command in GNU Coreutils version 6.9.
#include "config.h" // IWYU pragma: keep
#include <errno.h>
#include <limits.h>
#include <locale.h>
#include <stdarg.h>
#include <stdlib.h>
#include <string.h>
#include <sys/types.h>
#include <wchar.h>
#include <wctype.h>
#include "builtin.h"
#include "common.h"
#include "io.h"
#include "proc.h"
#include "wutil.h" // IWYU pragma: keep
class parser_t;
struct builtin_printf_state_t {
// Out and err streams. Note this is a captured reference!
io_streams_t &streams;
// The status of the operation.
int exit_code;
// Whether we should stop outputting. This gets set in the case of an error, and also with the
// \c escape.
bool early_exit;
explicit builtin_printf_state_t(io_streams_t &s)
: streams(s), exit_code(0), early_exit(false) {}
void verify_numeric(const wchar_t *s, const wchar_t *end, int errcode);
void print_direc(const wchar_t *start, size_t length, wchar_t conversion, bool have_field_width,
int field_width, bool have_precision, int precision, wchar_t const *argument);
int print_formatted(const wchar_t *format, int argc, wchar_t **argv);
void fatal_error(const wchar_t *format, ...);
long print_esc(const wchar_t *escstart, bool octal_0);
void print_esc_string(const wchar_t *str);
void print_esc_char(wchar_t c);
void append_output(wchar_t c);
void append_output(const wchar_t *c);
void append_format_output(const wchar_t *fmt, ...);
};
static bool is_octal_digit(wchar_t c) { return c != L'\0' && wcschr(L"01234567", c) != NULL; }
static bool is_hex_digit(wchar_t c) {
return c != L'\0' && wcschr(L"0123456789ABCDEFabcdef", c) != NULL;
}
static int hex_to_bin(const wchar_t &c) {
switch (c) {
case L'0': {
return 0;
}
case L'1': {
return 1;
}
case L'2': {
return 2;
}
case L'3': {
return 3;
}
case L'4': {
return 4;
}
case L'5': {
return 5;
}
case L'6': {
return 6;
}
case L'7': {
return 7;
}
case L'8': {
return 8;
}
case L'9': {
return 9;
}
case L'a':
case L'A': {
return 10;
}
case L'b':
case L'B': {
return 11;
}
case L'c':
case L'C': {
return 12;
}
case L'd':
case L'D': {
return 13;
}
case L'e':
case L'E': {
return 14;
}
case L'f':
case L'F': {
return 15;
}
default: { return -1; }
}
}
static int octal_to_bin(wchar_t c) {
switch (c) {
case L'0': {
return 0;
}
case L'1': {
return 1;
}
case L'2': {
return 2;
}
case L'3': {
return 3;
}
case L'4': {
return 4;
}
case L'5': {
return 5;
}
case L'6': {
return 6;
}
case L'7': {
return 7;
}
default: { return -1; }
}
}
void builtin_printf_state_t::fatal_error(const wchar_t *fmt, ...) {
// Don't error twice.
if (early_exit) return;
va_list va;
va_start(va, fmt);
wcstring errstr = vformat_string(fmt, va);
va_end(va);
streams.err.append(errstr);
if (!string_suffixes_string(L"\n", errstr)) streams.err.push_back(L'\n');
this->exit_code = STATUS_BUILTIN_ERROR;
this->early_exit = true;
}
void builtin_printf_state_t::append_output(wchar_t c) {
// Don't output if we're done.
if (early_exit) return;
streams.out.push_back(c);
}
void builtin_printf_state_t::append_output(const wchar_t *c) {
// Don't output if we're done.
if (early_exit) return;
streams.out.append(c);
}
void builtin_printf_state_t::append_format_output(const wchar_t *fmt, ...) {
// Don't output if we're done.
if (early_exit) return;
va_list va;
va_start(va, fmt);
wcstring tmp = vformat_string(fmt, va);
va_end(va);
streams.out.append(tmp);
}
void builtin_printf_state_t::verify_numeric(const wchar_t *s, const wchar_t *end, int errcode) {
if (errcode != 0) {
this->fatal_error(L"%ls: %s", s, strerror(errcode));
} else if (*end) {
if (s == end)
this->fatal_error(_(L"%ls: expected a numeric value"), s);
else
this->fatal_error(_(L"%ls: value not completely converted"), s);
}
}
template <typename T>
static T raw_string_to_scalar_type(const wchar_t *s, wchar_t **end);
// we use wcstoll instead of wcstoimax because FreeBSD 8 has busted wcstoumax and wcstoimax - see
// #626
template <>
intmax_t raw_string_to_scalar_type(const wchar_t *s, wchar_t **end) {
return wcstoll(s, end, 0);
}
template <>
uintmax_t raw_string_to_scalar_type(const wchar_t *s, wchar_t **end) {
return wcstoull(s, end, 0);
}
template <>
long double raw_string_to_scalar_type(const wchar_t *s, wchar_t **end) {
double val = wcstod(s, end);
if (**end == L'\0') return val;
// The conversion using the user's locale failed. That may be due to the string not being a
// valid floating point value. It could also be due to the locale using different separator
// characters than the normal english convention. So try again by forcing the use of a locale
// that employs the english convention for writing floating point numbers.
//
// TODO: switch to the wcstod_l() function to avoid changing the global locale.
char *saved_locale = strdup(setlocale(LC_NUMERIC, NULL));
setlocale(LC_NUMERIC, "C");
val = wcstod(s, end);
setlocale(LC_NUMERIC, saved_locale);
free(saved_locale);
return val;
}
template <typename T>
static T string_to_scalar_type(const wchar_t *s, builtin_printf_state_t *state) {
T val;
if (*s == L'\"' || *s == L'\'') {
wchar_t ch = *++s;
val = ch;
} else {
wchar_t *end = NULL;
errno = 0;
val = raw_string_to_scalar_type<T>(s, &end);
state->verify_numeric(s, end, errno);
}
return val;
}
/// Output a single-character \ escape.
void builtin_printf_state_t::print_esc_char(wchar_t c) {
switch (c) {
case L'a': { // alert
this->append_output(L'\a');
break;
}
case L'b': { // backspace
this->append_output(L'\b');
break;
}
case L'c': { // cancel the rest of the output
this->early_exit = true;
break;
}
case L'e': { // escape
this->append_output(L'\x1B');
break;
}
case L'f': { // form feed
this->append_output(L'\f');
break;
}
case L'n': { // new line
this->append_output(L'\n');
break;
}
case L'r': { // carriage return
this->append_output(L'\r');
break;
}
case L't': { // horizontal tab
this->append_output(L'\t');
break;
}
case L'v': { // vertical tab
this->append_output(L'\v');
break;
}
default: {
this->append_output(c);
break;
}
}
}
/// Print a \ escape sequence starting at ESCSTART.
/// Return the number of characters in the escape sequence besides the backslash..
/// If OCTAL_0 is nonzero, octal escapes are of the form \0ooo, where o
/// is an octal digit; otherwise they are of the form \ooo.
long builtin_printf_state_t::print_esc(const wchar_t *escstart, bool octal_0) {
const wchar_t *p = escstart + 1;
int esc_value = 0; /* Value of \nnn escape. */
int esc_length; /* Length of \nnn escape. */
if (*p == L'x') {
// A hexadecimal \xhh escape sequence must have 1 or 2 hex. digits.
for (esc_length = 0, ++p; esc_length < 2 && is_hex_digit(*p); ++esc_length, ++p)
esc_value = esc_value * 16 + hex_to_bin(*p);
if (esc_length == 0) this->fatal_error(_(L"missing hexadecimal number in escape"));
this->append_output(ENCODE_DIRECT_BASE + esc_value % 256);
} else if (is_octal_digit(*p)) {
// Parse \0ooo (if octal_0 && *p == L'0') or \ooo (otherwise). Allow \ooo if octal_0 && *p
// != L'0'; this is an undocumented extension to POSIX that is compatible with Bash 2.05b.
// Wrap mod 256, which matches historic behavior.
for (esc_length = 0, p += octal_0 && *p == L'0'; esc_length < 3 && is_octal_digit(*p);
++esc_length, ++p)
esc_value = esc_value * 8 + octal_to_bin(*p);
this->append_output(ENCODE_DIRECT_BASE + esc_value % 256);
} else if (*p && wcschr(L"\"\\abcefnrtv", *p)) {
print_esc_char(*p++);
} else if (*p == L'u' || *p == L'U') {
wchar_t esc_char = *p;
p++;
uint32_t uni_value = 0;
for (size_t esc_length = 0; esc_length < (esc_char == L'u' ? 4 : 8); esc_length++) {
if (!is_hex_digit(*p)) {
// Escape sequence must be done. Complain if we didn't get anything.
if (esc_length == 0) {
this->fatal_error(_(L"Missing hexadecimal number in Unicode escape"));
}
break;
}
uni_value = uni_value * 16 + hex_to_bin(*p);
p++;
}
// PCA GNU printf respects the limitations described in ISO N717, about which universal
// characters "shall not" be specified. I believe this limitation is for the benefit of
// compilers; I see no reason to impose it in builtin_printf.
//
// If __STDC_ISO_10646__ is defined, then it means wchar_t can and does hold Unicode code
// points, so just use that. If not defined, use the %lc printf conversion; this probably
// won't do anything good if your wide character set is not Unicode, but such platforms are
// exceedingly rare.
if (uni_value > 0x10FFFF) {
this->fatal_error(_(L"Unicode character out of range: \\%c%0*x"), esc_char,
(esc_char == L'u' ? 4 : 8), uni_value);
} else {
#if defined(__STDC_ISO_10646__)
this->append_output(uni_value);
#else
this->append_format_output(L"%lc", uni_value);
#endif
}
} else {
this->append_output(L'\\');
if (*p) {
this->append_output(*p);
p++;
}
}
return p - escstart - 1;
}
/// Print string STR, evaluating \ escapes.
void builtin_printf_state_t::print_esc_string(const wchar_t *str) {
for (; *str; str++)
if (*str == L'\\')
str += print_esc(str, true);
else
this->append_output(*str);
}
/// Evaluate a printf conversion specification. START is the start of the directive, LENGTH is its
/// length, and CONVERSION specifies the type of conversion. LENGTH does not include any length
/// modifier or the conversion specifier itself. FIELD_WIDTH and PRECISION are the field width and
/// precision for '*' values, if HAVE_FIELD_WIDTH and HAVE_PRECISION are true, respectively.
/// ARGUMENT is the argument to be formatted.
void builtin_printf_state_t::print_direc(const wchar_t *start, size_t length, wchar_t conversion,
bool have_field_width, int field_width,
bool have_precision, int precision,
wchar_t const *argument) {
// Start with everything except the conversion specifier.
wcstring fmt(start, length);
// Create a copy of the % directive, with an intmax_t-wide width modifier substituted for any
// existing integer length modifier.
switch (conversion) {
case L'd':
case L'i':
case L'u': {
fmt.append(L"ll");
break;
}
case L'a':
case L'e':
case L'f':
case L'g':
case L'A':
case L'E':
case L'F':
case L'G': {
fmt.append(L"L");
break;
}
case L's':
case L'c': {
fmt.append(L"l");
break;
}
default: { break; }
}
// Append the conversion itself.
fmt.push_back(conversion);
switch (conversion) {
case L'd':
case L'i': {
intmax_t arg = string_to_scalar_type<intmax_t>(argument, this);
if (!have_field_width) {
if (!have_precision)
this->append_format_output(fmt.c_str(), arg);
else
this->append_format_output(fmt.c_str(), precision, arg);
} else {
if (!have_precision)
this->append_format_output(fmt.c_str(), field_width, arg);
else
this->append_format_output(fmt.c_str(), field_width, precision, arg);
}
break;
}
case L'o':
case L'u':
case L'x':
case L'X': {
uintmax_t arg = string_to_scalar_type<uintmax_t>(argument, this);
if (!have_field_width) {
if (!have_precision)
this->append_format_output(fmt.c_str(), arg);
else
this->append_format_output(fmt.c_str(), precision, arg);
} else {
if (!have_precision)
this->append_format_output(fmt.c_str(), field_width, arg);
else
this->append_format_output(fmt.c_str(), field_width, precision, arg);
}
break;
}
case L'a':
case L'A':
case L'e':
case L'E':
case L'f':
case L'F':
case L'g':
case L'G': {
long double arg = string_to_scalar_type<long double>(argument, this);
if (!have_field_width) {
if (!have_precision) {
this->append_format_output(fmt.c_str(), arg);
} else {
this->append_format_output(fmt.c_str(), precision, arg);
}
} else {
if (!have_precision) {
this->append_format_output(fmt.c_str(), field_width, arg);
} else {
this->append_format_output(fmt.c_str(), field_width, precision, arg);
}
}
break;
}
case L'c': {
if (!have_field_width) {
this->append_format_output(fmt.c_str(), *argument);
} else {
this->append_format_output(fmt.c_str(), field_width, *argument);
}
break;
}
case L's': {
if (!have_field_width) {
if (!have_precision) {
this->append_format_output(fmt.c_str(), argument);
} else {
this->append_format_output(fmt.c_str(), precision, argument);
}
} else {
if (!have_precision) {
this->append_format_output(fmt.c_str(), field_width, argument);
} else {
this->append_format_output(fmt.c_str(), field_width, precision, argument);
}
}
break;
}
default: {
DIE("unexpected opt");
break;
}
}
}
/// For each character in str, set the corresponding boolean in the array to the given flag.
static inline void modify_allowed_format_specifiers(bool ok[UCHAR_MAX + 1], const char *str,
bool flag) {
for (const char *c = str; *c != '\0'; c++) {
unsigned char idx = static_cast<unsigned char>(*c);
ok[idx] = flag;
}
}
/// Print the text in FORMAT, using ARGV (with ARGC elements) for arguments to any `%' directives.
/// Return the number of elements of ARGV used.
int builtin_printf_state_t::print_formatted(const wchar_t *format, int argc, wchar_t **argv) {
int save_argc = argc; /* Preserve original value. */
const wchar_t *f; /* Pointer into `format'. */
const wchar_t *direc_start; /* Start of % directive. */
size_t direc_length; /* Length of % directive. */
bool have_field_width; /* True if FIELD_WIDTH is valid. */
int field_width = 0; /* Arg to first '*'. */
bool have_precision; /* True if PRECISION is valid. */
int precision = 0; /* Arg to second '*'. */
bool ok[UCHAR_MAX + 1] = {}; /* ok['x'] is true if %x is allowed. */
for (f = format; *f != L'\0'; ++f) {
switch (*f) {
case L'%': {
direc_start = f++;
direc_length = 1;
have_field_width = have_precision = false;
if (*f == L'%') {
this->append_output(L'%');
break;
}
if (*f == L'b') {
// FIXME: Field width and precision are not supported for %b, even though POSIX
// requires it.
if (argc > 0) {
print_esc_string(*argv);
++argv;
--argc;
}
break;
}
modify_allowed_format_specifiers(ok, "aAcdeEfFgGiosuxX", true);
for (bool continue_looking_for_flags = true; continue_looking_for_flags;) {
switch (*f) {
case L'I':
case L'\'': {
modify_allowed_format_specifiers(ok, "aAceEosxX", false);
break;
}
case '-':
case '+':
case ' ': {
break;
}
case L'#': {
modify_allowed_format_specifiers(ok, "cdisu", false);
break;
}
case '0': {
modify_allowed_format_specifiers(ok, "cs", false);
break;
}
default: {
continue_looking_for_flags = false;
break;
}
}
if (continue_looking_for_flags) {
f++;
direc_length++;
}
}
if (*f == L'*') {
++f;
++direc_length;
if (argc > 0) {
intmax_t width = string_to_scalar_type<intmax_t>(*argv, this);
if (INT_MIN <= width && width <= INT_MAX)
field_width = static_cast<int>(width);
else
this->fatal_error(_(L"invalid field width: %ls"), *argv);
++argv;
--argc;
} else {
field_width = 0;
}
have_field_width = true;
} else {
while (iswdigit(*f)) {
++f;
++direc_length;
}
}
if (*f == L'.') {
++f;
++direc_length;
modify_allowed_format_specifiers(ok, "c", false);
if (*f == L'*') {
++f;
++direc_length;
if (argc > 0) {
intmax_t prec = string_to_scalar_type<intmax_t>(*argv, this);
if (prec < 0) {
// A negative precision is taken as if the precision were omitted,
// so -1 is safe here even if prec < INT_MIN.
precision = -1;
} else if (INT_MAX < prec)
this->fatal_error(_(L"invalid precision: %ls"), *argv);
else {
precision = static_cast<int>(prec);
}
++argv;
--argc;
} else {
precision = 0;
}
have_precision = true;
} else {
while (iswdigit(*f)) {
++f;
++direc_length;
}
}
}
while (*f == L'l' || *f == L'L' || *f == L'h' || *f == L'j' || *f == L't' ||
*f == L'z') {
++f;
}
wchar_t conversion = *f;
if (conversion > 0xFF || !ok[conversion]) {
this->fatal_error(_(L"%.*ls: invalid conversion specification"),
(int)(f + 1 - direc_start), direc_start);
return 0;
}
print_direc(direc_start, direc_length, *f, have_field_width, field_width,
have_precision, precision, (argc <= 0 ? L"" : (argc--, *argv++)));
break;
}
case L'\\': {
f += print_esc(f, false);
break;
}
default: {
this->append_output(*f);
break;
}
}
}
return save_argc - argc;
}
/// The printf builtin.
int builtin_printf(parser_t &parser, io_streams_t &streams, wchar_t **argv) {
UNUSED(parser);
builtin_printf_state_t state(streams);
wchar_t *format;
int args_used;
int argc = builtin_count_args(argv);
if (argc <= 1) {
state.fatal_error(_(L"printf: not enough arguments"));
return STATUS_BUILTIN_ERROR;
}
format = argv[1];
argc -= 2;
argv += 2;
do {
args_used = state.print_formatted(format, argc, argv);
argc -= args_used;
argv += args_used;
} while (args_used > 0 && argc > 0 && !state.early_exit);
return state.exit_code;
}