// Utilities for keeping track of jobs, processes and subshells, as well as signal handling // functions for tracking children. These functions do not themselves launch new processes, the exec // library will call proc to create representations of the running jobs as needed. // // Some of the code in this file is based on code from the Glibc manual. // IWYU pragma: no_include <__bit_reference> #include "config.h" #include #include #include #include #include #include #include #include #if HAVE_TERM_H #include #include #elif HAVE_NCURSES_TERM_H #include #endif #include #ifdef HAVE_SIGINFO_H #include #endif #ifdef HAVE_SYS_SELECT_H #include #endif #include // IWYU pragma: keep #include #include #include // IWYU pragma: keep #include #include #include #include "common.h" #include "event.h" #include "fallback.h" // IWYU pragma: keep #include "flog.h" #include "global_safety.h" #include "io.h" #include "job_group.h" #include "output.h" #include "parse_tree.h" #include "parser.h" #include "proc.h" #include "reader.h" #include "sanity.h" #include "signal.h" #include "wcstringutil.h" #include "wutil.h" // IWYU pragma: keep /// The signals that signify crashes to us. static const int crashsignals[] = {SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV, SIGSYS}; static relaxed_atomic_bool_t s_is_interactive_session{false}; bool is_interactive_session() { return s_is_interactive_session; } void set_interactive_session(bool flag) { s_is_interactive_session = flag; } static relaxed_atomic_bool_t s_is_login{false}; bool get_login() { return s_is_login; } void mark_login() { s_is_login = true; } static relaxed_atomic_bool_t s_no_exec{false}; bool no_exec() { return s_no_exec; } void mark_no_exec() { s_no_exec = true; } bool have_proc_stat() { // Check for /proc/self/stat to see if we are running with Linux-style procfs. static const bool s_result = (access("/proc/self/stat", R_OK) == 0); return s_result; } static relaxed_atomic_t job_control_mode{job_control_t::interactive}; job_control_t get_job_control_mode() { return job_control_mode; } void set_job_control_mode(job_control_t mode) { job_control_mode = mode; // HACK: when fish (or any shell) launches a job with job control, it will put the job into its // own pgroup and call tcsetpgrp() to allow that pgroup to own the terminal (making fish a // background process). When the job finishes, fish will try to reclaim the terminal via // tcsetpgrp(), but as fish is now a background process it will receive SIGTTOU and stop! Ensure // that doesn't happen by ignoring SIGTTOU. // Note that if we become interactive, we also ignore SIGTTOU. if (mode == job_control_t::all) { signal(SIGTTOU, SIG_IGN); } } void proc_init() { signal_set_handlers_once(false); } /// Return true if all processes in the job have stopped or completed. bool job_t::is_stopped() const { for (const process_ptr_t &p : processes) { if (!p->completed && !p->stopped) { return false; } } return true; } /// Return true if the last processes in the job has completed. bool job_t::is_completed() const { assert(!processes.empty()); for (const process_ptr_t &p : processes) { if (!p->completed) { return false; } } return true; } bool job_t::should_report_process_exits() const { // This implements the behavior of process exit events only being sent for jobs containing an // external process. Bizarrely the process exit event is for the pgroup leader which may be fish // itself. // TODO: rationalize this. // If we never got a pgid then we never launched the external process, so don't report it. if (!this->get_pgid()) { return false; } // Only report root job exits. // For example in `ls | begin ; cat ; end` we don't need to report the cat sub-job. if (!flags().is_group_root) { return false; } // Return whether we have an external process. return this->has_external_proc(); } bool job_t::job_chain_is_fully_constructed() const { return group->is_root_constructed(); } bool job_t::signal(int signal) { // Presumably we are distinguishing between the two cases below because we do // not want to send ourselves the signal in question in case the job shares // a pgid with the shell. auto pgid = get_pgid(); if (pgid.has_value() && *pgid != getpgrp()) { if (killpg(*pgid, signal) == -1) { char buffer[512]; sprintf(buffer, "killpg(%d, %s)", *pgid, strsignal(signal)); wperror(str2wcstring(buffer).c_str()); return false; } } else { for (const auto &p : processes) { if (!p->completed && p->pid && kill(p->pid, signal) == -1) { return false; } } } return true; } maybe_t job_t::get_statuses() const { statuses_t st{}; bool has_status = false; int laststatus = 0; st.pipestatus.reserve(processes.size()); for (const auto &p : processes) { auto status = p->status; if (status.is_empty()) { // Corner case for if a variable assignment is part of a pipeline. // e.g. `false | set foo bar | true` will push 1 in the second spot, // for a complete pipestatus of `1 1 0`. st.pipestatus.push_back(laststatus); continue; } if (status.signal_exited()) { st.kill_signal = status.signal_code(); } laststatus = status.status_value(); has_status = true; st.pipestatus.push_back(status.status_value()); } if (!has_status) { return none(); } st.status = flags().negate ? !laststatus : laststatus; return st; } void internal_proc_t::mark_exited(proc_status_t status) { assert(!exited() && "Process is already exited"); status_.store(status, std::memory_order_relaxed); exited_.store(true, std::memory_order_release); topic_monitor_t::principal().post(topic_t::internal_exit); FLOG(proc_internal_proc, L"Internal proc", internal_proc_id_, L"exited with status", status.status_value()); } static int64_t next_proc_id() { static std::atomic s_next{}; return ++s_next; } internal_proc_t::internal_proc_t() : internal_proc_id_(next_proc_id()) {} job_list_t jobs_requiring_warning_on_exit(const parser_t &parser) { job_list_t result; for (const auto &job : parser.jobs()) { if (!job->is_foreground() && job->is_constructed() && !job->is_completed()) { result.push_back(job); } } return result; } void print_exit_warning_for_jobs(const job_list_t &jobs) { fputws(_(L"There are still jobs active:\n"), stdout); fputws(_(L"\n PID Command\n"), stdout); for (const auto &j : jobs) { fwprintf(stdout, L"%6d %ls\n", j->processes[0]->pid, j->command_wcstr()); } fputws(L"\n", stdout); fputws(_(L"A second attempt to exit will terminate them.\n"), stdout); fputws(_(L"Use 'disown PID' to remove jobs from the list without terminating them.\n"), stdout); reader_schedule_prompt_repaint(); } /// Set the status of \p proc to \p status. static void handle_child_status(const shared_ptr &job, process_t *proc, proc_status_t status) { proc->status = status; if (status.stopped()) { proc->stopped = true; } else if (status.continued()) { proc->stopped = false; } else { proc->completed = true; } // If the child was killed by SIGINT or SIGQUIT, then treat it as if we received that signal. if (status.signal_exited()) { int sig = status.signal_code(); if (sig == SIGINT || sig == SIGQUIT) { if (is_interactive_session()) { // Mark the job group as cancelled. job->group->cancel_with_signal(sig); } else { // Deliver the SIGINT or SIGQUIT signal to ourself since we're not interactive. struct sigaction act; sigemptyset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = SIG_DFL; sigaction(sig, &act, nullptr); kill(getpid(), sig); } } } } process_t::process_t() = default; void process_t::check_generations_before_launch() { gens_ = topic_monitor_t::principal().current_generations(); } void process_t::mark_aborted_before_launch() { this->completed = true; // The status may have already been set to e.g. STATUS_NOT_EXECUTABLE. // Only stomp a successful status. if (this->status.is_success()) { this->status = proc_status_t::from_exit_code(EXIT_FAILURE); } } bool process_t::is_internal() const { switch (type) { case process_type_t::builtin: case process_type_t::function: case process_type_t::block_node: return true; case process_type_t::external: case process_type_t::exec: return false; default: assert(false && "The fish developers forgot to include a process_t. Please report a bug"); return true; } assert(false && "process_t::is_internal: Total logic failure, universe is broken. Please replace " "universe and retry."); return true; } wait_handle_ref_t process_t::get_wait_handle(bool create) { if (type != process_type_t::external || pid <= 0) { return nullptr; } if (!wait_handle_ && create) { wait_handle_ = std::make_shared(this->pid, wbasename(this->actual_cmd)); } return wait_handle_; } static uint64_t next_internal_job_id() { static std::atomic s_next{}; return ++s_next; } job_t::job_t(const properties_t &props, wcstring command_str) : properties(props), command_str(std::move(command_str)), internal_job_id(next_internal_job_id()) {} job_t::~job_t() = default; void job_t::mark_constructed() { assert(!is_constructed() && "Job was already constructed"); mut_flags().constructed = true; if (flags().is_group_root) { group->mark_root_constructed(); } } bool job_t::has_internal_proc() const { for (const auto &p : processes) { if (p->is_internal()) return true; } return false; } bool job_t::has_external_proc() const { for (const auto &p : processes) { if (!p->is_internal()) return true; } return false; } /// A list of pids/pgids that have been disowned. They are kept around until either they exit or /// we exit. Poll these from time-to-time to prevent zombie processes from happening (#5342). static owning_lock> s_disowned_pids; void add_disowned_job(const job_t *j) { if (j == nullptr) return; // Never add our own (or an invalid) pgid as it is not unique to only // one job, and may result in a deadlock if we attempt the wait. auto pgid = j->get_pgid(); auto disowned_pids = s_disowned_pids.acquire(); if (pgid && *pgid != getpgrp() && *pgid > 0) { // waitpid(2) is signalled to wait on a process group rather than a // process id by using the negative of its value. disowned_pids->push_back(*pgid * -1); } else { // Instead, add the PIDs of any external processes for (auto &process : j->processes) { if (process->pid) { disowned_pids->push_back(process->pid); } } } } // Reap any pids in our disowned list that have exited. This is used to avoid zombies. static void reap_disowned_pids() { auto disowned_pids = s_disowned_pids.acquire(); auto try_reap1 = [](pid_t pid) { int status; int ret = waitpid(pid, &status, WNOHANG); if (ret > 0) { FLOGF(proc_reap_external, "Reaped disowned PID or PGID %d", pid); } return ret; }; // waitpid returns 0 iff the PID/PGID in question has not changed state; remove the pid/pgid // if it has changed or an error occurs (presumably ECHILD because the child does not exist) disowned_pids->erase(std::remove_if(disowned_pids->begin(), disowned_pids->end(), try_reap1), disowned_pids->end()); } /// See if any reapable processes have exited, and mark them accordingly. /// \param block_ok if no reapable processes have exited, block until one is (or until we receive a /// signal). static void process_mark_finished_children(parser_t &parser, bool block_ok) { ASSERT_IS_MAIN_THREAD(); // Get the exit and signal generations of all reapable processes. // The exit generation tells us if we have an exit; the signal generation allows for detecting // SIGHUP and SIGINT. // Go through each process and figure out if and how it wants to be reaped. generation_list_t reapgens = generation_list_t::invalids(); for (const auto &j : parser.jobs()) { for (const auto &proc : j->processes) { if (!j->can_reap(proc)) continue; if (proc->pid > 0) { // Reaps with a pid. reapgens.set_min_from(topic_t::sigchld, proc->gens_); reapgens.set_min_from(topic_t::sighupint, proc->gens_); } if (proc->internal_proc_) { // Reaps with an internal process. reapgens.set_min_from(topic_t::internal_exit, proc->gens_); reapgens.set_min_from(topic_t::sighupint, proc->gens_); } } } // Now check for changes, optionally waiting. if (!topic_monitor_t::principal().check(&reapgens, block_ok)) { // Nothing changed. return; } // We got some changes. Since we last checked we received SIGCHLD, and or HUP/INT. // Update the hup/int generations and reap any reapable processes. // We structure this as two loops for some simplicity. // First reap all pids. for (const auto &j : parser.jobs()) { for (const auto &proc : j->processes) { // Does this proc have a pid that is reapable? if (proc->pid <= 0 || !j->can_reap(proc)) continue; // Always update the signal hup/int gen. proc->gens_.sighupint = reapgens.sighupint; // Nothing to do if we did not get a new sigchld. if (proc->gens_.sigchld == reapgens.sigchld) continue; proc->gens_.sigchld = reapgens.sigchld; // Ok, we are reapable. Run waitpid()! int statusv = -1; pid_t pid = waitpid(proc->pid, &statusv, WNOHANG | WUNTRACED | WCONTINUED); assert((pid <= 0 || pid == proc->pid) && "Unexpcted waitpid() return"); if (pid <= 0) continue; // The process has stopped or exited! Update its status. proc_status_t status = proc_status_t::from_waitpid(statusv); handle_child_status(j, proc.get(), status); if (status.stopped()) { j->group->set_is_foreground(false); } if (status.continued()) { j->mut_flags().notified = false; } if (status.normal_exited() || status.signal_exited()) { FLOGF(proc_reap_external, "Reaped external process '%ls' (pid %d, status %d)", proc->argv0(), pid, proc->status.status_value()); } else { assert(status.stopped() || status.continued()); FLOGF(proc_reap_external, "External process '%ls' (pid %d, %s)", proc->argv0(), proc->pid, proc->status.stopped() ? "stopped" : "continued"); } } } // We are done reaping pids. // Reap internal processes. for (const auto &j : parser.jobs()) { for (const auto &proc : j->processes) { // Does this proc have an internal process that is reapable? if (!proc->internal_proc_ || !j->can_reap(proc)) continue; // Always update the signal hup/int gen. proc->gens_.sighupint = reapgens.sighupint; // Nothing to do if we did not get a new internal exit. if (proc->gens_.internal_exit == reapgens.internal_exit) continue; proc->gens_.internal_exit = reapgens.internal_exit; // Has the process exited? if (!proc->internal_proc_->exited()) continue; // The process gets the status from its internal proc. handle_child_status(j, proc.get(), proc->internal_proc_->get_status()); FLOGF(proc_reap_internal, "Reaped internal process '%ls' (id %llu, status %d)", proc->argv0(), proc->internal_proc_->get_id(), proc->status.status_value()); } } // Remove any zombies. reap_disowned_pids(); } /// Call the fish_job_summary function with the given args. static void call_job_summary(parser_t &parser, const wcstring_list_t &args) { wcstring buffer = wcstring(L"fish_job_summary"); for (const wcstring &arg : args) { buffer.push_back(L' '); buffer.append(escape_string(arg, ESCAPE_ALL)); } event_t event(event_type_t::generic); event.desc.str_param1 = L"fish_job_summary"; auto prev_statuses = parser.get_last_statuses(); block_t *b = parser.push_block(block_t::event_block(event)); parser.eval(buffer, io_chain_t()); parser.pop_block(b); parser.set_last_statuses(std::move(prev_statuses)); } /// Format information about job status for the user to look at. using job_status_t = enum { JOB_STOPPED, JOB_ENDED }; static void print_job_status(parser_t &parser, const job_t *j, job_status_t status) { wcstring_list_t args = { to_string(j->job_id()), to_string(static_cast(j->is_foreground())), j->command(), status == JOB_STOPPED ? L"STOPPED" : L"ENDED", }; call_job_summary(parser, args); } /// Remove all disowned jobs whose job chain is fully constructed (that is, do not erase disowned /// jobs that still have an in-flight parent job). Note we never print statuses for such jobs. static void remove_disowned_jobs(job_list_t &jobs) { auto iter = jobs.begin(); while (iter != jobs.end()) { const auto &j = *iter; if (j->flags().disown_requested && j->job_chain_is_fully_constructed()) { iter = jobs.erase(iter); } else { ++iter; } } } /// Given a a process in a job, print the status message for the process as appropriate, and then /// mark the status code so we don't print again. Populate any events into \p exit_events. /// \return true if we printed a status message, false if not. static bool try_clean_process_in_job(parser_t &parser, process_t *p, job_t *j, std::vector *exit_events) { if (!p->completed || !p->pid) { return false; } auto s = p->status; // Add an exit event if the process did not come from a job handler. if (!j->from_event_handler()) { exit_events->push_back(event_t::process_exit(p->pid, s.status_value())); } // Ignore SIGPIPE. We issue it ourselves to the pipe writer when the pipe reader dies. if (!s.signal_exited() || s.signal_code() == SIGPIPE) { return false; } int proc_is_job = (p->is_first_in_job && p->is_last_in_job); if (proc_is_job) j->mut_flags().notified = true; // Handle signals other than SIGPIPE. // Always report crashes. if (j->skip_notification() && !contains(crashsignals, s.signal_code())) { return false; } wcstring_list_t args; args.reserve(proc_is_job ? 5 : 7); args.push_back(to_string(j->job_id())); args.push_back(to_string(static_cast(j->is_foreground()))); args.push_back(j->command()); args.push_back(sig2wcs(s.signal_code())); args.push_back(signal_get_desc(s.signal_code())); if (!proc_is_job) { args.push_back(to_string(p->pid)); args.push_back(p->argv0()); } call_job_summary(parser, args); // Clear status so it is not reported more than once. // TODO: this seems like a clumsy way to ensure that. p->status = proc_status_t::from_exit_code(0); return true; } /// \return whether this job wants a status message printed when it stops or completes. static bool job_wants_message(const shared_ptr &j) { // Did we already print a status message? if (j->flags().notified) return false; // Do we just skip notifications? if (j->skip_notification()) return false; // Are we foreground? // The idea here is to not print status messages for jobs that execute in the foreground (i.e. // without & and without being `bg`). if (j->is_foreground()) return false; return true; } /// Given that a job has completed, check if it may be wait'ed on; if so add it to the wait handle /// store. Then mark all wait handles as complete. static void save_wait_handle_for_completed_job(const shared_ptr &job, wait_handle_store_t &store) { assert(job && job->is_completed() && "Job null or not completed"); // Are we a background job? if (!job->is_foreground()) { for (auto &proc : job->processes) { store.add(proc->get_wait_handle(true)); } } // Mark all wait handles as complete (but don't create just for this). for (auto &proc : job->processes) { if (wait_handle_ref_t wh = proc->get_wait_handle(false /* create */)) { wh->status = proc->status.status_value(); wh->internal_job_id = job->internal_job_id; wh->completed = true; } } } /// Remove completed jobs from the job list, printing status messages as appropriate. /// \return whether something was printed. static bool process_clean_after_marking(parser_t &parser, bool allow_interactive) { ASSERT_IS_MAIN_THREAD(); bool printed = false; // This function may fire an event handler, we do not want to call ourselves recursively (to // avoid infinite recursion). if (parser.libdata().is_cleaning_procs) { return false; } parser.libdata().is_cleaning_procs = true; const cleanup_t cleanup([&] { parser.libdata().is_cleaning_procs = false; }); // This may be invoked in an exit handler, after the TERM has been torn down // Don't try to print in that case (#3222) const bool interactive = allow_interactive && cur_term != nullptr; // Remove all disowned jobs. remove_disowned_jobs(parser.jobs()); // Accumulate exit events into a new list, which we fire after the list manipulation is // complete. std::vector exit_events; // A helper to indicate if we should process a job. auto should_process_job = [=](const shared_ptr &j) { // Do not attempt to process jobs which are not yet constructed. // Do not attempt to process jobs that need to print a status message, // unless we are interactive, in which case printing is OK. return j->is_constructed() && (interactive || !job_wants_message(j)); }; // Print status messages for completed or stopped jobs. for (const auto &j : parser.jobs()) { if (!should_process_job(j)) continue; // Clean processes within the job. // Note this may print the message on behalf of the job, affecting the result of // job_wants_message(). for (process_ptr_t &p : j->processes) { if (try_clean_process_in_job(parser, p.get(), j.get(), &exit_events)) { printed = true; } } // Print the message if we need to. if (job_wants_message(j) && (j->is_completed() || j->is_stopped())) { print_job_status(parser, j.get(), j->is_completed() ? JOB_ENDED : JOB_STOPPED); j->mut_flags().notified = true; printed = true; } // Prepare events for completed jobs if (j->is_completed()) { // If this job already came from an event handler, // don't create an event or it's easy to get an infinite loop. if (!j->from_event_handler() && j->should_report_process_exits()) { if (auto last_pid = j->get_last_pid()) { exit_events.push_back(event_t::job_exit(*last_pid, j->internal_job_id)); } } // Caller exit events we still create, which anecdotally fixes `source (thing | psub)` // inside event handlers. This seems benign since this event is barely used (basically // only psub), and it seems hard to construct an infinite loop with it. exit_events.push_back(event_t::caller_exit(j->internal_job_id, j->job_id())); } } // Remove completed jobs. // Do this before calling out to user code in the event handler below, to ensure an event // handler doesn't remove jobs on our behalf. auto &jobs = parser.jobs(); for (auto iter = jobs.begin(); iter != jobs.end();) { const shared_ptr &j = *iter; if (should_process_job(j) && j->is_completed()) { // If this job finished in the background, we have to remember to wait on it. save_wait_handle_for_completed_job(j, parser.get_wait_handles()); iter = jobs.erase(iter); } else { ++iter; } } // Post pending exit events. for (const auto &evt : exit_events) { event_fire(parser, evt); } if (printed) { fflush(stdout); } return printed; } bool job_reap(parser_t &parser, bool allow_interactive) { ASSERT_IS_MAIN_THREAD(); // Early out for the common case that there are no jobs. if (parser.jobs().empty()) { return false; } process_mark_finished_children(parser, false /* not block_ok */); return process_clean_after_marking(parser, allow_interactive); } /// Get the CPU time for the specified process. unsigned long proc_get_jiffies(process_t *p) { if (!have_proc_stat()) return 0; if (p->pid <= 0) return 0; char state; int pid, ppid, pgrp, session, tty_nr, tpgid, exit_signal, processor; long int cutime, cstime, priority, nice, placeholder, itrealvalue, rss; unsigned long int flags, minflt, cminflt, majflt, cmajflt, utime, stime, starttime, vsize, rlim, startcode, endcode, startstack, kstkesp, kstkeip, signal, blocked, sigignore, sigcatch, wchan, nswap, cnswap; char comm[1024]; /// Maximum length of a /proc/[PID]/stat filename. constexpr size_t FN_SIZE = 256; char fn[FN_SIZE]; std::snprintf(fn, FN_SIZE, "/proc/%d/stat", p->pid); // Don't use autoclose_fd here, we will fdopen() and then fclose() instead. int fd = open_cloexec(fn, O_RDONLY); if (fd < 0) return 0; // TODO: replace the use of fscanf() as it is brittle and should never be used. FILE *f = fdopen(fd, "r"); int count = fscanf(f, "%9d %1023s %c %9d %9d %9d %9d %9d %9lu " "%9lu %9lu %9lu %9lu %9lu %9lu %9ld %9ld %9ld " "%9ld %9ld %9ld %9lu %9lu %9ld %9lu %9lu %9lu " "%9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu " "%9lu %9d %9d ", &pid, comm, &state, &ppid, &pgrp, &session, &tty_nr, &tpgid, &flags, &minflt, &cminflt, &majflt, &cmajflt, &utime, &stime, &cutime, &cstime, &priority, &nice, &placeholder, &itrealvalue, &starttime, &vsize, &rss, &rlim, &startcode, &endcode, &startstack, &kstkesp, &kstkeip, &signal, &blocked, &sigignore, &sigcatch, &wchan, &nswap, &cnswap, &exit_signal, &processor); fclose(f); if (count < 17) return 0; return utime + stime + cutime + cstime; } /// Update the CPU time for all jobs. void proc_update_jiffies(parser_t &parser) { for (const auto &job : parser.jobs()) { for (process_ptr_t &p : job->processes) { gettimeofday(&p->last_time, nullptr); p->last_jiffies = proc_get_jiffies(p.get()); } } } // Return control of the terminal to a job's process group. restore_attrs is true if we are // restoring a previously-stopped job, in which case we need to restore terminal attributes. int terminal_maybe_give_to_job_group(const job_group_t *jg, bool continuing_from_stopped) { enum { notneeded = 0, success = 1, error = -1 }; if (!jg->should_claim_terminal()) { // The job doesn't want the terminal. return notneeded; } // Get the pgid; we may not have one. pid_t pgid{}; if (auto mpgid = jg->get_pgid()) { pgid = *mpgid; } else { FLOG(proc_termowner, L"terminal_give_to_job() returning early due to no process group"); return notneeded; } // If we are continuing, ensure that stdin is marked as blocking first (issue #176). // Also restore tty modes. if (continuing_from_stopped) { make_fd_blocking(STDIN_FILENO); if (jg->tmodes.has_value()) { int res = tcsetattr(STDIN_FILENO, TCSADRAIN, &jg->tmodes.value()); if (res < 0) wperror(L"tcsetattr"); } } // Ok, we want to transfer to the child. // Note it is important to be very careful about calling tcsetpgrp()! // fish ignores SIGTTOU which means that it has the power to reassign the tty even if it doesn't // own it. This means that other processes may get SIGTTOU and become zombies. // Check who own the tty now. Thre's five cases of interest: // 1. The process's pgrp is the same as fish. In that case there is nothing to do. // 2. There is no tty at all (tcgetpgrp() returns -1). For example running from a pure script. // Of course do not transfer it in that case. // 3. The tty is owned by the process. This comes about often, as the process will call // tcsetpgrp() on itself between fork ane exec. This is the essential race inherent in // tcsetpgrp(). In this case we want to reclaim the tty, but do not need to transfer it // ourselves since the child won the race. // 4. The tty is owned by a different process. This may come about if fish is running in the // background with job control enabled. Do not transfer it. // 5. The tty is owned by fish. In that case we want to transfer the pgid. pid_t fish_pgrp = getpgrp(); if (fish_pgrp == pgid) { // Case 1. return notneeded; } pid_t current_owner = tcgetpgrp(STDIN_FILENO); if (current_owner < 0) { // Case 2. return notneeded; } else if (current_owner == pgid) { // Case 3. return success; } else if (current_owner != pgid && current_owner != fish_pgrp) { // Case 4. return notneeded; } // Case 5 - we do want to transfer it. // The tcsetpgrp(2) man page says that EPERM is thrown if "pgrp has a supported value, but // is not the process group ID of a process in the same session as the calling process." // Since we _guarantee_ that this isn't the case (the child calls setpgid before it calls // SIGSTOP, and the child was created in the same session as us), it seems that EPERM is // being thrown because of an caching issue - the call to tcsetpgrp isn't seeing the // newly-created process group just yet. On this developer's test machine (WSL running Linux // 4.4.0), EPERM does indeed disappear on retry. The important thing is that we can // guarantee the process isn't going to exit while we wait (which would cause us to possibly // block indefinitely). while (tcsetpgrp(STDIN_FILENO, pgid) != 0) { FLOGF(proc_termowner, L"tcsetpgrp failed: %d", errno); // Before anything else, make sure that it's even necessary to call tcsetpgrp. // Since it usually _is_ necessary, we only check in case it fails so as to avoid the // unnecessary syscall and associated context switch, which profiling has shown to have // a significant cost when running process groups in quick succession. int getpgrp_res = tcgetpgrp(STDIN_FILENO); if (getpgrp_res < 0) { switch (errno) { case ENOTTY: // stdin is not a tty. This may come about if job control is enabled but we are // not a tty - see #6573. return notneeded; case EBADF: // stdin has been closed. Workaround a glibc bug - see #3644. redirect_tty_output(); return notneeded; default: wperror(L"tcgetpgrp"); return error; } } if (getpgrp_res == pgid) { FLOGF(proc_termowner, L"Process group %d already has control of terminal", pgid); return notneeded; } bool pgroup_terminated = false; if (errno == EINVAL) { // OS X returns EINVAL if the process group no longer lives. Probably other OSes, // too. Unlike EPERM below, EINVAL can only happen if the process group has // terminated. pgroup_terminated = true; } else if (errno == EPERM) { // Retry so long as this isn't because the process group is dead. int wait_result = waitpid(-1 * pgid, &wait_result, WNOHANG); if (wait_result == -1) { // Note that -1 is technically an "error" for waitpid in the sense that an // invalid argument was specified because no such process group exists any // longer. This is the observed behavior on Linux 4.4.0. a "success" result // would mean processes from the group still exist but is still running in some // state or the other. pgroup_terminated = true; } else { // Debug the original tcsetpgrp error (not the waitpid errno) to the log, and // then retry until not EPERM or the process group has exited. FLOGF(proc_termowner, L"terminal_give_to_job(): EPERM.\n", pgid); continue; } } else if (errno == ENOTTY) { // stdin is not a TTY. In general we expect this to be caught via the tcgetpgrp // call's EBADF handler above. return notneeded; } else { FLOGF(warning, _(L"Could not send job %d ('%ls') with pgid %d to foreground"), jg->get_id(), jg->get_command().c_str(), pgid); wperror(L"tcsetpgrp"); return error; } if (pgroup_terminated) { // All processes in the process group has exited. // Since we delay reaping any processes in a process group until all members of that // job/group have been started, the only way this can happen is if the very last // process in the group terminated and didn't need to access the terminal, otherwise // it would have hung waiting for terminal IO (SIGTTIN). We can safely ignore this. FLOGF(proc_termowner, L"tcsetpgrp called but process group %d has terminated.\n", pgid); return notneeded; } break; } return success; } /// Returns control of the terminal to the shell, and saves the terminal attribute state to the job /// group, so that we can restore the terminal ownership to the job at a later time. static bool terminal_return_from_job_group(job_group_t *jg) { errno = 0; auto pgid = jg->get_pgid(); if (!pgid.has_value()) { FLOG(proc_pgroup, "terminal_return_from_job() returning early due to no process group"); return true; } FLOG(proc_pgroup, "fish reclaiming terminal after job pgid", *pgid); if (tcsetpgrp(STDIN_FILENO, getpgrp()) == -1) { if (errno == ENOTTY) redirect_tty_output(); FLOGF(warning, _(L"Could not return shell to foreground")); wperror(L"tcsetpgrp"); return false; } // Save jobs terminal modes. struct termios tmodes {}; if (tcgetattr(STDIN_FILENO, &tmodes)) { // If it's not a tty, it's not a tty, and there are no attributes to save (or restore) if (errno == ENOTTY) return false; FLOGF(warning, _(L"Could not return shell to foreground")); wperror(L"tcgetattr"); return false; } jg->tmodes = tmodes; return true; } bool job_t::is_foreground() const { return group->is_foreground(); } maybe_t job_t::get_pgid() const { return group->get_pgid(); } maybe_t job_t::get_last_pid() const { for (auto iter = processes.rbegin(); iter != processes.rend(); ++iter) { const process_t *proc = iter->get(); if (proc->pid > 0) return proc->pid; } return none(); } job_id_t job_t::job_id() const { return group->get_id(); } void job_t::continue_job(parser_t &parser, bool in_foreground) { // Put job first in the job list. parser.job_promote(this); mut_flags().notified = false; int pgid = -2; if (auto tmp = get_pgid()) pgid = *tmp; // We must send_sigcont if the job is stopped. bool send_sigcont = this->is_stopped(); FLOGF(proc_job_run, L"%ls job %d, gid %d (%ls), %ls, %ls", send_sigcont ? L"Continue" : L"Start", job_id(), pgid, command_wcstr(), is_completed() ? L"COMPLETED" : L"UNCOMPLETED", parser.libdata().is_interactive ? L"INTERACTIVE" : L"NON-INTERACTIVE"); // Make sure we retake control of the terminal before leaving this function. bool term_transferred = false; cleanup_t take_term_back([&] { if (term_transferred) { // Issues of interest include #121 and #2114. terminal_return_from_job_group(this->group.get()); } }); if (!is_completed()) { int transfer = terminal_maybe_give_to_job_group(this->group.get(), send_sigcont); if (transfer < 0) { // terminal_maybe_give_to_job prints an error. return; } term_transferred = (transfer > 0); // If both requested and necessary, send the job a continue signal. if (send_sigcont) { // This code used to check for JOB_CONTROL to decide between using killpg to signal all // processes in the group or iterating over each process in the group and sending the // signal individually. job_t::signal() does the same, but uses the shell's own pgroup // to make that distinction. if (!signal(SIGCONT)) { FLOGF(proc_pgroup, "Failed to send SIGCONT to any processes in pgroup %d!", pgid); // This returns without bubbling up the error. Presumably that is OK. return; } // reset the status of each process instance for (auto &p : processes) { p->stopped = false; } } if (in_foreground) { // Wait for the status of our own job to change. while (!check_cancel_from_fish_signal() && !is_stopped() && !is_completed()) { process_mark_finished_children(parser, true); } } } if (in_foreground && is_completed()) { // Set $status only if we are in the foreground and the last process in the job has // finished. const auto &p = processes.back(); if (p->status.normal_exited() || p->status.signal_exited()) { auto statuses = get_statuses(); if (statuses) { parser.set_last_statuses(statuses.value()); parser.libdata().status_count++; } } } } void proc_wait_any(parser_t &parser) { process_mark_finished_children(parser, true /* block_ok */); process_clean_after_marking(parser, parser.libdata().is_interactive); } void hup_jobs(const job_list_t &jobs) { pid_t fish_pgrp = getpgrp(); for (const auto &j : jobs) { auto pgid = j->get_pgid(); if (pgid && *pgid != fish_pgrp && !j->is_completed()) { if (j->is_stopped()) { j->signal(SIGCONT); } j->signal(SIGHUP); } } } static std::atomic s_is_within_fish_initialization{false}; void set_is_within_fish_initialization(bool flag) { s_is_within_fish_initialization.store(flag); } bool is_within_fish_initialization() { return s_is_within_fish_initialization.load(); }