// Provides the "linkage" between a parse_node_tree_t and actual execution structures (job_t, etc.) // // A note on error handling: fish has two kind of errors, fatal parse errors non-fatal runtime // errors. A fatal error prevents execution of the entire file, while a non-fatal error skips that // job. // // Non-fatal errors are printed as soon as they are encountered; otherwise you would have to wait // for the execution to finish to see them. #include "config.h" // IWYU pragma: keep #include "parse_execution.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include "builtin.h" #include "builtin_function.h" #include "common.h" #include "complete.h" #include "env.h" #include "event.h" #include "exec.h" #include "expand.h" #include "flog.h" #include "function.h" #include "io.h" #include "maybe.h" #include "parse_constants.h" #include "parse_util.h" #include "parser.h" #include "path.h" #include "proc.h" #include "reader.h" #include "timer.h" #include "tnode.h" #include "tokenizer.h" #include "trace.h" #include "util.h" #include "wildcard.h" #include "wutil.h" namespace g = grammar; /// These are the specific statement types that support redirections. static constexpr bool type_is_redirectable_block(parse_token_type_t type) { return type == symbol_block_statement || type == symbol_if_statement || type == symbol_switch_statement; } static bool specific_statement_type_is_redirectable_block(const parse_node_t &node) { return type_is_redirectable_block(node.type); } /// Get the name of a redirectable block, for profiling purposes. static wcstring profiling_cmd_name_for_redirectable_block(const parse_node_t &node, const parse_node_tree_t &tree, const wcstring &src) { assert(specific_statement_type_is_redirectable_block(node)); assert(node.has_source()); // Get the source for the block, and cut it at the next statement terminator. const size_t src_start = node.source_start; auto term = tree.find_child(node); assert(term.has_source() && term.source_range()->start >= src_start); size_t src_len = term.source_range()->start - src_start; wcstring result = wcstring(src, src_start, src_len); result.append(L"..."); return result; } /// Get a redirection from stderr to stdout (i.e. 2>&1). static redirection_spec_t get_stderr_merge() { const wchar_t *stdout_fileno_str = L"1"; return redirection_spec_t{STDERR_FILENO, redirection_mode_t::fd, stdout_fileno_str}; } parse_execution_context_t::parse_execution_context_t(parsed_source_ref_t pstree, parser_t *p, const operation_context_t &ctx, job_lineage_t lineage) : pstree(std::move(pstree)), parser(p), ctx(ctx), lineage(std::move(lineage)) {} // Utilities wcstring parse_execution_context_t::get_source(const parse_node_t &node) const { return node.get_source(pstree->src); } tnode_t parse_execution_context_t::infinite_recursive_statement_in_job_list( tnode_t job_list, wcstring *out_func_name) const { // This is a bit fragile. It is a test to see if we are inside of function call, but not inside // a block in that function call. If, in the future, the rules for what block scopes are pushed // on function invocation changes, then this check will break. const block_t *current = parser->block_at_index(0), *parent = parser->block_at_index(1); bool is_within_function_call = (current && parent && current->type() == block_type_t::top && parent->is_function_call()); if (!is_within_function_call) { return {}; } // Get the function name of the immediate block. const wcstring &forbidden_function_name = parent->function_name; // Get the first job in the job list. tnode_t first_job = job_list.try_get_child().child<0>(); if (!first_job) { return {}; } // Here's the statement node we find that's infinite recursive. tnode_t infinite_recursive_statement; // Ignore the jobs variable assigment and "time" prefixes. tnode_t statement = first_job.child<2>(); tnode_t continuation = first_job.child<3>(); const null_environment_t nullenv{}; while (statement) { // Get the list of plain statements. // Ignore statements with decorations like 'builtin' or 'command', since those // are not infinite recursion. In particular that is what enables 'wrapper functions'. tnode_t plain_statement = statement.try_get_child() .try_get_child(); if (plain_statement) { maybe_t cmd = command_for_plain_statement(plain_statement, pstree->src); if (cmd && expand_one(*cmd, {expand_flag::skip_cmdsubst, expand_flag::skip_variables}, ctx) && cmd == forbidden_function_name) { // This is it. infinite_recursive_statement = plain_statement; if (out_func_name != nullptr) { *out_func_name = forbidden_function_name; } break; } } statement = continuation.next_in_list(); } return infinite_recursive_statement; } process_type_t parse_execution_context_t::process_type_for_command( tnode_t statement, const wcstring &cmd) const { enum process_type_t process_type = process_type_t::external; // Determine the process type, which depends on the statement decoration (command, builtin, // etc). enum parse_statement_decoration_t decoration = get_decoration(statement); switch (decoration) { case parse_statement_decoration_exec: process_type = process_type_t::exec; break; case parse_statement_decoration_command: process_type = process_type_t::external; break; case parse_statement_decoration_builtin: process_type = process_type_t::builtin; break; case parse_statement_decoration_none: if (function_exists(cmd, *parser)) { process_type = process_type_t::function; } else if (builtin_exists(cmd)) { process_type = process_type_t::builtin; } else { process_type = process_type_t::external; } break; } return process_type; } maybe_t parse_execution_context_t::check_end_execution() const { if (shell_is_exiting()) { return end_execution_reason_t::cancelled; } if (nullptr == parser) { return none(); } if (parser->cancellation_signal) { return end_execution_reason_t::cancelled; } const auto &ld = parser->libdata(); if (ld.returning) { return end_execution_reason_t::control_flow; } if (ld.loop_status != loop_status_t::normals) { return end_execution_reason_t::control_flow; } return none(); } /// Return whether the job contains a single statement, of block type, with no redirections. bool parse_execution_context_t::job_is_simple_block(tnode_t job_node) const { tnode_t statement = job_node.child<2>(); // Must be no pipes. if (job_node.child<3>().try_get_child()) { return false; } // Helper to check if an argument or redirection list has no redirections. auto is_empty = [](tnode_t lst) -> bool { return !lst.next_in_list(); }; // Check if we're a block statement with redirections. We do it this obnoxious way to preserve // type safety (in case we add more specific statement types). const parse_node_t &specific_statement = statement.get_child_node<0>(); switch (specific_statement.type) { case symbol_block_statement: return is_empty(statement.require_get_child().child<3>()); case symbol_switch_statement: return is_empty(statement.require_get_child().child<5>()); case symbol_if_statement: return is_empty(statement.require_get_child().child<3>()); case symbol_not_statement: case symbol_decorated_statement: // not block statements return false; default: assert(0 && "Unexpected child block type"); return false; } } end_execution_reason_t parse_execution_context_t::run_if_statement( tnode_t statement, const block_t *associated_block) { end_execution_reason_t result = end_execution_reason_t::ok; // We have a sequence of if clauses, with a final else, resulting in a single job list that we // execute. tnode_t job_list_to_execute; tnode_t if_clause = statement.child<0>(); tnode_t else_clause = statement.child<1>(); // We start with the 'if'. trace_if_enabled(*parser, L"if"); for (;;) { if (auto ret = check_end_execution()) { result = *ret; break; } // An if condition has a job and a "tail" of andor jobs, e.g. "foo ; and bar; or baz". tnode_t condition_head = if_clause.child<1>(); tnode_t condition_boolean_tail = if_clause.child<3>(); // Check the condition and the tail. We treat end_execution_reason_t::error here as failure, // in accordance with historic behavior. end_execution_reason_t cond_ret = run_job_conjunction(condition_head, associated_block); if (cond_ret == end_execution_reason_t::ok) { cond_ret = run_job_list(condition_boolean_tail, associated_block); } const bool take_branch = (cond_ret == end_execution_reason_t::ok) && parser->get_last_status() == EXIT_SUCCESS; if (take_branch) { // Condition succeeded. job_list_to_execute = if_clause.child<4>(); break; } auto else_cont = else_clause.try_get_child(); if (!else_cont) { // 'if' condition failed, no else clause, return 0, we're done. parser->set_last_statuses(statuses_t::just(STATUS_CMD_OK)); break; } else { // We have an 'else continuation' (either else-if or else). if (auto maybe_if_clause = else_cont.try_get_child()) { // it's an 'else if', go to the next one. if_clause = maybe_if_clause; else_clause = else_cont.try_get_child(); assert(else_clause && "Expected to have an else clause"); trace_if_enabled(*parser, L"else if"); } else { // It's the final 'else', we're done. job_list_to_execute = else_cont.try_get_child(); assert(job_list_to_execute && "Should have a job list"); trace_if_enabled(*parser, L"else"); break; } } } // Execute any job list we got. if (job_list_to_execute) { block_t *ib = parser->push_block(block_t::if_block()); run_job_list(job_list_to_execute, ib); if (auto ret = check_end_execution()) { result = *ret; } parser->pop_block(ib); } else { // No job list means no successful conditions, so return 0 (issue #1443). parser->set_last_statuses(statuses_t::just(STATUS_CMD_OK)); } trace_if_enabled(*parser, L"end if"); // It's possible there's a last-minute cancellation (issue #1297). if (auto ret = check_end_execution()) { result = *ret; } // Otherwise, take the exit status of the job list. Reversal of issue #1061. return result; } end_execution_reason_t parse_execution_context_t::run_begin_statement( tnode_t contents) { // Basic begin/end block. Push a scope block, run jobs, pop it trace_if_enabled(*parser, L"begin"); block_t *sb = parser->push_block(block_t::scope_block(block_type_t::begin)); end_execution_reason_t ret = run_job_list(contents, sb); parser->pop_block(sb); trace_if_enabled(*parser, L"end begin"); return ret; } // Define a function. end_execution_reason_t parse_execution_context_t::run_function_statement( tnode_t statement, tnode_t header) { // Get arguments. wcstring_list_t arguments; argument_node_list_t arg_nodes = header.descendants(); end_execution_reason_t result = this->expand_arguments_from_nodes(arg_nodes, &arguments, failglob); if (result != end_execution_reason_t::ok) { return result; } trace_if_enabled(*parser, L"function", arguments); io_streams_t streams(0); // no limit on the amount of output from builtin_function() int err = builtin_function(*parser, streams, arguments, pstree, statement); parser->set_last_statuses(statuses_t::just(err)); wcstring errtext = streams.err.contents(); if (!errtext.empty()) { return this->report_error(err, header, L"%ls", errtext.c_str()); } return result; } end_execution_reason_t parse_execution_context_t::run_block_statement( tnode_t statement, const block_t *associated_block) { tnode_t bheader = statement.child<0>(); tnode_t contents = statement.child<1>(); end_execution_reason_t ret = end_execution_reason_t::ok; if (auto header = bheader.try_get_child()) { ret = run_for_statement(header, contents); } else if (auto header = bheader.try_get_child()) { ret = run_while_statement(header, contents, associated_block); } else if (auto header = bheader.try_get_child()) { ret = run_function_statement(statement, header); } else if (auto header = bheader.try_get_child()) { ret = run_begin_statement(contents); } else { FLOGF(error, L"Unexpected block header: %ls\n", bheader.node()->describe().c_str()); PARSER_DIE(); } return ret; } end_execution_reason_t parse_execution_context_t::run_for_statement( tnode_t header, tnode_t block_contents) { // Get the variable name: `for var_name in ...`. We expand the variable name. It better result // in just one. tnode_t var_name_node = header.child<1>(); wcstring for_var_name = get_source(var_name_node); if (!expand_one(for_var_name, expand_flags_t{}, ctx)) { return report_error(STATUS_EXPAND_ERROR, var_name_node, FAILED_EXPANSION_VARIABLE_NAME_ERR_MSG, for_var_name.c_str()); } // Get the contents to iterate over. wcstring_list_t arguments; end_execution_reason_t ret = this->expand_arguments_from_nodes( get_argument_nodes(header.child<3>()), &arguments, nullglob); if (ret != end_execution_reason_t::ok) { return ret; } auto var = parser->vars().get(for_var_name, ENV_DEFAULT); if (var && var->read_only()) { return report_error(STATUS_INVALID_ARGS, var_name_node, L"You cannot use read-only variable '%ls' in a for loop", for_var_name.c_str()); } int retval; if (var) { retval = parser->set_var_and_fire(for_var_name, ENV_LOCAL | ENV_USER, var->as_list()); } else { retval = parser->set_empty_var_and_fire(for_var_name, ENV_LOCAL | ENV_USER); } assert(retval == ENV_OK); if (!valid_var_name(for_var_name)) { return report_error(STATUS_INVALID_ARGS, var_name_node, BUILTIN_ERR_VARNAME, L"for", for_var_name.c_str()); } trace_if_enabled(*parser, L"for", arguments); block_t *fb = parser->push_block(block_t::for_block()); // Now drive the for loop. for (const wcstring &val : arguments) { if (auto reason = check_end_execution()) { ret = *reason; break; } int retval = parser->set_var_and_fire(for_var_name, ENV_DEFAULT | ENV_USER, val); assert(retval == ENV_OK && "for loop variable should have been successfully set"); (void)retval; auto &ld = parser->libdata(); ld.loop_status = loop_status_t::normals; this->run_job_list(block_contents, fb); if (check_end_execution() == end_execution_reason_t::control_flow) { // Handle break or continue. bool do_break = (ld.loop_status == loop_status_t::breaks); ld.loop_status = loop_status_t::normals; if (do_break) { break; } } } parser->pop_block(fb); trace_if_enabled(*parser, L"end for"); return ret; } end_execution_reason_t parse_execution_context_t::run_switch_statement( tnode_t statement) { // Get the switch variable. tnode_t switch_value_n = statement.child<1>(); const wcstring switch_value = get_source(switch_value_n); // Expand it. We need to offset any errors by the position of the string. completion_list_t switch_values_expanded; parse_error_list_t errors; auto expand_ret = expand_string(switch_value, &switch_values_expanded, expand_flag::no_descriptions, ctx, &errors); parse_error_offset_source_start(&errors, switch_value_n.source_range()->start); switch (expand_ret.result) { case expand_result_t::error: return report_errors(expand_ret.status, errors); case expand_result_t::cancel: return end_execution_reason_t::cancelled; case expand_result_t::wildcard_no_match: return report_error(STATUS_UNMATCHED_WILDCARD, switch_value_n, WILDCARD_ERR_MSG, get_source(switch_value_n).c_str()); case expand_result_t::ok: if (switch_values_expanded.size() > 1) { return report_error(STATUS_INVALID_ARGS, switch_value_n, _(L"switch: Expected at most one argument, got %lu\n"), switch_values_expanded.size()); } break; } // If we expanded to nothing, match the empty string. assert(switch_values_expanded.size() <= 1 && "Should have at most one expansion"); wcstring switch_value_expanded; if (!switch_values_expanded.empty()) { switch_value_expanded = std::move(switch_values_expanded.front().completion); } end_execution_reason_t result = end_execution_reason_t::ok; block_t *sb = parser->push_block(block_t::switch_block()); // Expand case statements. tnode_t case_item_list = statement.child<3>(); tnode_t matching_case_item{}; while (auto case_item = case_item_list.next_in_list()) { if (auto ret = check_end_execution()) { result = *ret; break; } // Expand arguments. A case item list may have a wildcard that fails to expand to // anything. We also report case errors, but don't stop execution; i.e. a case item that // contains an unexpandable process will report and then fail to match. auto arg_nodes = get_argument_nodes(case_item.child<1>()); wcstring_list_t case_args; end_execution_reason_t case_result = this->expand_arguments_from_nodes(arg_nodes, &case_args, failglob); if (case_result == end_execution_reason_t::ok) { for (const wcstring &arg : case_args) { // Unescape wildcards so they can be expanded again. wcstring unescaped_arg = parse_util_unescape_wildcards(arg); bool match = wildcard_match(switch_value_expanded, unescaped_arg); // If this matched, we're done. if (match) { matching_case_item = case_item; break; } } } if (matching_case_item) break; } if (matching_case_item) { // Success, evaluate the job list. assert(result == end_execution_reason_t::ok && "Expected success"); auto job_list = matching_case_item.child<3>(); result = this->run_job_list(job_list, sb); } parser->pop_block(sb); return result; } end_execution_reason_t parse_execution_context_t::run_while_statement( tnode_t header, tnode_t contents, const block_t *associated_block) { end_execution_reason_t ret = end_execution_reason_t::ok; // "The exit status of the while loop shall be the exit status of the last compound-list-2 // executed, or zero if none was executed." // Here are more detailed requirements: // - If we execute the loop body zero times, or the loop body is empty, the status is success. // - An empty loop body is treated as true, both in the loop condition and after loop exit. // - The exit status of the last command is visible in the loop condition. (i.e. do not set the // exit status to true BEFORE executing the loop condition). // We achieve this by restoring the status if the loop condition fails, plus a special // affordance for the first condition. bool first_cond_check = true; // The conditions of the while loop. tnode_t condition_head = header.child<1>(); tnode_t condition_boolean_tail = header.child<3>(); trace_if_enabled(*parser, L"while"); // Run while the condition is true. for (;;) { // Save off the exit status if it came from the loop body. We'll restore it if the condition // is false. auto cond_saved_status = first_cond_check ? statuses_t::just(EXIT_SUCCESS) : parser->get_last_statuses(); first_cond_check = false; // Check the condition. end_execution_reason_t cond_ret = this->run_job_conjunction(condition_head, associated_block); if (cond_ret == end_execution_reason_t::ok) { cond_ret = run_job_list(condition_boolean_tail, associated_block); } // If the loop condition failed to execute, then exit the loop without modifying the exit // status. If the loop condition executed with a failure status, restore the status and then // exit the loop. if (cond_ret != end_execution_reason_t::ok) { break; } else if (parser->get_last_status() != EXIT_SUCCESS) { parser->set_last_statuses(cond_saved_status); break; } // Check cancellation. if (auto reason = check_end_execution()) { ret = *reason; break; } // Push a while block and then check its cancellation reason. auto &ld = parser->libdata(); ld.loop_status = loop_status_t::normals; block_t *wb = parser->push_block(block_t::while_block()); this->run_job_list(contents, wb); auto cancel_reason = this->check_end_execution(); parser->pop_block(wb); if (cancel_reason == end_execution_reason_t::control_flow) { // Handle break or continue. bool do_break = (ld.loop_status == loop_status_t::breaks); ld.loop_status = loop_status_t::normals; if (do_break) { break; } else { continue; } } // no_exec means that fish was invoked with -n or --no-execute. If set, we allow the loop to // not-execute once so its contents can be checked, and then break. if (no_exec()) { break; } } trace_if_enabled(*parser, L"end while"); return ret; } // Reports an error. Always returns end_execution_reason_t::error. end_execution_reason_t parse_execution_context_t::report_error(int status, const parse_node_t &node, const wchar_t *fmt, ...) const { // Create an error. parse_error_list_t error_list = parse_error_list_t(1); parse_error_t *error = &error_list.at(0); error->source_start = node.source_start; error->source_length = node.source_length; error->code = parse_error_syntax; // hackish va_list va; va_start(va, fmt); error->text = vformat_string(fmt, va); va_end(va); return this->report_errors(status, error_list); } end_execution_reason_t parse_execution_context_t::report_errors( int status, const parse_error_list_t &error_list) const { if (!parser->cancellation_signal) { if (error_list.empty()) { FLOG(error, L"Error reported but no error text found."); } // Get a backtrace. wcstring backtrace_and_desc; parser->get_backtrace(pstree->src, error_list, backtrace_and_desc); // Print it. if (!should_suppress_stderr_for_tests()) { std::fwprintf(stderr, L"%ls", backtrace_and_desc.c_str()); } // Mark status. parser->set_last_statuses(statuses_t::just(status)); } return end_execution_reason_t::error; } /// Handle the case of command not found. end_execution_reason_t parse_execution_context_t::handle_command_not_found( const wcstring &cmd_str, tnode_t statement, int err_code) { // We couldn't find the specified command. This is a non-fatal error. We want to set the exit // status to 127, which is the standard number used by other shells like bash and zsh. const wchar_t *const cmd = cmd_str.c_str(); if (err_code != ENOENT) { return this->report_error(STATUS_NOT_EXECUTABLE, statement, _(L"The file '%ls' is not executable by this user"), cmd); } else { // Handle unrecognized commands with standard command not found handler that can make better // error messages. wcstring_list_t event_args; { auto args = get_argument_nodes(statement.child<1>()); end_execution_reason_t arg_result = this->expand_arguments_from_nodes(args, &event_args, failglob); if (arg_result != end_execution_reason_t::ok) { return arg_result; } event_args.insert(event_args.begin(), cmd_str); } event_fire_generic(*parser, L"fish_command_not_found", &event_args); // Here we want to report an error (so it shows a backtrace), but with no text. return this->report_error(STATUS_CMD_UNKNOWN, statement, L""); } } end_execution_reason_t parse_execution_context_t::expand_command( tnode_t statement, wcstring *out_cmd, wcstring_list_t *out_args) const { // Here we're expanding a command, for example $HOME/bin/stuff or $randomthing. The first // completion becomes the command itself, everything after becomes arguments. Command // substitutions are not supported. parse_error_list_t errors; // Get the unexpanded command string. We expect to always get it here. wcstring unexp_cmd = *command_for_plain_statement(statement, pstree->src); size_t pos_of_command_token = statement.child<0>().source_range()->start; // Expand the string to produce completions, and report errors. expand_result_t expand_err = expand_to_command_and_args(unexp_cmd, ctx, out_cmd, out_args, &errors); if (expand_err == expand_result_t::error) { // Issue #5812 - the expansions were done on the command token, // excluding prefixes such as " " or "if ". // This means that the error positions are relative to the beginning // of the token; we need to make them relative to the original source. for (auto &error : errors) error.source_start += pos_of_command_token; return report_errors(STATUS_ILLEGAL_CMD, errors); } else if (expand_err == expand_result_t::wildcard_no_match) { return report_error(STATUS_UNMATCHED_WILDCARD, statement, WILDCARD_ERR_MSG, get_source(statement).c_str()); } assert(expand_err == expand_result_t::ok); // Complain if the resulting expansion was empty, or expanded to an empty string. // For no-exec it's okay, as we can't really perform the expansion. if (out_cmd->empty() && !no_exec()) { return this->report_error(STATUS_ILLEGAL_CMD, statement, _(L"The expanded command was empty.")); } return end_execution_reason_t::ok; } /// Creates a 'normal' (non-block) process. end_execution_reason_t parse_execution_context_t::populate_plain_process( job_t *job, process_t *proc, tnode_t statement) { assert(job != nullptr); assert(proc != nullptr); // We may decide that a command should be an implicit cd. bool use_implicit_cd = false; // Get the command and any arguments due to expanding the command. wcstring cmd; wcstring_list_t args_from_cmd_expansion; auto ret = expand_command(statement, &cmd, &args_from_cmd_expansion); if (ret != end_execution_reason_t::ok) { return ret; } // For no-exec, having an empty command is okay. We can't do anything more with it tho. if (no_exec()) return end_execution_reason_t::ok; assert(!cmd.empty() && "expand_command should not produce an empty command"); // Determine the process type. enum process_type_t process_type = process_type_for_command(statement, cmd); wcstring path_to_external_command; if (process_type == process_type_t::external || process_type == process_type_t::exec) { // Determine the actual command. This may be an implicit cd. bool has_command = path_get_path(cmd, &path_to_external_command, parser->vars()); // If there was no command, then we care about the value of errno after checking for it, to // distinguish between e.g. no file vs permissions problem. const int no_cmd_err_code = errno; // If the specified command does not exist, and is undecorated, try using an implicit cd. if (!has_command && get_decoration(statement) == parse_statement_decoration_none) { // Implicit cd requires an empty argument and redirection list. tnode_t args = statement.child<1>(); if (args_from_cmd_expansion.empty() && !args.try_get_child() && !args.try_get_child()) { // Ok, no arguments or redirections; check to see if the command is a directory. use_implicit_cd = path_as_implicit_cd(cmd, parser->vars().get_pwd_slash(), parser->vars()) .has_value(); } } if (!has_command && !use_implicit_cd) { // No command. If we're --no-execute return okay - it might be a function. if (no_exec()) return end_execution_reason_t::ok; return this->handle_command_not_found(cmd, statement, no_cmd_err_code); } } // Produce the full argument list and the set of IO redirections. wcstring_list_t cmd_args; redirection_spec_list_t redirections; if (use_implicit_cd) { // Implicit cd is simple. cmd_args = {L"cd", cmd}; path_to_external_command.clear(); // If we have defined a wrapper around cd, use it, otherwise use the cd builtin. process_type = function_exists(L"cd", *parser) ? process_type_t::function : process_type_t::builtin; } else { // Not implicit cd. const globspec_t glob_behavior = (cmd == L"set" || cmd == L"count") ? nullglob : failglob; // Form the list of arguments. The command is the first argument, followed by any arguments // from expanding the command, followed by the argument nodes themselves. E.g. if the // command is '$gco foo' and $gco is git checkout. cmd_args.push_back(cmd); cmd_args.insert(cmd_args.end(), args_from_cmd_expansion.begin(), args_from_cmd_expansion.end()); argument_node_list_t arg_nodes = statement.descendants(); end_execution_reason_t arg_result = this->expand_arguments_from_nodes(arg_nodes, &cmd_args, glob_behavior); if (arg_result != end_execution_reason_t::ok) { return arg_result; } // The set of IO redirections that we construct for the process. auto reason = this->determine_redirections(statement.child<1>(), &redirections); if (reason != end_execution_reason_t::ok) { return reason; } // Determine the process type. process_type = process_type_for_command(statement, cmd); } // Populate the process. proc->type = process_type; proc->set_argv(cmd_args); proc->set_redirection_specs(std::move(redirections)); proc->actual_cmd = std::move(path_to_external_command); return end_execution_reason_t::ok; } // Determine the list of arguments, expanding stuff. Reports any errors caused by expansion. If we // have a wildcard that could not be expanded, report the error and continue. end_execution_reason_t parse_execution_context_t::expand_arguments_from_nodes( const argument_node_list_t &argument_nodes, wcstring_list_t *out_arguments, globspec_t glob_behavior) { // Get all argument nodes underneath the statement. We guess we'll have that many arguments (but // may have more or fewer, if there are wildcards involved). out_arguments->reserve(out_arguments->size() + argument_nodes.size()); completion_list_t arg_expanded; for (const auto &arg_node : argument_nodes) { // Expect all arguments to have source. assert(arg_node.has_source()); const wcstring arg_str = arg_node.get_source(pstree->src); // Expand this string. parse_error_list_t errors; arg_expanded.clear(); auto expand_ret = expand_string(arg_str, &arg_expanded, expand_flag::no_descriptions, ctx, &errors); parse_error_offset_source_start(&errors, arg_node.source_range()->start); switch (expand_ret.result) { case expand_result_t::error: { return this->report_errors(expand_ret.status, errors); } case expand_result_t::cancel: { return end_execution_reason_t::cancelled; } case expand_result_t::wildcard_no_match: { if (glob_behavior == failglob) { // For no_exec, ignore the error - this might work at runtime. if (no_exec()) return end_execution_reason_t::ok; // Report the unmatched wildcard error and stop processing. return report_error(STATUS_UNMATCHED_WILDCARD, arg_node, WILDCARD_ERR_MSG, get_source(arg_node).c_str()); } break; } case expand_result_t::ok: { break; } default: { DIE("unexpected expand_string() return value"); } } // Now copy over any expanded arguments. Use std::move() to avoid extra allocations; this // is called very frequently. out_arguments->reserve(out_arguments->size() + arg_expanded.size()); for (completion_t &new_arg : arg_expanded) { out_arguments->push_back(std::move(new_arg.completion)); } } // We may have received a cancellation during this expansion. if (auto ret = check_end_execution()) { return *ret; } return end_execution_reason_t::ok; } end_execution_reason_t parse_execution_context_t::determine_redirections( tnode_t node, redirection_spec_list_t *out_redirections) { // Get all redirection nodes underneath the statement. while (auto redirect_node = node.next_in_list()) { wcstring target; // file path or target fd auto redirect = redirection_for_node(redirect_node, pstree->src, &target); if (!redirect || !redirect->is_valid()) { // TODO: figure out if this can ever happen. If so, improve this error message. return report_error(STATUS_INVALID_ARGS, redirect_node, _(L"Invalid redirection: %ls"), redirect_node.get_source(pstree->src).c_str()); } // PCA: I can't justify this skip_variables flag. It was like this when I got here. bool target_expanded = expand_one(target, no_exec() ? expand_flag::skip_variables : expand_flags_t{}, ctx); if (!target_expanded || target.empty()) { // TODO: Improve this error message. return report_error(STATUS_INVALID_ARGS, redirect_node, _(L"Invalid redirection target: %ls"), target.c_str()); } // Make a redirection spec from the redirect token. assert(redirect && redirect->is_valid() && "expected to have a valid redirection"); redirection_spec_t spec{redirect->fd, redirect->mode, std::move(target)}; // Validate this spec. if (spec.mode == redirection_mode_t::fd && !spec.is_close() && !spec.get_target_as_fd()) { const wchar_t *fmt = _(L"Requested redirection to '%ls', which is not a valid file descriptor"); return report_error(STATUS_INVALID_ARGS, redirect_node, fmt, spec.target.c_str()); } out_redirections->push_back(std::move(spec)); if (redirect->stderr_merge) { // This was a redirect like &> which also modifies stderr. // Also redirect stderr to stdout. out_redirections->push_back(get_stderr_merge()); } } return end_execution_reason_t::ok; } end_execution_reason_t parse_execution_context_t::populate_not_process( job_t *job, process_t *proc, tnode_t not_statement) { auto &flags = job->mut_flags(); flags.negate = !flags.negate; auto optional_time = not_statement.require_get_child(); if (optional_time.tag() == parse_optional_time_time) { flags.has_time_prefix = true; if (!job->mut_flags().foreground) { return this->report_error(STATUS_INVALID_ARGS, not_statement, ERROR_TIME_BACKGROUND); } } return this->populate_job_process( job, proc, not_statement.require_get_child(), not_statement.require_get_child()); } template end_execution_reason_t parse_execution_context_t::populate_block_process( job_t *job, process_t *proc, tnode_t statement, tnode_t specific_statement) { // We handle block statements by creating process_type_t::block_node, that will bounce back to // us when it's time to execute them. UNUSED(job); static_assert(Type::token == symbol_block_statement || Type::token == symbol_if_statement || Type::token == symbol_switch_statement, "Invalid block process"); assert(statement && "statement missing"); assert(specific_statement && "specific_statement missing"); // The set of IO redirections that we construct for the process. // TODO: fix this ugly find_child. auto arguments = specific_statement.template find_child(); redirection_spec_list_t redirections; auto reason = this->determine_redirections(arguments, &redirections); if (reason == end_execution_reason_t::ok) { proc->type = process_type_t::block_node; proc->block_node_source = pstree; proc->internal_block_node = statement; proc->set_redirection_specs(std::move(redirections)); } return reason; } end_execution_reason_t parse_execution_context_t::apply_variable_assignments( process_t *proc, tnode_t variable_assignments, const block_t **block) { variable_assignment_node_list_t assignment_list = get_variable_assignment_nodes(variable_assignments); if (assignment_list.empty()) return end_execution_reason_t::ok; *block = parser->push_block(block_t::variable_assignment_block()); for (const auto &variable_assignment : assignment_list) { const wcstring &source = variable_assignment.get_source(pstree->src); auto equals_pos = variable_assignment_equals_pos(source); assert(equals_pos); const wcstring variable_name = source.substr(0, *equals_pos); const wcstring expression = source.substr(*equals_pos + 1); completion_list_t expression_expanded; parse_error_list_t errors; // TODO this is mostly copied from expand_arguments_from_nodes, maybe extract to function auto expand_ret = expand_string(expression, &expression_expanded, expand_flag::no_descriptions, ctx, &errors); parse_error_offset_source_start( &errors, variable_assignment.source_range()->start + *equals_pos + 1); switch (expand_ret.result) { case expand_result_t::error: return this->report_errors(expand_ret.status, errors); case expand_result_t::cancel: return end_execution_reason_t::cancelled; case expand_result_t::wildcard_no_match: // nullglob (equivalent to set) case expand_result_t::ok: break; default: { DIE("unexpected expand_string() return value"); } } wcstring_list_t vals; for (auto &completion : expression_expanded) { vals.emplace_back(std::move(completion.completion)); } if (proc) proc->variable_assignments.push_back({variable_name, vals}); parser->set_var_and_fire(variable_name, ENV_LOCAL | ENV_EXPORT, std::move(vals)); } return end_execution_reason_t::ok; } end_execution_reason_t parse_execution_context_t::populate_job_process( job_t *job, process_t *proc, tnode_t statement, tnode_t variable_assignments) { // Get the "specific statement" which is boolean / block / if / switch / decorated. const parse_node_t &specific_statement = statement.get_child_node<0>(); const block_t *block = nullptr; end_execution_reason_t result = this->apply_variable_assignments(proc, variable_assignments, &block); cleanup_t scope([&]() { if (block) parser->pop_block(block); }); if (result != end_execution_reason_t::ok) return result; switch (specific_statement.type) { case symbol_not_statement: { result = this->populate_not_process(job, proc, {&tree(), &specific_statement}); break; } case symbol_block_statement: result = this->populate_block_process( job, proc, statement, tnode_t(&tree(), &specific_statement)); break; case symbol_if_statement: result = this->populate_block_process( job, proc, statement, tnode_t(&tree(), &specific_statement)); break; case symbol_switch_statement: result = this->populate_block_process( job, proc, statement, tnode_t(&tree(), &specific_statement)); break; case symbol_decorated_statement: { // Get the plain statement. It will pull out the decoration itself. tnode_t dec_stat{&tree(), &specific_statement}; auto plain_statement = dec_stat.find_child(); result = this->populate_plain_process(job, proc, plain_statement); break; } default: { FLOGF(error, L"'%ls' not handled by new parser yet.", specific_statement.describe().c_str()); PARSER_DIE(); break; } } return result; } end_execution_reason_t parse_execution_context_t::populate_job_from_job_node( job_t *j, tnode_t job_node, const block_t *associated_block) { UNUSED(associated_block); // Tell the job what its command is. j->set_command(get_source(job_node)); // We are going to construct process_t structures for every statement in the job. Get the first // statement. tnode_t optional_time = job_node.child<0>(); tnode_t variable_assignments = job_node.child<1>(); tnode_t statement = job_node.child<2>(); // Create processes. Each one may fail. process_list_t processes; processes.emplace_back(new process_t()); if (optional_time.tag() == parse_optional_time_time) { j->mut_flags().has_time_prefix = true; if (job_node_is_background(job_node)) { return this->report_error(STATUS_INVALID_ARGS, job_node, ERROR_TIME_BACKGROUND); } } end_execution_reason_t result = this->populate_job_process(j, processes.back().get(), statement, variable_assignments); // Construct process_ts for job continuations (pipelines), by walking the list until we hit the // terminal (empty) job continuation. tnode_t job_cont = job_node.child<3>(); assert(job_cont); while (auto pipe = job_cont.try_get_child()) { if (result != end_execution_reason_t::ok) { break; } auto variable_assignments = job_cont.require_get_child(); auto statement = job_cont.require_get_child(); // Handle the pipe, whose fd may not be the obvious stdout. auto parsed_pipe = pipe_or_redir_t::from_string(get_source(pipe)); assert(parsed_pipe.has_value() && parsed_pipe->is_pipe && "Failed to parse valid pipe"); if (!parsed_pipe->is_valid()) { result = report_error(STATUS_INVALID_ARGS, pipe, ILLEGAL_FD_ERR_MSG, get_source(pipe).c_str()); break; } processes.back()->pipe_write_fd = parsed_pipe->fd; if (parsed_pipe->stderr_merge) { // This was a pipe like &| which redirects both stdout and stderr. // Also redirect stderr to stdout. auto specs = processes.back()->redirection_specs(); specs.push_back(get_stderr_merge()); processes.back()->set_redirection_specs(std::move(specs)); } // Store the new process (and maybe with an error). processes.emplace_back(new process_t()); result = this->populate_job_process(j, processes.back().get(), statement, variable_assignments); // Get the next continuation. job_cont = job_cont.require_get_child(); assert(job_cont); } // Inform our processes of who is first and last processes.front()->is_first_in_job = true; processes.back()->is_last_in_job = true; // Return what happened. if (result == end_execution_reason_t::ok) { // Link up the processes. assert(!processes.empty()); //!OCLINT(multiple unary operator) j->processes = std::move(processes); } return result; } static bool remove_job(parser_t &parser, job_t *job) { for (auto j = parser.jobs().begin(); j != parser.jobs().end(); ++j) { if (j->get() == job) { parser.jobs().erase(j); return true; } } return false; } end_execution_reason_t parse_execution_context_t::run_1_job(tnode_t job_node, const block_t *associated_block) { if (auto ret = check_end_execution()) { return *ret; } // We definitely do not want to execute anything if we're told we're --no-execute! if (no_exec()) return end_execution_reason_t::ok; // Get terminal modes. struct termios tmodes = {}; if (parser->is_interactive() && tcgetattr(STDIN_FILENO, &tmodes)) { // Need real error handling here. wperror(L"tcgetattr"); parser->set_last_statuses(statuses_t::just(STATUS_CMD_ERROR)); return end_execution_reason_t::error; } // Increment the eval_level for the duration of this command. scoped_push saved_eval_level(&parser->eval_level, parser->eval_level + 1); // Save the node index. scoped_push> saved_node(&executing_job_node, job_node); // Profiling support. long long start_time = 0, parse_time = 0, exec_time = 0; profile_item_t *profile_item = this->parser->create_profile_item(); if (profile_item != nullptr) { start_time = get_time(); } // When we encounter a block construct (e.g. while loop) in the general case, we create a "block // process" containing its node. This allows us to handle block-level redirections. // However, if there are no redirections, then we can just jump into the block directly, which // is significantly faster. if (job_is_simple_block(job_node)) { tnode_t optional_time = job_node.child<0>(); // If no-exec has been given, there is nothing to time. cleanup_t timer = push_timer(optional_time.tag() == parse_optional_time_time && !no_exec()); tnode_t variable_assignments = job_node.child<1>(); const block_t *block = nullptr; end_execution_reason_t result = this->apply_variable_assignments(nullptr, variable_assignments, &block); cleanup_t scope([&]() { if (block) parser->pop_block(block); }); tnode_t statement = job_node.child<2>(); const parse_node_t &specific_statement = statement.get_child_node<0>(); assert(specific_statement_type_is_redirectable_block(specific_statement)); if (result == end_execution_reason_t::ok) { switch (specific_statement.type) { case symbol_block_statement: { result = this->run_block_statement({&tree(), &specific_statement}, associated_block); break; } case symbol_if_statement: { result = this->run_if_statement({&tree(), &specific_statement}, associated_block); break; } case symbol_switch_statement: { result = this->run_switch_statement({&tree(), &specific_statement}); break; } default: { // Other types should be impossible due to the // specific_statement_type_is_redirectable_block check. PARSER_DIE(); break; } } } if (profile_item != nullptr) { // Block-types profile a little weird. They have no 'parse' time, and their command is // just the block type. exec_time = get_time(); profile_item->level = parser->eval_level; profile_item->parse = 0; profile_item->exec = static_cast(exec_time - start_time); profile_item->cmd = profiling_cmd_name_for_redirectable_block( specific_statement, this->tree(), this->pstree->src); profile_item->skipped = false; } return result; } const auto &ld = parser->libdata(); auto job_control_mode = get_job_control_mode(); bool wants_job_control = (job_control_mode == job_control_t::all) || ((job_control_mode == job_control_t::interactive) && parser->is_interactive()) || lineage.root_has_job_control; job_t::properties_t props{}; props.wants_terminal = wants_job_control && !ld.is_event; props.skip_notification = ld.is_subshell || ld.is_block || ld.is_event || !parser->is_interactive(); props.from_event_handler = ld.is_event; props.job_control = wants_job_control; shared_ptr job = std::make_shared(acquire_job_id(), props, this->lineage); job->tmodes = tmodes; job->mut_flags().foreground = !job_node_is_background(job_node); // We are about to populate a job. One possible argument to the job is a command substitution // which may be interested in the job that's populating it, via '--on-job-exit caller'. Record // the job ID here. scoped_push caller_id(&parser->libdata().caller_id, job->internal_job_id); // Populate the job. This may fail for reasons like command_not_found. If this fails, an error // will have been printed. end_execution_reason_t pop_result = this->populate_job_from_job_node(job.get(), job_node, associated_block); caller_id.restore(); // Store time it took to 'parse' the command. if (profile_item != nullptr) { parse_time = get_time(); } // Clean up the job on failure or cancellation. if (pop_result == end_execution_reason_t::ok) { // Set the pgroup assignment mode and job tree, now that the job is populated. job->pgroup_provenance = get_pgroup_provenance(job, lineage); job->job_tree = job_tree_t::decide_tree_for_job(job.get(), lineage.job_tree); // Success. Give the job to the parser - it will clean it up. parser->job_add(job); // Check to see if this contained any external commands. bool job_contained_external_command = false; for (const auto &proc : job->processes) { if (proc->type == process_type_t::external) { job_contained_external_command = true; break; } } // Actually execute the job. if (!exec_job(*this->parser, job, lineage)) { remove_job(*this->parser, job.get()); } // Update universal variables on external conmmands. // TODO: justify this, why not on every command? if (job_contained_external_command) { parser->vars().universal_barrier(); } } if (profile_item != nullptr) { exec_time = get_time(); profile_item->level = parser->eval_level; profile_item->parse = static_cast(parse_time - start_time); profile_item->exec = static_cast(exec_time - parse_time); profile_item->cmd = job ? job->command() : wcstring(); profile_item->skipped = (pop_result != end_execution_reason_t::ok); } job_reap(*parser, false); // clean up jobs return pop_result; } end_execution_reason_t parse_execution_context_t::run_job_conjunction( tnode_t job_expr, const block_t *associated_block) { end_execution_reason_t result = end_execution_reason_t::ok; tnode_t cursor = job_expr; // continuation is the parent of the cursor tnode_t continuation; while (cursor) { if (auto reason = check_end_execution()) { result = *reason; break; } bool skip = false; if (continuation) { // Check the conjunction type. parse_job_decoration_t conj = bool_statement_type(continuation); assert((conj == parse_job_decoration_and || conj == parse_job_decoration_or) && "Unexpected conjunction"); skip = should_skip(conj); } if (!skip) { result = run_1_job(cursor.child<0>(), associated_block); } continuation = cursor.child<1>(); cursor = continuation.try_get_child(); } return result; } bool parse_execution_context_t::should_skip(parse_job_decoration_t type) const { switch (type) { case parse_job_decoration_and: // AND. Skip if the last job failed. return parser->get_last_status() != 0; case parse_job_decoration_or: // OR. Skip if the last job succeeded. return parser->get_last_status() == 0; default: return false; } } template end_execution_reason_t parse_execution_context_t::run_job_list(tnode_t job_list, const block_t *associated_block) { // We handle both job_list and andor_job_list uniformly. static_assert(Type::token == symbol_job_list || Type::token == symbol_andor_job_list, "Not a job list"); end_execution_reason_t result = end_execution_reason_t::ok; while (auto job_conj = job_list.template next_in_list()) { if (auto reason = check_end_execution()) { result = *reason; break; } // Maybe skip the job if it has a leading and/or. // Skipping is treated as success. if (should_skip(get_decorator(job_conj))) { result = end_execution_reason_t::ok; } else { result = this->run_job_conjunction(job_conj, associated_block); } } // Returns the result of the last job executed or skipped. return result; } end_execution_reason_t parse_execution_context_t::eval_node(tnode_t statement, const block_t *associated_block) { assert(statement && "Empty node in eval_node"); assert(statement.matches_node_tree(tree()) && "statement has unexpected tree"); enum end_execution_reason_t status = end_execution_reason_t::ok; if (auto block = statement.try_get_child()) { status = this->run_block_statement(block, associated_block); } else if (auto ifstat = statement.try_get_child()) { status = this->run_if_statement(ifstat, associated_block); } else if (auto switchstat = statement.try_get_child()) { status = this->run_switch_statement(switchstat); } else { FLOGF(error, L"Unexpected node %ls found in %s", statement.node()->describe().c_str(), __FUNCTION__); abort(); } return status; } end_execution_reason_t parse_execution_context_t::eval_node(tnode_t job_list, const block_t *associated_block) { // Apply this block IO for the duration of this function. assert(job_list && "Empty node in eval_node"); assert(job_list.matches_node_tree(tree()) && "job_list has unexpected tree"); assert(associated_block && "Null block"); // Check for infinite recursion: a function which immediately calls itself.. wcstring func_name; auto infinite_recursive_node = this->infinite_recursive_statement_in_job_list(job_list, &func_name); if (infinite_recursive_node) { // We have an infinite recursion. return this->report_error(STATUS_CMD_ERROR, infinite_recursive_node, INFINITE_FUNC_RECURSION_ERR_MSG, func_name.c_str()); } // Check for stack overflow. The TOP check ensures we only do this for function calls. if (associated_block->type() == block_type_t::top && parser->function_stack_is_overflowing()) { return this->report_error(STATUS_CMD_ERROR, job_list, CALL_STACK_LIMIT_EXCEEDED_ERR_MSG); } return this->run_job_list(job_list, associated_block); } int parse_execution_context_t::line_offset_of_node(tnode_t node) { // If we're not executing anything, return -1. if (!node) { return -1; } // If for some reason we're executing a node without source, return -1. auto range = node.source_range(); if (!range) { return -1; } return this->line_offset_of_character_at_offset(range->start); } int parse_execution_context_t::line_offset_of_character_at_offset(size_t offset) { // Count the number of newlines, leveraging our cache. assert(offset <= pstree->src.size()); // Easy hack to handle 0. if (offset == 0) { return 0; } // We want to return (one plus) the number of newlines at offsets less than the given offset. // cached_lineno_count is the number of newlines at indexes less than cached_lineno_offset. const wchar_t *str = pstree->src.c_str(); if (offset > cached_lineno_offset) { size_t i; for (i = cached_lineno_offset; i < offset && str[i] != L'\0'; i++) { // Add one for every newline we find in the range [cached_lineno_offset, offset). if (str[i] == L'\n') { cached_lineno_count++; } } cached_lineno_offset = i; // note: i, not offset, in case offset is beyond the length of the string } else if (offset < cached_lineno_offset) { // Subtract one for every newline we find in the range [offset, cached_lineno_offset). for (size_t i = offset; i < cached_lineno_offset; i++) { if (str[i] == L'\n') { cached_lineno_count--; } } cached_lineno_offset = offset; } return cached_lineno_count; } int parse_execution_context_t::get_current_line_number() { int line_number = -1; int line_offset = this->line_offset_of_node(this->executing_job_node); if (line_offset >= 0) { // The offset is 0 based; the number is 1 based. line_number = line_offset + 1; } return line_number; } int parse_execution_context_t::get_current_source_offset() const { int result = -1; if (executing_job_node) { if (auto range = executing_job_node.source_range()) { result = static_cast(range->start); } } return result; }