fish-shell/src/iothread.cpp
ridiculousfish 0f1281bec6 Unify thread sanitizer detection
We now have two files that need to know if thread sanitizer is enabled. They
can share the detection code.
2021-02-07 10:59:10 -08:00

550 lines
20 KiB
C++

#include "config.h" // IWYU pragma: keep
#include "iothread.h"
#include <limits.h>
#include <pthread.h>
#include <signal.h>
#include <stdio.h>
#include <string.h>
#include <sys/select.h>
#include <sys/time.h>
#include <sys/types.h>
#include <unistd.h>
#include <atomic>
#include <condition_variable>
#include <functional>
#include <future>
#include <queue>
#include <thread>
#include "common.h"
#include "fds.h"
#include "flog.h"
#include "global_safety.h"
#include "wutil.h"
// We just define a thread limit of 1024.
// On all systems I've seen the limit is higher,
// but on some (like linux with glibc) the setting for _POSIX_THREAD_THREADS_MAX is 64,
// which is too low, even tho the system can handle more than 64 threads.
#define IO_MAX_THREADS 1024
// iothread has a thread pool. Sometimes there's no work to do, but extant threads wait around for a
// while (on a condition variable) in case new work comes soon. However condition variables are not
// properly instrumented with Thread Sanitizer, so it fails to recognize when our mutex is locked.
// See https://github.com/google/sanitizers/issues/1259
// When using TSan, disable the wait-around feature.
#ifdef FISH_TSAN_WORKAROUNDS
#define IO_WAIT_FOR_WORK_DURATION_MS 0
#else
#define IO_WAIT_FOR_WORK_DURATION_MS 500
#endif
using void_function_t = std::function<void()>;
struct work_request_t {
void_function_t handler;
void_function_t completion;
work_request_t(void_function_t &&f, void_function_t &&comp)
: handler(std::move(f)), completion(std::move(comp)) {}
// Move-only
work_request_t &operator=(const work_request_t &) = delete;
work_request_t &operator=(work_request_t &&) = default;
work_request_t(const work_request_t &) = delete;
work_request_t(work_request_t &&) = default;
};
struct main_thread_request_t {
// The function to execute.
void_function_t func;
// Set by the main thread when the work is done.
std::promise<void> done{};
explicit main_thread_request_t(void_function_t &&f) : func(f) {}
// No moving OR copying
// main_thread_requests are always stack allocated, and we deal in pointers to them
void operator=(const main_thread_request_t &) = delete;
void operator=(main_thread_request_t &&) = delete;
main_thread_request_t(const main_thread_request_t &) = delete;
main_thread_request_t(main_thread_request_t &&) = delete;
};
struct thread_pool_t {
struct data_t {
/// The queue of outstanding, unclaimed requests.
std::queue<work_request_t> request_queue{};
/// The number of threads that exist in the pool.
size_t total_threads{0};
/// The number of threads which are waiting for more work.
size_t waiting_threads{0};
/// A flag indicating we should not process new requests.
bool drain{false};
};
/// Data which needs to be atomically accessed.
owning_lock<data_t> req_data{};
/// The condition variable used to wake up waiting threads.
/// Note this is tied to data's lock.
std::condition_variable queue_cond{};
/// The minimum and maximum number of threads.
/// Here "minimum" means threads that are kept waiting in the pool.
/// Note that the pool is initially empty and threads may decide to exit based on a time wait.
const size_t soft_min_threads;
const size_t max_threads;
/// Construct with a soft minimum and maximum thread count.
thread_pool_t(size_t soft_min_threads, size_t max_threads)
: soft_min_threads(soft_min_threads), max_threads(max_threads) {}
/// Enqueue a new work item onto the thread pool.
/// The function \p func will execute in one of the pool's threads.
/// \p completion will run on the main thread, if it is not missing.
/// If \p cant_wait is set, disrespect the thread limit, because extant threads may
/// want to wait for new threads.
int perform(void_function_t &&func, void_function_t &&completion, bool cant_wait);
private:
/// The worker loop for this thread.
void *run();
/// Dequeue a work item (perhaps waiting on the condition variable), or commit to exiting by
/// reducing the active thread count.
/// This runs in the background thread.
maybe_t<work_request_t> dequeue_work_or_commit_to_exit();
/// Trampoline function for pthread_spawn compatibility.
static void *run_trampoline(void *vpool);
/// Attempt to spawn a new pthread.
bool spawn() const;
/// No copying or moving.
thread_pool_t(const thread_pool_t &) = delete;
thread_pool_t(thread_pool_t &&) = delete;
void operator=(const thread_pool_t &) = delete;
void operator=(thread_pool_t &&) = delete;
};
/// The thread pool for "iothreads" which are used to lift I/O off of the main thread.
/// These are used for completions, etc.
/// Leaked to avoid shutdown dtor registration (including tsan).
static thread_pool_t &s_io_thread_pool = *(new thread_pool_t(1, IO_MAX_THREADS));
/// A queue of "things to do on the main thread."
struct main_thread_queue_t {
// Functions to invoke as the completion callback from iothread_perform.
std::vector<void_function_t> completions;
// iothread_perform_on_main requests.
// Note this contains pointers to structs that are stack-allocated on the requesting thread.
std::vector<main_thread_request_t *> requests;
/// Transfer ownership of ourselves to a new queue and return it.
/// 'this' is left empty.
main_thread_queue_t take() {
main_thread_queue_t result;
std::swap(result.completions, this->completions);
std::swap(result.requests, this->requests);
return result;
}
// Moving is allowed, but not copying.
main_thread_queue_t() = default;
main_thread_queue_t(main_thread_queue_t &&) = default;
main_thread_queue_t &operator=(main_thread_queue_t &&) = default;
main_thread_queue_t(const main_thread_queue_t &) = delete;
void operator=(const main_thread_queue_t &) = delete;
};
static owning_lock<main_thread_queue_t> s_main_thread_queue;
/// \return the signaller for completions and main thread requests.
static fd_event_signaller_t &get_notify_signaller() {
// Leaked to avoid shutdown dtors.
static fd_event_signaller_t *s_signaller = new fd_event_signaller_t();
return *s_signaller;
}
/// Dequeue a work item (perhaps waiting on the condition variable), or commit to exiting by
/// reducing the active thread count.
maybe_t<work_request_t> thread_pool_t::dequeue_work_or_commit_to_exit() {
auto data = this->req_data.acquire();
// If the queue is empty, check to see if we should wait.
// We should wait if our exiting would drop us below the soft min.
if (data->request_queue.empty() && data->total_threads == this->soft_min_threads &&
IO_WAIT_FOR_WORK_DURATION_MS > 0) {
data->waiting_threads += 1;
this->queue_cond.wait_for(data.get_lock(),
std::chrono::milliseconds(IO_WAIT_FOR_WORK_DURATION_MS));
data->waiting_threads -= 1;
}
// Now that we've perhaps waited, see if there's something on the queue.
maybe_t<work_request_t> result{};
if (!data->request_queue.empty()) {
result = std::move(data->request_queue.front());
data->request_queue.pop();
}
// If we are returning none, then ensure we balance the thread count increment from when we were
// created. This has to be done here in this awkward place because we've already committed to
// exiting - we will never pick up more work. So we need to ensure we decrement the thread count
// while holding the lock as we are effectively exited.
if (!result) {
data->total_threads -= 1;
}
return result;
}
static void enqueue_thread_result(void_function_t req) {
s_main_thread_queue.acquire()->completions.push_back(std::move(req));
get_notify_signaller().post();
}
static void *this_thread() { return (void *)(intptr_t)pthread_self(); }
void *thread_pool_t::run() {
while (auto req = dequeue_work_or_commit_to_exit()) {
FLOGF(iothread, L"pthread %p got work", this_thread());
// Perform the work
req->handler();
// If there's a completion handler, we have to enqueue it on the result queue.
// Note we're using std::function's weirdo operator== here
if (req->completion != nullptr) {
// Enqueue the result, and tell the main thread about it.
enqueue_thread_result(std::move(req->completion));
}
}
FLOGF(iothread, L"pthread %p exiting", this_thread());
return nullptr;
}
void *thread_pool_t::run_trampoline(void *pool) {
assert(pool && "No thread pool given");
return static_cast<thread_pool_t *>(pool)->run();
}
/// Spawn another thread. No lock is held when this is called.
bool thread_pool_t::spawn() const {
return make_detached_pthread(&run_trampoline, const_cast<thread_pool_t *>(this));
}
int thread_pool_t::perform(void_function_t &&func, void_function_t &&completion, bool cant_wait) {
assert(func && "Missing function");
// Note we permit an empty completion.
struct work_request_t req(std::move(func), std::move(completion));
int local_thread_count = -1;
auto &pool = s_io_thread_pool;
bool spawn_new_thread = false;
bool wakeup_thread = false;
{
// Lock around a local region.
auto data = pool.req_data.acquire();
data->request_queue.push(std::move(req));
FLOGF(iothread, L"enqueuing work item (count is %lu)", data->request_queue.size());
if (data->drain) {
// Do nothing here.
} else if (data->waiting_threads >= data->request_queue.size()) {
// There's enough waiting threads, wake one up.
wakeup_thread = true;
} else if (cant_wait || data->total_threads < pool.max_threads) {
// No threads are waiting but we can or must spawn a new thread.
data->total_threads += 1;
spawn_new_thread = true;
}
local_thread_count = data->total_threads;
}
// Kick off the thread if we decided to do so.
if (wakeup_thread) {
FLOGF(iothread, L"notifying a thread", this_thread());
pool.queue_cond.notify_one();
}
if (spawn_new_thread) {
// Spawn a thread. If this fails, it means there's already a bunch of threads; it is very
// unlikely that they are all on the verge of exiting, so one is likely to be ready to
// handle extant requests. So we can ignore failure with some confidence.
if (this->spawn()) {
FLOGF(iothread, L"pthread spawned");
} else {
// We failed to spawn a thread; decrement the thread count.
pool.req_data.acquire()->total_threads -= 1;
}
}
return local_thread_count;
}
void iothread_perform_impl(void_function_t &&func, void_function_t &&completion, bool cant_wait) {
ASSERT_IS_MAIN_THREAD();
ASSERT_IS_NOT_FORKED_CHILD();
s_io_thread_pool.perform(std::move(func), std::move(completion), cant_wait);
}
int iothread_port() { return get_notify_signaller().read_fd(); }
static bool iothread_wait_for_main_requests(long timeout_usec) {
const long usec_per_sec = 1000000;
struct timeval tv;
tv.tv_sec = timeout_usec / usec_per_sec;
tv.tv_usec = timeout_usec % usec_per_sec;
const int fd = iothread_port();
fd_set fds;
FD_ZERO(&fds);
FD_SET(fd, &fds);
int ret = select(fd + 1, &fds, nullptr, nullptr, &tv);
return ret > 0;
}
void iothread_service_main_with_timeout(long timeout_usec) {
if (iothread_wait_for_main_requests(timeout_usec)) {
iothread_service_main();
}
}
/// At the moment, this function is only used in the test suite and in a
/// drain-all-threads-before-fork compatibility mode that no architecture requires, so it's OK that
/// it's terrible.
int iothread_drain_all() {
ASSERT_IS_MAIN_THREAD();
ASSERT_IS_NOT_FORKED_CHILD();
int thread_count;
auto &pool = s_io_thread_pool;
// Set the drain flag.
{
auto data = pool.req_data.acquire();
assert(!data->drain && "Should not be draining already");
data->drain = true;
thread_count = data->total_threads;
}
// Wake everyone up.
pool.queue_cond.notify_all();
double now = timef();
// Nasty polling via select().
while (pool.req_data.acquire()->total_threads > 0) {
iothread_service_main_with_timeout(1000);
}
// Clear the drain flag.
// Even though we released the lock, nobody should have added a new thread while the drain flag
// is set.
{
auto data = pool.req_data.acquire();
assert(data->total_threads == 0 && "Should be no threads");
assert(data->drain && "Should be draining");
data->drain = false;
}
double after = timef();
FLOGF(iothread, "Drained %d thread(s) in %.02f msec", thread_count, 1000 * (after - now));
return thread_count;
}
// Service the main thread queue, by invoking any functions enqueued for the main thread.
void iothread_service_main() {
ASSERT_IS_MAIN_THREAD();
// Note the order here is important: we must consume events before handling requests, as posting
// uses the opposite order.
(void)get_notify_signaller().try_consume();
// Move the queue to a local variable.
// Note the s_main_thread_queue lock is not held after this.
main_thread_queue_t queue = s_main_thread_queue.acquire()->take();
// Perform each completion in order.
for (const void_function_t &func : queue.completions) {
// ensure we don't invoke empty functions, that raises an exception
if (func) func();
}
// Perform each main thread request. Note we are NOT responsible for deleting these. They are
// stack allocated in their respective threads!
for (main_thread_request_t *req : queue.requests) {
req->func();
req->done.set_value();
}
}
void iothread_perform_on_main(void_function_t &&func) {
if (is_main_thread()) {
func();
return;
}
// Make a new request. Note we are synchronous, so this can be stack allocated!
main_thread_request_t req(std::move(func));
// Append it. Ensure we don't hold the lock after.
s_main_thread_queue.acquire()->requests.push_back(&req);
// Tell the signaller and then wait until our future is set.
get_notify_signaller().post();
req.done.get_future().wait();
}
bool make_detached_pthread(void *(*func)(void *), void *param) {
// The spawned thread inherits our signal mask. We don't want the thread to ever receive signals
// on the spawned thread, so temporarily block all signals, spawn the thread, and then restore
// it.
sigset_t new_set, saved_set;
sigfillset(&new_set);
DIE_ON_FAILURE(pthread_sigmask(SIG_BLOCK, &new_set, &saved_set));
// Spawn a thread. If this fails, it means there's already a bunch of threads; it is very
// unlikely that they are all on the verge of exiting, so one is likely to be ready to handle
// extant requests. So we can ignore failure with some confidence.
pthread_t thread = 0;
int err = pthread_create(&thread, nullptr, func, param);
if (err == 0) {
// Success, return the thread.
FLOGF(iothread, "pthread %p spawned", (void *)(intptr_t)thread);
DIE_ON_FAILURE(pthread_detach(thread));
} else {
perror("pthread_create");
}
// Restore our sigmask.
DIE_ON_FAILURE(pthread_sigmask(SIG_SETMASK, &saved_set, nullptr));
return err == 0;
}
using void_func_t = std::function<void(void)>;
static void *func_invoker(void *param) {
// Acquire a thread id for this thread.
(void)thread_id();
auto vf = static_cast<void_func_t *>(param);
(*vf)();
delete vf;
return nullptr;
}
bool make_detached_pthread(void_func_t &&func) {
// Copy the function into a heap allocation.
auto vf = new void_func_t(std::move(func));
if (make_detached_pthread(func_invoker, vf)) {
return true;
}
// Thread spawning failed, clean up our heap allocation.
delete vf;
return false;
}
static uint64_t next_thread_id() {
// Note 0 is an invalid thread id.
// Note fetch_add is a CAS which returns the value *before* the modification.
static std::atomic<uint64_t> s_last_thread_id{};
uint64_t res = 1 + s_last_thread_id.fetch_add(1, std::memory_order_relaxed);
return res;
}
uint64_t thread_id() {
static FISH_THREAD_LOCAL uint64_t tl_tid = next_thread_id();
return tl_tid;
}
// Debounce implementation note: we would like to enqueue at most one request, except if a thread
// hangs (e.g. on fs access) then we do not want to block indefinitely; such threads are called
// "abandoned". This is implemented via a monotone uint64 counter, called a token.
// Every time we spawn a thread, increment the token. When the thread is completed, it compares its
// token to the active token; if they differ then this thread was abandoned.
struct debounce_t::impl_t {
// Synchronized data from debounce_t.
struct data_t {
// The (at most 1) next enqueued request, or none if none.
maybe_t<work_request_t> next_req{};
// The token of the current non-abandoned thread, or 0 if no thread is running.
uint64_t active_token{0};
// The next token to use when spawning a thread.
uint64_t next_token{1};
// The start time of the most recently run thread spawn, or request (if any).
std::chrono::time_point<std::chrono::steady_clock> start_time{};
};
owning_lock<data_t> data{};
/// Run an iteration in the background, with the given thread token.
/// \return true if we handled a request, false if there were none.
bool run_next(uint64_t token);
};
bool debounce_t::impl_t::run_next(uint64_t token) {
assert(token > 0 && "Invalid token");
// Note we are on a background thread.
maybe_t<work_request_t> req;
{
auto d = data.acquire();
if (d->next_req) {
// The value was dequeued, we are going to execute it.
req = d->next_req.acquire();
d->start_time = std::chrono::steady_clock::now();
} else {
// There is no request. If we are active, mark ourselves as no longer running.
if (token == d->active_token) {
d->active_token = 0;
}
return false;
}
}
assert(req && req->handler && "Request should have value");
req->handler();
if (req->completion) {
enqueue_thread_result(std::move(req->completion));
}
return true;
}
uint64_t debounce_t::perform_impl(std::function<void()> handler, std::function<void()> completion) {
uint64_t active_token{0};
bool spawn{false};
// Local lock.
{
auto d = impl_->data.acquire();
d->next_req = work_request_t{std::move(handler), std::move(completion)};
// If we have a timeout, and our running thread has exceeded it, abandon that thread.
if (d->active_token && timeout_msec_ > 0 &&
std::chrono::steady_clock::now() - d->start_time >
std::chrono::milliseconds(timeout_msec_)) {
// Abandon this thread by marking nothing as active.
d->active_token = 0;
}
if (!d->active_token) {
// We need to spawn a new thread.
// Mark the current time so that a new request won't immediately abandon us.
spawn = true;
d->active_token = d->next_token++;
d->start_time = std::chrono::steady_clock::now();
}
active_token = d->active_token;
assert(active_token && "Something should be active");
}
if (spawn) {
// Equip our background thread with a reference to impl, to keep it alive.
auto impl = impl_;
iothread_perform([=] {
while (impl->run_next(active_token))
; // pass
});
}
return active_token;
}
debounce_t::debounce_t(long timeout_msec)
: timeout_msec_(timeout_msec), impl_(std::make_shared<impl_t>()) {}
debounce_t::~debounce_t() = default;