fish-shell/src/event.cpp
ridiculousfish 1893204067 event_fire_generic to take its arguments directly
Just mild refactoring, no functional change.
2022-05-14 10:33:47 -07:00

547 lines
19 KiB
C++

// Functions for handling event triggers.
#include "config.h" // IWYU pragma: keep
#include "event.h"
#include <signal.h>
#include <stddef.h>
#include <unistd.h>
#include <algorithm>
#include <atomic>
#include <functional>
#include <memory>
#include <string>
#include <type_traits>
#include "common.h"
#include "fallback.h" // IWYU pragma: keep
#include "input_common.h"
#include "io.h"
#include "parser.h"
#include "proc.h"
#include "signal.h"
#include "termsize.h"
#include "wcstringutil.h"
#include "wutil.h" // IWYU pragma: keep
namespace {
class pending_signals_t {
static constexpr size_t SIGNAL_COUNT = NSIG;
/// A counter that is incremented each time a pending signal is received.
std::atomic<uint32_t> counter_{0};
/// List of pending signals.
std::array<relaxed_atomic_bool_t, SIGNAL_COUNT> received_{};
/// The last counter visible in acquire_pending().
/// This is not accessed from a signal handler.
owning_lock<uint32_t> last_counter_{0};
public:
pending_signals_t() = default;
/// No copying.
pending_signals_t(const pending_signals_t &) = delete;
pending_signals_t &operator=(const pending_signals_t &) = delete;
/// Mark a signal as pending. This may be called from a signal handler.
/// We expect only one signal handler to execute at once.
/// Also note that these may be coalesced.
void mark(int which) {
if (which >= 0 && static_cast<size_t>(which) < received_.size()) {
// Must mark our received first, then pending.
received_[which] = true;
uint32_t count = counter_.load(std::memory_order_relaxed);
counter_.store(1 + count, std::memory_order_release);
}
}
/// \return the list of signals that were set, clearing them.
std::bitset<SIGNAL_COUNT> acquire_pending() {
auto current = last_counter_.acquire();
// Check the counter first. If it hasn't changed, no signals have been received.
uint32_t count = counter_.load(std::memory_order_acquire);
if (count == *current) {
return {};
}
// The signal count has changed. Store the new counter and fetch all set signals.
*current = count;
std::bitset<SIGNAL_COUNT> result{};
for (size_t i = 0; i < NSIG; i++) {
if (received_[i]) {
result.set(i);
received_[i] = false;
}
}
return result;
}
};
} // namespace
static pending_signals_t s_pending_signals;
/// List of event handlers.
static owning_lock<event_handler_list_t> s_event_handlers;
/// Variables (one per signal) set when a signal is observed. This is inspected by a signal handler.
static volatile sig_atomic_t s_observed_signals[NSIG] = {};
static void set_signal_observed(int sig, bool val) {
if (sig >= 0 &&
static_cast<size_t>(sig) < sizeof s_observed_signals / sizeof *s_observed_signals) {
s_observed_signals[sig] = val;
}
}
/// \return true if a handler is "one shot": it fires at most once.
static bool handler_is_one_shot(const event_handler_t &handler) {
switch (handler.desc.type) {
case event_type_t::process_exit:
return handler.desc.param1.pid != EVENT_ANY_PID;
case event_type_t::job_exit:
return handler.desc.param1.jobspec.pid != EVENT_ANY_PID;
case event_type_t::caller_exit:
return true;
case event_type_t::signal:
case event_type_t::variable:
case event_type_t::generic:
case event_type_t::any:
return false;
}
DIE("Unreachable");
}
/// Tests if one event instance matches the definition of an event class.
/// In case of a match, \p only_once indicates that the event cannot match again by nature.
static bool handler_matches(const event_handler_t &handler, const event_t &instance) {
if (handler.desc.type == event_type_t::any) return true;
if (handler.desc.type != instance.desc.type) return false;
switch (handler.desc.type) {
case event_type_t::signal: {
return handler.desc.param1.signal == instance.desc.param1.signal;
}
case event_type_t::variable: {
return instance.desc.str_param1 == handler.desc.str_param1;
}
case event_type_t::process_exit: {
if (handler.desc.param1.pid == EVENT_ANY_PID) return true;
return handler.desc.param1.pid == instance.desc.param1.pid;
}
case event_type_t::job_exit: {
const auto &jobspec = handler.desc.param1.jobspec;
if (jobspec.pid == EVENT_ANY_PID) return true;
return jobspec.internal_job_id == instance.desc.param1.jobspec.internal_job_id;
}
case event_type_t::caller_exit: {
return handler.desc.param1.caller_id == instance.desc.param1.caller_id;
}
case event_type_t::generic: {
return handler.desc.str_param1 == instance.desc.str_param1;
}
case event_type_t::any:
default: {
DIE("unexpected classv.type");
return false;
}
}
}
/// Test if specified event is blocked.
static bool event_is_blocked(parser_t &parser, const event_t &e) {
(void)e;
const block_t *block;
size_t idx = 0;
while ((block = parser.block_at_index(idx++))) {
if (event_block_list_blocks_type(block->event_blocks)) return true;
}
return event_block_list_blocks_type(parser.global_event_blocks);
}
wcstring event_get_desc(const parser_t &parser, const event_t &evt) {
const event_description_t &ed = evt.desc;
switch (ed.type) {
case event_type_t::signal: {
return format_string(_(L"signal handler for %ls (%ls)"), sig2wcs(ed.param1.signal),
signal_get_desc(ed.param1.signal));
}
case event_type_t::variable: {
return format_string(_(L"handler for variable '%ls'"), ed.str_param1.c_str());
}
case event_type_t::process_exit: {
return format_string(_(L"exit handler for process %d"), ed.param1.pid);
}
case event_type_t::job_exit: {
const auto &jobspec = ed.param1.jobspec;
if (const job_t *j = parser.job_get_from_pid(jobspec.pid)) {
return format_string(_(L"exit handler for job %d, '%ls'"), j->job_id(),
j->command_wcstr());
} else {
return format_string(_(L"exit handler for job with pid %d"), jobspec.pid);
}
}
case event_type_t::caller_exit: {
return _(L"exit handler for command substitution caller");
}
case event_type_t::generic: {
return format_string(_(L"handler for generic event '%ls'"), ed.str_param1.c_str());
}
case event_type_t::any: {
DIE("Unreachable");
}
default:
DIE("Unknown event type");
}
}
void event_add_handler(std::shared_ptr<event_handler_t> eh) {
if (eh->desc.type == event_type_t::signal) {
signal_handle(eh->desc.param1.signal);
set_signal_observed(eh->desc.param1.signal, true);
}
s_event_handlers.acquire()->push_back(std::move(eh));
}
// \remove handlers for which \p func returns true.
template <typename T>
static void remove_handlers_if(const T &func) {
auto handlers = s_event_handlers.acquire();
auto iter = handlers->begin();
while (iter != handlers->end()) {
event_handler_t *handler = iter->get();
if (func(*handler)) {
handler->removed = true;
iter = handlers->erase(iter);
} else {
++iter;
}
}
}
void event_remove_function_handlers(const wcstring &name) {
remove_handlers_if(
[&](const event_handler_t &handler) { return handler.function_name == name; });
}
event_handler_list_t event_get_function_handlers(const wcstring &name) {
auto handlers = s_event_handlers.acquire();
event_handler_list_t result;
for (const shared_ptr<event_handler_t> &eh : *handlers) {
if (eh->function_name == name) {
result.push_back(eh);
}
}
return result;
}
bool event_is_signal_observed(int sig) {
// We are in a signal handler! Don't allocate memory, etc.
bool result = false;
if (sig >= 0 && static_cast<unsigned long>(sig) <
sizeof(s_observed_signals) / sizeof(*s_observed_signals)) {
result = s_observed_signals[sig];
}
return result;
}
/// Perform the specified event. Since almost all event firings will not be matched by even a single
/// event handler, we make sure to optimize the 'no matches' path. This means that nothing is
/// allocated/initialized unless needed.
static void event_fire_internal(parser_t &parser, const event_t &event) {
auto &ld = parser.libdata();
assert(ld.is_event >= 0 && "is_event should not be negative");
scoped_push<decltype(ld.is_event)> inc_event{&ld.is_event, ld.is_event + 1};
// Suppress fish_trace during events.
scoped_push<bool> suppress_trace{&ld.suppress_fish_trace, true};
// Capture the event handlers that match this event.
std::vector<std::shared_ptr<event_handler_t>> fire;
{
auto event_handlers = s_event_handlers.acquire();
for (const auto &handler : *event_handlers) {
if (handler_matches(*handler, event)) {
fire.push_back(handler);
}
}
}
// Iterate over our list of matching events. Fire the ones that are still present.
for (const auto &handler : fire) {
// A previous handlers may have erased this one.
if (handler->removed) continue;
// Construct a buffer to evaluate, starting with the function name and then all the
// arguments.
wcstring buffer = handler->function_name;
for (const wcstring &arg : event.arguments) {
buffer.push_back(L' ');
buffer.append(escape_string(arg, ESCAPE_ALL));
}
// Event handlers are not part of the main flow of code, so they are marked as
// non-interactive.
scoped_push<bool> interactive{&ld.is_interactive, false};
auto prev_statuses = parser.get_last_statuses();
FLOGF(event, L"Firing event '%ls'", event.desc.str_param1.c_str());
block_t *b = parser.push_block(block_t::event_block(event));
parser.eval(buffer, io_chain_t());
parser.pop_block(b);
parser.set_last_statuses(std::move(prev_statuses));
}
// Remove any one-shot handlers.
if (!fire.empty()) {
remove_handlers_if(handler_is_one_shot);
}
}
/// Handle all pending signal events.
void event_fire_delayed(parser_t &parser) {
auto &ld = parser.libdata();
// Do not invoke new event handlers from within event handlers.
if (ld.is_event) return;
// Do not invoke new event handlers if we are unwinding (#6649).
if (signal_check_cancel()) return;
std::vector<shared_ptr<const event_t>> to_send;
to_send.swap(ld.blocked_events);
assert(ld.blocked_events.empty());
// Append all signal events to to_send.
auto signals = s_pending_signals.acquire_pending();
if (signals.any()) {
for (uint32_t sig = 0; sig < signals.size(); sig++) {
if (signals.test(sig)) {
// HACK: The only variables we change in response to a *signal*
// are $COLUMNS and $LINES.
// Do that now.
if (sig == SIGWINCH) {
(void)termsize_container_t::shared().updating(parser);
}
auto e = std::make_shared<event_t>(event_type_t::signal);
e->desc.param1.signal = sig;
e->arguments.push_back(sig2wcs(sig));
to_send.push_back(std::move(e));
}
}
}
// Fire or re-block all events.
for (const auto &evt : to_send) {
if (event_is_blocked(parser, *evt)) {
ld.blocked_events.push_back(evt);
} else {
event_fire_internal(parser, *evt);
}
}
}
void event_enqueue_signal(int signal) {
// Beware, we are in a signal handler
s_pending_signals.mark(signal);
}
void event_fire(parser_t &parser, const event_t &event) {
// Fire events triggered by signals.
event_fire_delayed(parser);
if (event_is_blocked(parser, event)) {
parser.libdata().blocked_events.push_back(std::make_shared<event_t>(event));
} else {
event_fire_internal(parser, event);
}
}
static const wchar_t *event_name_for_type(event_type_t type) {
switch (type) {
case event_type_t::any:
return L"any";
case event_type_t::signal:
return L"signal";
case event_type_t::variable:
return L"variable";
case event_type_t::process_exit:
return L"process-exit";
case event_type_t::job_exit:
return L"job-exit";
case event_type_t::caller_exit:
return L"caller-exit";
case event_type_t::generic:
return L"generic";
}
return L"";
}
const wchar_t *const event_filter_names[] = {L"signal", L"variable", L"exit",
L"process-exit", L"job-exit", L"caller-exit",
L"generic", nullptr};
static bool filter_matches_event(const wcstring &filter, event_type_t type) {
if (filter.empty()) return true;
switch (type) {
case event_type_t::any:
return false;
case event_type_t::signal:
return filter == L"signal";
case event_type_t::variable:
return filter == L"variable";
case event_type_t::process_exit:
return filter == L"process-exit" || filter == L"exit";
case event_type_t::job_exit:
return filter == L"job-exit" || filter == L"exit";
case event_type_t::caller_exit:
return filter == L"process-exit" || filter == L"exit";
case event_type_t::generic:
return filter == L"generic";
}
DIE("Unreachable");
}
void event_print(io_streams_t &streams, const wcstring &type_filter) {
event_handler_list_t tmp = *s_event_handlers.acquire();
std::sort(tmp.begin(), tmp.end(),
[](const shared_ptr<event_handler_t> &e1, const shared_ptr<event_handler_t> &e2) {
const event_description_t &d1 = e1->desc;
const event_description_t &d2 = e2->desc;
if (d1.type != d2.type) {
return d1.type < d2.type;
}
switch (d1.type) {
case event_type_t::signal:
return d1.param1.signal < d2.param1.signal;
case event_type_t::process_exit:
return d1.param1.pid < d2.param1.pid;
case event_type_t::job_exit:
return d1.param1.jobspec.pid < d2.param1.jobspec.pid;
case event_type_t::caller_exit:
return d1.param1.caller_id < d2.param1.caller_id;
case event_type_t::variable:
case event_type_t::any:
case event_type_t::generic:
return d1.str_param1 < d2.str_param1;
}
DIE("Unreachable");
});
maybe_t<event_type_t> last_type{};
for (const shared_ptr<event_handler_t> &evt : tmp) {
// If we have a filter, skip events that don't match.
if (!filter_matches_event(type_filter, evt->desc.type)) {
continue;
}
if (!last_type || *last_type != evt->desc.type) {
if (last_type) streams.out.append(L"\n");
last_type = evt->desc.type;
streams.out.append_format(L"Event %ls\n", event_name_for_type(*last_type));
}
switch (evt->desc.type) {
case event_type_t::signal:
streams.out.append_format(L"%ls %ls\n", sig2wcs(evt->desc.param1.signal),
evt->function_name.c_str());
break;
case event_type_t::process_exit:
case event_type_t::job_exit:
break;
case event_type_t::caller_exit:
streams.out.append_format(L"caller-exit %ls\n", evt->function_name.c_str());
break;
case event_type_t::variable:
case event_type_t::generic:
streams.out.append_format(L"%ls %ls\n", evt->desc.str_param1.c_str(),
evt->function_name.c_str());
break;
case event_type_t::any:
DIE("Unreachable");
default:
streams.out.append_format(L"%ls\n", evt->function_name.c_str());
break;
}
}
}
void event_fire_generic(parser_t &parser, wcstring name, wcstring_list_t args) {
event_t ev(event_type_t::generic);
ev.desc.str_param1 = std::move(name);
ev.arguments = std::move(args);
event_fire(parser, ev);
}
event_description_t event_description_t::signal(int sig) {
event_description_t event(event_type_t::signal);
event.param1.signal = sig;
return event;
}
event_description_t event_description_t::variable(wcstring str) {
event_description_t event(event_type_t::variable);
event.str_param1 = std::move(str);
return event;
}
event_description_t event_description_t::generic(wcstring str) {
event_description_t event(event_type_t::generic);
event.str_param1 = std::move(str);
return event;
}
// static
event_t event_t::variable_erase(wcstring name) {
event_t evt{event_type_t::variable};
evt.arguments = {L"VARIABLE", L"ERASE", name};
evt.desc.str_param1 = std::move(name);
return evt;
}
// static
event_t event_t::variable_set(wcstring name) {
event_t evt{event_type_t::variable};
evt.arguments = {L"VARIABLE", L"SET", name};
evt.desc.str_param1 = std::move(name);
return evt;
}
// static
event_t event_t::process_exit(pid_t pid, int status) {
event_t evt{event_type_t::process_exit};
evt.desc.param1.pid = pid;
evt.arguments.reserve(3);
evt.arguments.push_back(L"PROCESS_EXIT");
evt.arguments.push_back(to_string(pid));
evt.arguments.push_back(to_string(status));
return evt;
}
// static
event_t event_t::job_exit(pid_t pgid, internal_job_id_t jid) {
event_t evt{event_type_t::job_exit};
evt.desc.param1.jobspec = {pgid, jid};
evt.arguments.reserve(3);
evt.arguments.push_back(L"JOB_EXIT");
evt.arguments.push_back(to_string(pgid));
evt.arguments.push_back(L"0"); // historical
return evt;
}
// static
event_t event_t::caller_exit(uint64_t internal_job_id, int job_id) {
event_t evt{event_type_t::caller_exit};
evt.desc.param1.caller_id = internal_job_id;
evt.arguments.reserve(3);
evt.arguments.push_back(L"JOB_EXIT");
evt.arguments.push_back(to_string(job_id));
evt.arguments.push_back(L"0"); // historical
return evt;
}