fish-shell/src/wcstringutil.h
ridiculousfish 1402bae7f4 Re-implement abbreviations as a built-in
Prior to this change, abbreviations were stored as fish variables, often
universal. However we intend to add additional features to abbreviations
which would be very awkward to shoe-horn into variables.

Re-implement abbreviations using a builtin, managing them internally.

Existing abbreviations stored in universal variables are still imported,
for compatibility. However new abbreviations will need to be added to a
function. A follow-up commit will add it.

Now that abbr is a built-in, remove the abbr function; but leave the
abbr.fish file so that stale files from past installs do not override
the abbr builtin.
2022-12-10 15:29:03 -08:00

314 lines
12 KiB
C++

// Helper functions for working with wcstring.
#ifndef FISH_WCSTRINGUTIL_H
#define FISH_WCSTRINGUTIL_H
#include <limits.h>
#include <stdint.h>
#include <algorithm>
#include <cstdlib>
#include <cstring>
#include <cwchar>
#include <iterator>
#include <limits>
#include <string>
#include "common.h"
#include "expand.h"
#include "maybe.h"
/// Test if a string prefixes another. Returns true if a is a prefix of b.
bool string_prefixes_string(const wcstring &proposed_prefix, const wcstring &value);
bool string_prefixes_string(const wchar_t *proposed_prefix, const wcstring &value);
bool string_prefixes_string(const wchar_t *proposed_prefix, const wchar_t *value);
bool string_prefixes_string(const char *proposed_prefix, const std::string &value);
bool string_prefixes_string(const char *proposed_prefix, const char *value);
/// Test if a string is a suffix of another.
bool string_suffixes_string(const wcstring &proposed_suffix, const wcstring &value);
bool string_suffixes_string(const wchar_t *proposed_suffix, const wcstring &value);
bool string_suffixes_string_case_insensitive(const wcstring &proposed_suffix,
const wcstring &value);
/// Test if a string prefixes another without regard to case. Returns true if a is a prefix of b.
bool string_prefixes_string_case_insensitive(const wcstring &proposed_prefix,
const wcstring &value);
/// Case-insensitive string search, modeled after std::string::find().
/// \param fuzzy indicates this is being used for fuzzy matching and case insensitivity is
/// expanded to include symbolic characters (#3584).
/// \return the offset of the first case-insensitive matching instance of `needle` within
/// `haystack`, or `string::npos()` if no results were found.
size_t ifind(const wcstring &haystack, const wcstring &needle, bool fuzzy = false);
size_t ifind(const std::string &haystack, const std::string &needle, bool fuzzy = false);
/// A lightweight value-type describing how closely a string fuzzy-matches another string.
struct string_fuzzy_match_t {
// The ways one string can contain another.
enum class contain_type_t : uint8_t {
exact, // exact match: foobar matches foo
prefix, // prefix match: foo matches foobar
substr, // substring match: ooba matches foobar
subseq, // subsequence match: fbr matches foobar
};
contain_type_t type;
// The case-folding required for the match.
enum class case_fold_t : uint8_t {
samecase, // exact match: foobar matches foobar
smartcase, // case insensitive match with lowercase input. foobar matches FoBar.
icase, // case insensitive: FoBaR matches foobAr
};
case_fold_t case_fold;
// Constructor.
constexpr string_fuzzy_match_t(contain_type_t type, case_fold_t case_fold)
: type(type), case_fold(case_fold) {}
// Helper to return an exact match.
static constexpr string_fuzzy_match_t exact_match() {
return string_fuzzy_match_t(contain_type_t::exact, case_fold_t::samecase);
}
/// \return whether this is a samecase exact match.
bool is_samecase_exact() const {
return type == contain_type_t::exact && case_fold == case_fold_t::samecase;
}
/// \return if we are exact or prefix match.
bool is_exact_or_prefix() const {
switch (type) {
case contain_type_t::exact:
case contain_type_t::prefix:
return true;
case contain_type_t::substr:
case contain_type_t::subseq:
return false;
}
DIE("Unreachable");
return false;
}
// \return if our match requires a full replacement, i.e. is not a strict extension of our
// existing string. This is false only if our case matches, and our type is prefix or exact.
bool requires_full_replacement() const {
if (case_fold != case_fold_t::samecase) return true;
switch (type) {
case contain_type_t::exact:
case contain_type_t::prefix:
return false;
case contain_type_t::substr:
case contain_type_t::subseq:
return true;
}
DIE("Unreachable");
return false;
}
/// Try creating a fuzzy match for \p string against \p match_against.
/// \p string is something like "foo" and \p match_against is like "FooBar".
/// If \p anchor_start is set, then only exact and prefix matches are permitted.
static maybe_t<string_fuzzy_match_t> try_create(const wcstring &string,
const wcstring &match_against,
bool anchor_start);
/// \return a rank for filtering matches.
/// Earlier (smaller) ranks are better matches.
uint32_t rank() const;
};
/// Cover over string_fuzzy_match_t::try_create().
inline maybe_t<string_fuzzy_match_t> string_fuzzy_match_string(const wcstring &string,
const wcstring &match_against,
bool anchor_start = false) {
return string_fuzzy_match_t::try_create(string, match_against, anchor_start);
}
/// Split a string by a separator character.
wcstring_list_t split_string(const wcstring &val, wchar_t sep);
/// Split a string by runs of any of the separator characters provided in \p seps.
/// Note the delimiters are the characters in \p seps, not \p seps itself.
/// \p seps may contain the NUL character.
/// Do not output more than \p max_results results. If we are to output exactly that much,
/// the last output is the the remainder of the input, including leading delimiters,
/// except for the first. This is historical behavior.
/// Example: split_string_tok(" a b c ", " ", 3) -> {"a", "b", " c "}
wcstring_list_t split_string_tok(const wcstring &val, const wcstring &seps,
size_t max_results = std::numeric_limits<size_t>::max());
/// Join a list of strings by a separator character or string.
wcstring join_strings(const wcstring_list_t &vals, wchar_t sep);
wcstring join_strings(const wcstring_list_t &vals, const wchar_t *sep);
inline wcstring to_string(long x) {
wchar_t buff[64];
format_long_safe(buff, x);
return wcstring(buff);
}
inline wcstring to_string(long long x) {
wchar_t buff[64];
format_llong_safe(buff, x);
return wcstring(buff);
}
inline wcstring to_string(unsigned long long x) {
wchar_t buff[64];
format_ullong_safe(buff, x);
return wcstring(buff);
}
inline wcstring to_string(int x) { return to_string(static_cast<long>(x)); }
inline wcstring to_string(size_t x) { return to_string(static_cast<unsigned long long>(x)); }
inline bool bool_from_string(const std::string &x) {
if (x.empty()) return false;
switch (x.front()) {
case 'Y':
case 'T':
case 'y':
case 't':
case '1':
return true;
default:
return false;
}
}
inline bool bool_from_string(const wcstring &x) {
return !x.empty() && std::wcschr(L"YTyt1", x.at(0));
}
/// Given iterators into a string (forward or reverse), splits the haystack iterators
/// about the needle sequence, up to max times. Inserts splits into the output array.
/// If the iterators are forward, this does the normal thing.
/// If the iterators are backward, this returns reversed strings, in reversed order!
/// If the needle is empty, split on individual elements (characters).
/// Max output entries will be max + 1 (after max splits)
template <typename ITER>
void split_about(ITER haystack_start, ITER haystack_end, ITER needle_start, ITER needle_end,
wcstring_list_t *output, long max = LONG_MAX, bool no_empty = false) {
long remaining = max;
ITER haystack_cursor = haystack_start;
while (remaining > 0 && haystack_cursor != haystack_end) {
ITER split_point;
if (needle_start == needle_end) { // empty needle, we split on individual elements
split_point = haystack_cursor + 1;
} else {
split_point = std::search(haystack_cursor, haystack_end, needle_start, needle_end);
}
if (split_point == haystack_end) { // not found
break;
}
if (!no_empty || haystack_cursor != split_point) {
output->emplace_back(haystack_cursor, split_point);
}
remaining--;
// Need to skip over the needle for the next search note that the needle may be empty.
haystack_cursor = split_point + std::distance(needle_start, needle_end);
}
// Trailing component, possibly empty.
if (!no_empty || haystack_cursor != haystack_end) {
output->emplace_back(haystack_cursor, haystack_end);
}
}
enum class ellipsis_type {
None,
// Prefer niceness over minimalness
Prettiest,
// Make every character count ($ instead of ...)
Shortest,
};
wcstring truncate(const wcstring &input, int max_len,
ellipsis_type etype = ellipsis_type::Prettiest);
wcstring trim(wcstring input);
wcstring trim(wcstring input, const wchar_t *any_of);
/// Converts a string to lowercase.
wcstring wcstolower(wcstring input);
/// \return the number of escaping backslashes before a character.
/// \p idx may be "one past the end."
size_t count_preceding_backslashes(const wcstring &text, size_t idx);
// Out-of-line helper for wcs2string_callback.
void wcs2string_bad_char(wchar_t);
/// Implementation of wcs2string that accepts a callback.
/// This invokes \p func with (const char*, size_t) pairs.
/// If \p func returns false, it stops; otherwise it continues.
/// \return false if the callback returned false, otherwise true.
template <typename Func>
bool wcs2string_callback(const wchar_t *input, size_t len, const Func &func) {
mbstate_t state = {};
char converted[MB_LEN_MAX];
for (size_t i = 0; i < len; i++) {
wchar_t wc = input[i];
// TODO: this doesn't seem sound.
if (wc == INTERNAL_SEPARATOR) {
// do nothing
} else if (wc >= ENCODE_DIRECT_BASE && wc < ENCODE_DIRECT_BASE + 256) {
converted[0] = wc - ENCODE_DIRECT_BASE;
if (!func(converted, 1)) return false;
} else if (MB_CUR_MAX == 1) { // single-byte locale (C/POSIX/ISO-8859)
// If `wc` contains a wide character we emit a question-mark.
if (wc & ~0xFF) {
wc = '?';
}
converted[0] = wc;
if (!func(converted, 1)) return false;
} else {
std::memset(converted, 0, sizeof converted);
size_t len = std::wcrtomb(converted, wc, &state);
if (len == static_cast<size_t>(-1)) {
wcs2string_bad_char(wc);
std::memset(&state, 0, sizeof(state));
} else {
if (!func(converted, len)) return false;
}
}
}
return true;
}
/// Support for iterating over a newline-separated string.
template <typename Collection>
class line_iterator_t {
// Storage for each line.
Collection storage;
// The collection we're iterating. Note we hold this by reference.
const Collection &coll;
// The current location in the iteration.
typename Collection::const_iterator current;
public:
/// Construct from a collection (presumably std::string or std::wcstring).
line_iterator_t(const Collection &coll) : coll(coll), current(coll.cbegin()) {}
/// Access the storage in which the last line was stored.
const Collection &line() const { return storage; }
/// Advances to the next line. \return true on success, false if we have exhausted the string.
bool next() {
if (current == coll.end()) return false;
auto newline_or_end = std::find(current, coll.cend(), '\n');
storage.assign(current, newline_or_end);
current = newline_or_end;
// Skip the newline.
if (current != coll.cend()) ++current;
return true;
}
};
/// Like fish_wcwidth, but returns 0 for characters with no real width instead of -1.
int fish_wcwidth_visible(wchar_t widechar);
#endif