#ifndef FISH_IO_H #define FISH_IO_H #include #include #include #include #include #include #include #include #include "common.h" #include "env.h" #include "maybe.h" using std::shared_ptr; /// separated_buffer_t is composed of a sequence of elements, some of which may be explicitly /// separated (e.g. through string spit0) and some of which the separation is inferred. This enum /// tracks the type. enum class separation_type_t { /// This element's separation should be inferred, e.g. through IFS. inferred, /// This element was explicitly separated and should not be separated further. explicitly }; /// A separated_buffer_t contains a list of elements, some of which may be separated explicitly and /// others which must be separated further by the user (e.g. via IFS). template class separated_buffer_t { public: struct element_t { StringType contents; separation_type_t separation; element_t(StringType contents, separation_type_t sep) : contents(std::move(contents)), separation(sep) {} bool is_explicitly_separated() const { return separation == separation_type_t::explicitly; } }; private: /// Limit on how much data we'll buffer. Zero means no limit. size_t buffer_limit_; /// Current size of all contents. size_t contents_size_{0}; /// List of buffer elements. std::vector elements_; /// True if we're discarding input because our buffer_limit has been exceeded. bool discard = false; /// Mark that we are about to add the given size \p delta to the buffer. \return true if we /// succeed, false if we exceed buffer_limit. bool try_add_size(size_t delta) { if (discard) return false; contents_size_ += delta; if (contents_size_ < delta) { // Overflow! set_discard(); return false; } if (buffer_limit_ > 0 && contents_size_ > buffer_limit_) { set_discard(); return false; } return true; } /// separated_buffer_t may not be copied. separated_buffer_t(const separated_buffer_t &) = delete; void operator=(const separated_buffer_t &) = delete; public: /// Construct a separated_buffer_t with the given buffer limit \p limit, or 0 for no limit. separated_buffer_t(size_t limit) : buffer_limit_(limit) {} /// \return the buffer limit size, or 0 for no limit. size_t limit() const { return buffer_limit_; } /// \return the contents size. size_t size() const { return contents_size_; } /// \return whether the output has been discarded. bool discarded() const { return discard; } /// Mark the contents as discarded. void set_discard() { elements_.clear(); contents_size_ = 0; discard = true; } void reset_discard() { discard = false; } /// Serialize the contents to a single string, where explicitly separated elements have a /// newline appended. StringType newline_serialized() const { StringType result; result.reserve(size()); for (const auto &elem : elements_) { result.append(elem.contents); if (elem.is_explicitly_separated()) { result.push_back('\n'); } } return result; } /// \return the list of elements. const std::vector &elements() const { return elements_; } /// Append an element with range [begin, end) and the given separation type \p sep. template void append(Iterator begin, Iterator end, separation_type_t sep = separation_type_t::inferred) { if (!try_add_size(std::distance(begin, end))) return; // Try merging with the last element. if (sep == separation_type_t::inferred && !elements_.empty() && !elements_.back().is_explicitly_separated()) { elements_.back().contents.append(begin, end); } else { elements_.emplace_back(StringType(begin, end), sep); } } /// Append a string \p str with the given separation type \p sep. void append(const StringType &str, separation_type_t sep = separation_type_t::inferred) { append(str.begin(), str.end(), sep); } // Given that this is a narrow stream, convert a wide stream \p rhs to narrow and then append // it. template void append_wide_buffer(const separated_buffer_t &rhs) { for (const auto &rhs_elem : rhs.elements()) { append(wcs2string(rhs_elem.contents), rhs_elem.separation); } } }; /// Describes what type of IO operation an io_data_t represents. enum class io_mode_t { file, pipe, fd, close, bufferfill }; /// Represents an FD redirection. class io_data_t { private: // No assignment or copying allowed. io_data_t(const io_data_t &rhs); void operator=(const io_data_t &rhs); protected: io_data_t(io_mode_t m, int f) : io_mode(m), fd(f) {} public: /// Type of redirect. const io_mode_t io_mode; /// FD to redirect. const int fd; virtual void print() const = 0; virtual ~io_data_t() = 0; }; class io_close_t : public io_data_t { public: explicit io_close_t(int f) : io_data_t(io_mode_t::close, f) {} void print() const override; }; class io_fd_t : public io_data_t { public: /// fd to redirect specified fd to. For example, in 2>&1, old_fd is 1, and io_data_t::fd is 2. const int old_fd; /// Whether this redirection was supplied by a script. For example, 'cmd <&3' would have /// user_supplied set to true. But a redirection that comes about through transmogrification /// would not. const bool user_supplied; void print() const override; io_fd_t(int f, int old, bool us) : io_data_t(io_mode_t::fd, f), old_fd(old), user_supplied(us) {} }; class io_file_t : public io_data_t { public: /// Filename, malloc'd. This needs to be used after fork, so don't use wcstring here. const char *const filename_cstr; /// file creation flags to send to open. const int flags; void print() const override; io_file_t(int f, const wcstring &fname, int fl = 0) : io_data_t(io_mode_t::file, f), filename_cstr(wcs2str(fname)), flags(fl) {} ~io_file_t() override { free((void *)filename_cstr); } }; /// Represents (one end) of a pipe. class io_pipe_t : public io_data_t { // The pipe's fd. Conceptually this is dup2'd to io_data_t::fd. autoclose_fd_t pipe_fd_; /// Whether this is an input pipe. This is used only for informational purposes. const bool is_input_; public: void print() const override; io_pipe_t(int fd, bool is_input, autoclose_fd_t pipe_fd) : io_data_t(io_mode_t::pipe, fd), pipe_fd_(std::move(pipe_fd)), is_input_(is_input) {} ~io_pipe_t(); int pipe_fd() const { return pipe_fd_.fd(); } }; class io_buffer_t; class io_chain_t; /// Represents filling an io_buffer_t. Very similar to io_pipe_t. /// Bufferfills always target stdout. class io_bufferfill_t : public io_data_t { /// Write end. The other end is connected to an io_buffer_t. const autoclose_fd_t write_fd_; /// The receiving buffer. const std::shared_ptr buffer_; public: void print() const override; // The ctor is public to support make_shared() in the static create function below. // Do not invoke this directly. io_bufferfill_t(autoclose_fd_t write_fd, std::shared_ptr buffer) : io_data_t(io_mode_t::bufferfill, STDOUT_FILENO), write_fd_(std::move(write_fd)), buffer_(std::move(buffer)) {} ~io_bufferfill_t(); std::shared_ptr buffer() const { return buffer_; } /// \return the fd that, when written to, fills the buffer. int write_fd() const { return write_fd_.fd(); } /// Create an io_bufferfill_t which, when written from, fills a buffer with the contents. /// \returns nullptr on failure, e.g. too many open fds. /// /// \param conflicts A set of IO redirections. The function ensures that any pipe it makes does /// not conflict with an fd redirection in this list. static shared_ptr create(const io_chain_t &conflicts, size_t buffer_limit = 0); /// Reset the receiver (possibly closing the write end of the pipe), and complete the fillthread /// of the buffer. \return the buffer. static std::shared_ptr finish(std::shared_ptr &&filler); }; class output_stream_t; /// An io_buffer_t is a buffer which can populate itself by reading from an fd. /// It is not an io_data_t. class io_buffer_t { private: friend io_bufferfill_t; /// Buffer storing what we have read. separated_buffer_t buffer_; /// Atomic flag indicating our fillthread should shut down. std::atomic shutdown_fillthread_{false}; /// The background fillthread itself, if any. maybe_t fillthread_{}; /// Read limit of the buffer. const size_t read_limit_; /// Lock for appending. std::mutex append_lock_{}; /// Called in the background thread to run it. void run_background_fillthread(autoclose_fd_t readfd); /// Begin the background fillthread operation, reading from the given fd. void begin_background_fillthread(autoclose_fd_t readfd); /// End the background fillthread operation. void complete_background_fillthread(); public: explicit io_buffer_t(size_t limit) : buffer_(limit), read_limit_(limit) { // Explicitly reset the discard flag because we share this buffer. buffer_.reset_discard(); } ~io_buffer_t(); /// Access the underlying buffer. /// This requires that the background fillthread be none. const separated_buffer_t &buffer() const { assert(!fillthread_ && "Cannot access buffer during background fill"); return buffer_; } /// Function to append to the buffer. void append(const char *ptr, size_t count) { scoped_lock locker(append_lock_); buffer_.append(ptr, ptr + count); } /// \return the read limit. size_t read_limit() const { return read_limit_; } /// Appends data from a given output_stream_t. /// Marks the receiver as discarded if the stream was discarded. void append_from_stream(const output_stream_t &stream); }; class io_chain_t : public std::vector> { public: using std::vector>::vector; // user-declared ctor to allow const init. Do not default this, it will break the build. io_chain_t() {} void remove(const shared_ptr &element); void push_back(shared_ptr element); void push_front(shared_ptr element); void append(const io_chain_t &chain); shared_ptr get_io_for_fd(int fd) const; shared_ptr get_io_for_fd(int fd); }; /// Return the last io redirection in the chain for the specified file descriptor. shared_ptr io_chain_get(const io_chain_t &src, int fd); shared_ptr io_chain_get(io_chain_t &src, int fd); /// Helper type returned from making autoclose pipes. struct autoclose_pipes_t { /// Read end of the pipe. autoclose_fd_t read; /// Write end of the pipe. autoclose_fd_t write; }; /// Call pipe(), populating autoclose fds, avoiding conflicts. /// The pipes are marked CLO_EXEC. /// \return pipes on success, none() on error. maybe_t make_autoclose_pipes(const io_chain_t &ios); /// If the given fd is used by the io chain, duplicates it repeatedly until an fd not used in the io /// chain is found, or we run out. If we return a new fd or an error, closes the old one. /// If \p cloexec is set, any fd created is marked close-on-exec. /// \returns -1 on failure (in which case the given fd is still closed). int move_fd_to_unused(int fd, const io_chain_t &io_chain, bool cloexec = true); /// Class representing the output that a builtin can generate. class output_stream_t { private: /// Storage for our data. separated_buffer_t buffer_; // No copying. output_stream_t(const output_stream_t &s) = delete; void operator=(const output_stream_t &s) = delete; public: output_stream_t(size_t buffer_limit) : buffer_(buffer_limit) {} void append(const wcstring &s) { buffer_.append(s.begin(), s.end()); } separated_buffer_t &buffer() { return buffer_; } const separated_buffer_t &buffer() const { return buffer_; } void append(const wchar_t *s) { append(s, wcslen(s)); } void append(wchar_t s) { append(&s, 1); } void append(const wchar_t *s, size_t amt) { buffer_.append(s, s + amt); } void push_back(wchar_t c) { append(c); } void append_format(const wchar_t *format, ...) { va_list va; va_start(va, format); append_formatv(format, va); va_end(va); } void append_formatv(const wchar_t *format, va_list va) { append(vformat_string(format, va)); } bool empty() const { return buffer_.size() == 0; } wcstring contents() const { return buffer_.newline_serialized(); } }; struct io_streams_t { output_stream_t out; output_stream_t err; // fd representing stdin. This is not closed by the destructor. int stdin_fd{-1}; // Whether stdin is "directly redirected," meaning it is the recipient of a pipe (foo | cmd) or // direct redirection (cmd < foo.txt). An "indirect redirection" would be e.g. begin ; cmd ; end // < foo.txt bool stdin_is_directly_redirected{false}; // Indicates whether stdout and stderr are redirected (e.g. to a file or piped). bool out_is_redirected{false}; bool err_is_redirected{false}; // Actual IO redirections. This is only used by the source builtin. Unowned. const io_chain_t *io_chain{nullptr}; // io_streams_t cannot be copied. io_streams_t(const io_streams_t &) = delete; void operator=(const io_streams_t &) = delete; explicit io_streams_t(size_t read_limit) : out(read_limit), err(read_limit), stdin_fd(-1) {} }; #if 0 // Print debug information about the specified IO redirection chain to stderr. void io_print(const io_chain_t &chain); #endif #endif