// Utilities for keeping track of jobs, processes and subshells, as well as signal handling // functions for tracking children. These functions do not themselves launch new processes, the exec // library will call proc to create representations of the running jobs as needed. // // Some of the code in this file is based on code from the Glibc manual. #include "config.h" #include #include #include #include #include #include #if HAVE_TERM_H #include // IWYU pragma: keep #include #elif HAVE_NCURSES_TERM_H #include #endif #include #ifdef HAVE_SIGINFO_H #include #endif #include // IWYU pragma: keep #include #include // IWYU pragma: keep #include #include #include #include #include #include "common.h" #include "env.h" #include "fds.h" #include "event.h" #include "fallback.h" // IWYU pragma: keep #include "flog.h" #include "global_safety.h" #include "io.h" #include "job_group.h" #include "parser.h" #include "proc.h" #include "reader.h" #include "signal.h" #include "wutil.h" // IWYU pragma: keep /// The signals that signify crashes to us. static const int crashsignals[] = {SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV, SIGSYS}; static relaxed_atomic_bool_t s_is_interactive_session{false}; bool is_interactive_session() { return s_is_interactive_session; } void set_interactive_session(bool flag) { s_is_interactive_session = flag; } static relaxed_atomic_bool_t s_is_login{false}; bool get_login() { return s_is_login; } void mark_login() { s_is_login = true; } static relaxed_atomic_bool_t s_no_exec{false}; bool no_exec() { return s_no_exec; } void mark_no_exec() { s_no_exec = true; } bool have_proc_stat() { // Check for /proc/self/stat to see if we are running with Linux-style procfs. static const bool s_result = (access("/proc/self/stat", R_OK) == 0); return s_result; } static relaxed_atomic_t job_control_mode{job_control_t::interactive}; job_control_t get_job_control_mode() { return job_control_mode; } void set_job_control_mode(job_control_t mode) { job_control_mode = mode; // HACK: when fish (or any shell) launches a job with job control, it will put the job into its // own pgroup and call tcsetpgrp() to allow that pgroup to own the terminal (making fish a // background process). When the job finishes, fish will try to reclaim the terminal via // tcsetpgrp(), but as fish is now a background process it will receive SIGTTOU and stop! Ensure // that doesn't happen by ignoring SIGTTOU. // Note that if we become interactive, we also ignore SIGTTOU. if (mode == job_control_t::all) { signal(SIGTTOU, SIG_IGN); } } void proc_init() { signal_set_handlers_once(false); } /// Return true if all processes in the job are stopped or completed, and there is at least one /// stopped process. bool job_t::is_stopped() const { bool has_stopped = false; for (const process_ptr_t &p : processes) { if (!p->completed && !p->stopped) { return false; } has_stopped |= p->stopped; } return has_stopped; } /// Return true if all processes in the job have completed. bool job_t::is_completed() const { assert(!processes.empty()); for (const process_ptr_t &p : processes) { if (!p->completed) { return false; } } return true; } bool job_t::posts_job_exit_events() const { // Only report root job exits. // For example in `ls | begin ; cat ; end` we don't need to report the cat sub-job. if (!flags().is_group_root) return false; // Only jobs with external processes post job_exit events. return this->has_external_proc(); } bool job_t::signal(int signal) { if (auto pgid = group->get_pgid()) { if (killpg(*pgid, signal) == -1) { char buffer[512]; snprintf(buffer, 512, "killpg(%d, %s)", *pgid, strsignal(signal)); wperror(str2wcstring(buffer).c_str()); return false; } } else { // This job lives in fish's pgroup and we need to signal procs individually. for (const auto &p : processes) { if (!p->completed && p->pid && kill(p->pid, signal) == -1) { return false; } } } return true; } maybe_t job_t::get_statuses() const { statuses_t st{}; bool has_status = false; int laststatus = 0; st.pipestatus.reserve(processes.size()); for (const auto &p : processes) { auto status = p->status; if (status.is_empty()) { // Corner case for if a variable assignment is part of a pipeline. // e.g. `false | set foo bar | true` will push 1 in the second spot, // for a complete pipestatus of `1 1 0`. st.pipestatus.push_back(laststatus); continue; } if (status.signal_exited()) { st.kill_signal = status.signal_code(); } laststatus = status.status_value(); has_status = true; st.pipestatus.push_back(status.status_value()); } if (!has_status) { return none(); } st.status = flags().negate ? !laststatus : laststatus; return st; } void internal_proc_t::mark_exited(proc_status_t status) { assert(!exited() && "Process is already exited"); status_.store(status, std::memory_order_relaxed); exited_.store(true, std::memory_order_release); topic_monitor_t::principal().post(topic_t::internal_exit); FLOG(proc_internal_proc, L"Internal proc", internal_proc_id_, L"exited with status", status.status_value()); } static int64_t next_proc_id() { static std::atomic s_next{}; return ++s_next; } internal_proc_t::internal_proc_t() : internal_proc_id_(next_proc_id()) {} job_list_t jobs_requiring_warning_on_exit(const parser_t &parser) { job_list_t result; for (const auto &job : parser.jobs()) { if (!job->is_foreground() && job->is_constructed() && !job->is_completed()) { result.push_back(job); } } return result; } void print_exit_warning_for_jobs(const job_list_t &jobs) { fputws(_(L"There are still jobs active:\n"), stdout); fputws(_(L"\n PID Command\n"), stdout); for (const auto &j : jobs) { fwprintf(stdout, L"%6d %ls\n", j->processes[0]->pid, j->command_wcstr()); } fputws(L"\n", stdout); fputws(_(L"A second attempt to exit will terminate them.\n"), stdout); fputws(_(L"Use 'disown PID' to remove jobs from the list without terminating them.\n"), stdout); reader_schedule_prompt_repaint(); } /// Set the status of \p proc to \p status. static void handle_child_status(const shared_ptr &job, process_t *proc, proc_status_t status) { proc->status = status; if (status.stopped()) { proc->stopped = true; } else if (status.continued()) { proc->stopped = false; } else { proc->completed = true; } // If the child was killed by SIGINT or SIGQUIT, then cancel the entire group if interactive. If // not interactive, we have historically re-sent the signal to ourselves; however don't do that // if the signal is trapped (#6649). // Note the asymmetry: if the fish process gets SIGINT we will run SIGINT handlers. If a child // process gets SIGINT we do not run SIGINT handlers; we just don't exit. This should be // rationalized. if (status.signal_exited()) { int sig = status.signal_code(); if (sig == SIGINT || sig == SIGQUIT) { if (is_interactive_session()) { // Mark the job group as cancelled. job->group->cancel_with_signal(sig); } else if (!event_is_signal_observed(sig)) { // Deliver the SIGINT or SIGQUIT signal to ourself since we're not interactive. struct sigaction act; sigemptyset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = SIG_DFL; sigaction(sig, &act, nullptr); kill(getpid(), sig); } } } } process_t::process_t() = default; void process_t::check_generations_before_launch() { gens_ = topic_monitor_t::principal().current_generations(); } void process_t::mark_aborted_before_launch() { this->completed = true; // The status may have already been set to e.g. STATUS_NOT_EXECUTABLE. // Only stomp a successful status. if (this->status.is_success()) { this->status = proc_status_t::from_exit_code(EXIT_FAILURE); } } bool process_t::is_internal() const { switch (type) { case process_type_t::builtin: case process_type_t::function: case process_type_t::block_node: return true; case process_type_t::external: case process_type_t::exec: return false; default: assert(false && "The fish developers forgot to include a process_t. Please report a bug"); return true; } assert(false && "process_t::is_internal: Total logic failure, universe is broken. Please replace " "universe and retry."); return true; } wait_handle_ref_t process_t::make_wait_handle(internal_job_id_t jid) { if (type != process_type_t::external || pid <= 0) { // Not waitable. return nullptr; } if (!wait_handle_) { wait_handle_ = std::make_shared(this->pid, jid, wbasename(this->actual_cmd)); } return wait_handle_; } static uint64_t next_internal_job_id() { static std::atomic s_next{}; return ++s_next; } job_t::job_t(const properties_t &props, wcstring command_str) : properties(props), command_str(std::move(command_str)), internal_job_id(next_internal_job_id()) {} job_t::~job_t() = default; bool job_t::wants_job_control() const { return group->wants_job_control(); } void job_t::mark_constructed() { assert(!is_constructed() && "Job was already constructed"); mut_flags().constructed = true; } bool job_t::has_external_proc() const { for (const auto &p : processes) { if (!p->is_internal()) return true; } return false; } bool job_t::wants_job_id() const { return processes.size() > 1 || !processes.front()->is_internal() || is_initially_background(); } /// A list of pids that have been disowned. They are kept around until either they exit or /// we exit. Poll these from time-to-time to prevent zombie processes from happening (#5342). static owning_lock> s_disowned_pids; void add_disowned_job(const job_t *j) { assert(j && "Null job"); auto disowned_pids = s_disowned_pids.acquire(); for (auto &process : j->processes) { if (process->pid) { disowned_pids->push_back(process->pid); } } } // Reap any pids in our disowned list that have exited. This is used to avoid zombies. static void reap_disowned_pids() { auto disowned_pids = s_disowned_pids.acquire(); auto try_reap1 = [](pid_t pid) { int status; int ret = waitpid(pid, &status, WNOHANG); if (ret > 0) { FLOGF(proc_reap_external, "Reaped disowned PID or PGID %d", pid); } return ret; }; // waitpid returns 0 iff the PID/PGID in question has not changed state; remove the pid/pgid // if it has changed or an error occurs (presumably ECHILD because the child does not exist) disowned_pids->erase(std::remove_if(disowned_pids->begin(), disowned_pids->end(), try_reap1), disowned_pids->end()); } /// See if any reapable processes have exited, and mark them accordingly. /// \param block_ok if no reapable processes have exited, block until one is (or until we receive a /// signal). static void process_mark_finished_children(parser_t &parser, bool block_ok) { parser.assert_can_execute(); // Get the exit and signal generations of all reapable processes. // The exit generation tells us if we have an exit; the signal generation allows for detecting // SIGHUP and SIGINT. // Go through each process and figure out if and how it wants to be reaped. generation_list_t reapgens = generation_list_t::invalids(); for (const auto &j : parser.jobs()) { for (const auto &proc : j->processes) { if (!j->can_reap(proc)) continue; if (proc->pid > 0) { // Reaps with a pid. reapgens.set_min_from(topic_t::sigchld, proc->gens_); reapgens.set_min_from(topic_t::sighupint, proc->gens_); } if (proc->internal_proc_) { // Reaps with an internal process. reapgens.set_min_from(topic_t::internal_exit, proc->gens_); reapgens.set_min_from(topic_t::sighupint, proc->gens_); } } } // Now check for changes, optionally waiting. if (!topic_monitor_t::principal().check(&reapgens, block_ok)) { // Nothing changed. return; } // We got some changes. Since we last checked we received SIGCHLD, and or HUP/INT. // Update the hup/int generations and reap any reapable processes. // We structure this as two loops for some simplicity. // First reap all pids. for (const auto &j : parser.jobs()) { for (const auto &proc : j->processes) { // Does this proc have a pid that is reapable? if (proc->pid <= 0 || !j->can_reap(proc)) continue; // Always update the signal hup/int gen. proc->gens_.sighupint = reapgens.sighupint; // Nothing to do if we did not get a new sigchld. if (proc->gens_.sigchld == reapgens.sigchld) continue; proc->gens_.sigchld = reapgens.sigchld; // Ok, we are reapable. Run waitpid()! int statusv = -1; pid_t pid = waitpid(proc->pid, &statusv, WNOHANG | WUNTRACED | WCONTINUED); assert((pid <= 0 || pid == proc->pid) && "Unexpcted waitpid() return"); if (pid <= 0) continue; // The process has stopped or exited! Update its status. proc_status_t status = proc_status_t::from_waitpid(statusv); handle_child_status(j, proc.get(), status); if (status.stopped()) { j->group->set_is_foreground(false); } if (status.continued()) { j->mut_flags().notified_of_stop = false; } if (status.normal_exited() || status.signal_exited()) { FLOGF(proc_reap_external, "Reaped external process '%ls' (pid %d, status %d)", proc->argv0(), pid, proc->status.status_value()); } else { assert(status.stopped() || status.continued()); FLOGF(proc_reap_external, "External process '%ls' (pid %d, %s)", proc->argv0(), proc->pid, proc->status.stopped() ? "stopped" : "continued"); } } } // We are done reaping pids. // Reap internal processes. for (const auto &j : parser.jobs()) { for (const auto &proc : j->processes) { // Does this proc have an internal process that is reapable? if (!proc->internal_proc_ || !j->can_reap(proc)) continue; // Always update the signal hup/int gen. proc->gens_.sighupint = reapgens.sighupint; // Nothing to do if we did not get a new internal exit. if (proc->gens_.internal_exit == reapgens.internal_exit) continue; proc->gens_.internal_exit = reapgens.internal_exit; // Has the process exited? if (!proc->internal_proc_->exited()) continue; // The process gets the status from its internal proc. handle_child_status(j, proc.get(), proc->internal_proc_->get_status()); FLOGF(proc_reap_internal, "Reaped internal process '%ls' (id %llu, status %d)", proc->argv0(), proc->internal_proc_->get_id(), proc->status.status_value()); } } // Remove any zombies. reap_disowned_pids(); } /// Generate process_exit events for any completed processes in \p j. static void generate_process_exit_events(const job_ref_t &j, std::vector *out_evts) { // Historically we have avoided generating events for foreground jobs from event handlers, as an // event handler may itself produce a new event. if (!j->from_event_handler() || !j->is_foreground()) { for (const auto &p : j->processes) { if (p->pid > 0 && p->completed && !p->posted_proc_exit) { p->posted_proc_exit = true; out_evts->push_back(event_t::process_exit(p->pid, p->status.status_value())); } } } } /// Given a job that has completed, generate job_exit and caller_exit events. static void generate_job_exit_events(const job_ref_t &j, std::vector *out_evts) { // Generate proc and job exit events, except for foreground jobs originating in event handlers. if (!j->from_event_handler() || !j->is_foreground()) { // job_exit events. if (j->posts_job_exit_events()) { if (auto last_pid = j->get_last_pid()) { out_evts->push_back(event_t::job_exit(*last_pid, j->internal_job_id)); } } } // Generate caller_exit events. out_evts->push_back(event_t::caller_exit(j->internal_job_id, j->job_id())); } /// \return whether to emit a fish_job_summary call for a process. static bool proc_wants_summary(const shared_ptr &j, const process_ptr_t &p) { // Are we completed with a pid? if (!p->completed || !p->pid) return false; // Did we die due to a signal other than SIGPIPE? auto s = p->status; if (!s.signal_exited() || s.signal_code() == SIGPIPE) return false; // Does the job want to suppress notifications? // Note we always report crashes. if (j->skip_notification() && !contains(crashsignals, s.signal_code())) return false; return true; } /// \return whether to emit a fish_job_summary call for a job as a whole. We may also emit this for /// its individual processes. static bool job_wants_summary(const shared_ptr &j) { // Do we just skip notifications? if (j->skip_notification()) return false; // Do we have a single process which will also report? If so then that suffices for us. if (j->processes.size() == 1 && proc_wants_summary(j, j->processes.front())) return false; // Are we foreground? // The idea here is to not print status messages for jobs that execute in the foreground (i.e. // without & and without being `bg`). if (j->is_foreground()) return false; return true; } /// \return whether we want to emit a fish_job_summary call for a job or any of its processes. bool job_or_proc_wants_summary(const shared_ptr &j) { if (job_wants_summary(j)) return true; for (const auto &p : j->processes) { if (proc_wants_summary(j, p)) return true; } return false; } /// Invoke the fish_job_summary function by executing the given command. static void call_job_summary(parser_t &parser, const wcstring &cmd) { event_t event(event_type_t::generic); event.desc.str_param1 = L"fish_job_summary"; block_t *b = parser.push_block(block_t::event_block(event)); auto saved_status = parser.get_last_statuses(); parser.eval(cmd, io_chain_t()); parser.set_last_statuses(saved_status); parser.pop_block(b); } // \return a command which invokes fish_job_summary. // The process pointer may be null, in which case it represents the entire job. // Note this implements the arguments which fish_job_summary expects. wcstring summary_command(const job_ref_t &j, const process_ptr_t &p = nullptr) { wcstring buffer = L"fish_job_summary"; // Job id. append_format(buffer, L" %d", j->job_id()); // 1 if foreground, 0 if background. append_format(buffer, L" %d", static_cast(j->is_foreground())); // Command. buffer.push_back(L' '); buffer.append(escape_string(j->command())); if (!p) { // No process, we are summarizing the whole job. buffer.append(j->is_stopped() ? L" STOPPED" : L" ENDED"); } else { // We are summarizing a process which exited with a signal. // Arguments are the signal name and description. int sig = p->status.signal_code(); buffer.push_back(L' '); buffer.append(escape_string(sig2wcs(sig))); buffer.push_back(L' '); buffer.append(escape_string(signal_get_desc(sig))); // If we have multiple processes, we also append the pid and argv. if (j->processes.size() > 1) { append_format(buffer, L" %d", p->pid); buffer.push_back(L' '); buffer.append(escape_string(p->argv0())); } } return buffer; } // Summarize a list of jobs, by emitting calls to fish_job_summary. // Note the given list must NOT be the parser's own job list, since the call to fish_job_summary // could modify it. static bool summarize_jobs(parser_t &parser, const std::vector &jobs) { if (jobs.empty()) return false; for (const auto &j : jobs) { if (j->is_stopped()) { call_job_summary(parser, summary_command(j)); } else { // Completed job. for (const auto &p : j->processes) { if (proc_wants_summary(j, p)) { call_job_summary(parser, summary_command(j, p)); } } // Overall status for the job. if (job_wants_summary(j)) { call_job_summary(parser, summary_command(j)); } } } return true; } /// Remove all disowned jobs whose job chain is fully constructed (that is, do not erase disowned /// jobs that still have an in-flight parent job). Note we never print statuses for such jobs. static void remove_disowned_jobs(job_list_t &jobs) { auto iter = jobs.begin(); while (iter != jobs.end()) { const auto &j = *iter; if (j->flags().disown_requested && j->is_constructed()) { iter = jobs.erase(iter); } else { ++iter; } } } /// Given that a job has completed, check if it may be wait'ed on; if so add it to the wait handle /// store. Then mark all wait handles as complete. static void save_wait_handle_for_completed_job(const shared_ptr &job, wait_handle_store_t &store) { assert(job && job->is_completed() && "Job null or not completed"); // Are we a background job? if (!job->is_foreground()) { for (auto &proc : job->processes) { store.add(proc->make_wait_handle(job->internal_job_id)); } } // Mark all wait handles as complete (but don't create just for this). for (auto &proc : job->processes) { if (wait_handle_ref_t wh = proc->get_wait_handle()) { wh->status = proc->status.status_value(); wh->completed = true; } } } /// Remove completed jobs from the job list, printing status messages as appropriate. /// \return whether something was printed. static bool process_clean_after_marking(parser_t &parser, bool allow_interactive) { parser.assert_can_execute(); // This function may fire an event handler, we do not want to call ourselves recursively (to // avoid infinite recursion). if (parser.libdata().is_cleaning_procs) { return false; } const scoped_push cleaning(&parser.libdata().is_cleaning_procs, true); // This may be invoked in an exit handler, after the TERM has been torn down // Don't try to print in that case (#3222) const bool interactive = allow_interactive && cur_term != nullptr; // Remove all disowned jobs. remove_disowned_jobs(parser.jobs()); // Accumulate exit events into a new list, which we fire after the list manipulation is // complete. std::vector exit_events; // Defer processing under-construction jobs or jobs that want a message when we are not // interactive. auto should_process_job = [=](const shared_ptr &j) { // Do not attempt to process jobs which are not yet constructed. // Do not attempt to process jobs that need to print a status message, // unless we are interactive, in which case printing is OK. return j->is_constructed() && (interactive || !job_or_proc_wants_summary(j)); }; // The list of jobs to summarize. Some of these jobs are completed and are removed from the // parser's job list, others are stopped and remain in the list. std::vector jobs_to_summarize; // Handle stopped jobs. These stay in our list. for (const auto &j : parser.jobs()) { if (j->is_stopped() && !j->flags().notified_of_stop && should_process_job(j) && job_wants_summary(j)) { j->mut_flags().notified_of_stop = true; jobs_to_summarize.push_back(j); } } // Generate process_exit events for finished processes. for (const auto &j : parser.jobs()) { generate_process_exit_events(j, &exit_events); } // Remove completed, processable jobs from our job list. for (auto iter = parser.jobs().begin(); iter != parser.jobs().end();) { const job_ref_t &j = *iter; if (!should_process_job(j) || !j->is_completed()) { ++iter; continue; } // We are committed to removing this job. // Remember it for summary later, generate exit events, maybe save its wait handle if it // finished in the background. if (job_or_proc_wants_summary(j)) jobs_to_summarize.push_back(j); generate_job_exit_events(j, &exit_events); save_wait_handle_for_completed_job(j, parser.get_wait_handles()); // Remove it. iter = parser.jobs().erase(iter); } // Emit calls to fish_job_summary. bool printed = summarize_jobs(parser, jobs_to_summarize); // Post pending exit events. for (const auto &evt : exit_events) { event_fire(parser, evt); } if (printed) { fflush(stdout); } return printed; } bool job_reap(parser_t &parser, bool allow_interactive) { parser.assert_can_execute(); // Early out for the common case that there are no jobs. if (parser.jobs().empty()) { return false; } process_mark_finished_children(parser, false /* not block_ok */); return process_clean_after_marking(parser, allow_interactive); } double clock_ticks_to_seconds(clock_ticks_t ticks) { long clock_ticks_per_sec = sysconf(_SC_CLK_TCK); if (clock_ticks_per_sec > 0) { return ticks / static_cast(clock_ticks_per_sec); } return 0; } /// Get the CPU time for the specified process. clock_ticks_t proc_get_jiffies(pid_t inpid) { if (inpid <= 0 || !have_proc_stat()) return 0; char state; int pid, ppid, pgrp, session, tty_nr, tpgid, exit_signal, processor; long int cutime, cstime, priority, nice, placeholder, itrealvalue, rss; unsigned long int flags, minflt, cminflt, majflt, cmajflt, utime, stime, starttime, vsize, rlim, startcode, endcode, startstack, kstkesp, kstkeip, signal, blocked, sigignore, sigcatch, wchan, nswap, cnswap; char comm[1024]; /// Maximum length of a /proc/[PID]/stat filename. constexpr size_t FN_SIZE = 256; char fn[FN_SIZE]; std::snprintf(fn, FN_SIZE, "/proc/%d/stat", inpid); // Don't use autoclose_fd here, we will fdopen() and then fclose() instead. int fd = open_cloexec(fn, O_RDONLY); if (fd < 0) return 0; FILE *f = fdopen(fd, "r"); int count = fscanf(f, "%9d %1023s %c %9d %9d %9d %9d %9d %9lu " "%9lu %9lu %9lu %9lu %9lu %9lu %9ld %9ld %9ld " "%9ld %9ld %9ld %9lu %9lu %9ld %9lu %9lu %9lu " "%9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu " "%9lu %9d %9d ", &pid, comm, &state, &ppid, &pgrp, &session, &tty_nr, &tpgid, &flags, &minflt, &cminflt, &majflt, &cmajflt, &utime, &stime, &cutime, &cstime, &priority, &nice, &placeholder, &itrealvalue, &starttime, &vsize, &rss, &rlim, &startcode, &endcode, &startstack, &kstkesp, &kstkeip, &signal, &blocked, &sigignore, &sigcatch, &wchan, &nswap, &cnswap, &exit_signal, &processor); fclose(f); if (count < 17) return 0; return clock_ticks_t(utime) + clock_ticks_t(stime) + clock_ticks_t(cutime) + clock_ticks_t(cstime); } /// Update the CPU time for all jobs. void proc_update_jiffies(parser_t &parser) { for (const auto &job : parser.jobs()) { for (process_ptr_t &p : job->processes) { p->last_time = timef(); p->last_jiffies = proc_get_jiffies(p->pid); } } } // static bool tty_transfer_t::try_transfer(const job_group_ref_t &jg) { assert(jg && "Null job group"); if (!jg->wants_terminal()) { // The job doesn't want the terminal. return false; } // Get the pgid; we must have one if we want the terminal. pid_t pgid = *jg->get_pgid(); assert(pgid >= 0 && "Invalid pgid"); // It should never be fish's pgroup. pid_t fish_pgrp = getpgrp(); assert(pgid != fish_pgrp && "Job should not have fish's pgroup"); // Ok, we want to transfer to the child. // Note it is important to be very careful about calling tcsetpgrp()! // fish ignores SIGTTOU which means that it has the power to reassign the tty even if it doesn't // own it. This means that other processes may get SIGTTOU and become zombies. // Check who own the tty now. There's four cases of interest: // 1. There is no tty at all (tcgetpgrp() returns -1). For example running from a pure script. // Of course do not transfer it in that case. // 2. The tty is owned by the process. This comes about often, as the process will call // tcsetpgrp() on itself between fork ane exec. This is the essential race inherent in // tcsetpgrp(). In this case we want to reclaim the tty, but do not need to transfer it // ourselves since the child won the race. // 3. The tty is owned by a different process. This may come about if fish is running in the // background with job control enabled. Do not transfer it. // 4. The tty is owned by fish. In that case we want to transfer the pgid. pid_t current_owner = tcgetpgrp(STDIN_FILENO); if (current_owner < 0) { // Case 1. return false; } else if (current_owner == pgid) { // Case 2. return true; } else if (current_owner != pgid && current_owner != fish_pgrp) { // Case 3. return false; } // Case 4 - we do want to transfer it. // The tcsetpgrp(2) man page says that EPERM is thrown if "pgrp has a supported value, but // is not the process group ID of a process in the same session as the calling process." // Since we _guarantee_ that this isn't the case (the child calls setpgid before it calls // SIGSTOP, and the child was created in the same session as us), it seems that EPERM is // being thrown because of an caching issue - the call to tcsetpgrp isn't seeing the // newly-created process group just yet. On this developer's test machine (WSL running Linux // 4.4.0), EPERM does indeed disappear on retry. The important thing is that we can // guarantee the process isn't going to exit while we wait (which would cause us to possibly // block indefinitely). while (tcsetpgrp(STDIN_FILENO, pgid) != 0) { FLOGF(proc_termowner, L"tcsetpgrp failed: %d", errno); // Before anything else, make sure that it's even necessary to call tcsetpgrp. // Since it usually _is_ necessary, we only check in case it fails so as to avoid the // unnecessary syscall and associated context switch, which profiling has shown to have // a significant cost when running process groups in quick succession. int getpgrp_res = tcgetpgrp(STDIN_FILENO); if (getpgrp_res < 0) { switch (errno) { case ENOTTY: // stdin is not a tty. This may come about if job control is enabled but we are // not a tty - see #6573. return false; case EBADF: // stdin has been closed. Workaround a glibc bug - see #3644. redirect_tty_output(); return false; default: wperror(L"tcgetpgrp"); return false; } } if (getpgrp_res == pgid) { FLOGF(proc_termowner, L"Process group %d already has control of terminal", pgid); return true; } bool pgroup_terminated = false; if (errno == EINVAL) { // OS X returns EINVAL if the process group no longer lives. Probably other OSes, // too. Unlike EPERM below, EINVAL can only happen if the process group has // terminated. pgroup_terminated = true; } else if (errno == EPERM) { // Retry so long as this isn't because the process group is dead. int wait_result = waitpid(-1 * pgid, &wait_result, WNOHANG); if (wait_result == -1) { // Note that -1 is technically an "error" for waitpid in the sense that an // invalid argument was specified because no such process group exists any // longer. This is the observed behavior on Linux 4.4.0. a "success" result // would mean processes from the group still exist but is still running in some // state or the other. pgroup_terminated = true; } else { // Debug the original tcsetpgrp error (not the waitpid errno) to the log, and // then retry until not EPERM or the process group has exited. FLOGF(proc_termowner, L"terminal_give_to_job(): EPERM with pgid %d.", pgid); continue; } } else if (errno == ENOTTY) { // stdin is not a TTY. In general we expect this to be caught via the tcgetpgrp // call's EBADF handler above. return false; } else { FLOGF(warning, _(L"Could not send job %d ('%ls') with pgid %d to foreground"), jg->get_job_id(), jg->get_command().c_str(), pgid); wperror(L"tcsetpgrp"); return false; } if (pgroup_terminated) { // All processes in the process group has exited. // Since we delay reaping any processes in a process group until all members of that // job/group have been started, the only way this can happen is if the very last // process in the group terminated and didn't need to access the terminal, otherwise // it would have hung waiting for terminal IO (SIGTTIN). We can safely ignore this. FLOGF(proc_termowner, L"tcsetpgrp called but process group %d has terminated.\n", pgid); return false; } break; } return true; } bool job_t::is_foreground() const { return group->is_foreground(); } maybe_t job_t::get_pgid() const { return group->get_pgid(); } maybe_t job_t::get_last_pid() const { for (auto iter = processes.rbegin(); iter != processes.rend(); ++iter) { const process_t *proc = iter->get(); if (proc->pid > 0) return proc->pid; } return none(); } job_id_t job_t::job_id() const { return group->get_job_id(); } bool job_t::resume() { mut_flags().notified_of_stop = false; if (!this->signal(SIGCONT)) { FLOGF(proc_pgroup, "Failed to send SIGCONT to procs in job %ls", this->command_wcstr()); return false; } // reset the status of each process instance for (auto &p : this->processes) { p->stopped = false; } return true; } void job_t::continue_job(parser_t &parser) { FLOGF(proc_job_run, L"Run job %d (%ls), %ls, %ls", job_id(), command_wcstr(), is_completed() ? L"COMPLETED" : L"UNCOMPLETED", parser.libdata().is_interactive ? L"INTERACTIVE" : L"NON-INTERACTIVE"); // Wait for the status of our own job to change. while (!fish_is_unwinding_for_exit() && !is_stopped() && !is_completed()) { process_mark_finished_children(parser, true); } if (is_completed()) { // Set $status only if we are in the foreground and the last process in the job has // finished. const auto &p = processes.back(); if (p->status.normal_exited() || p->status.signal_exited()) { auto statuses = get_statuses(); if (statuses) { parser.set_last_statuses(statuses.value()); parser.libdata().status_count++; } } } } void proc_wait_any(parser_t &parser) { process_mark_finished_children(parser, true /* block_ok */); process_clean_after_marking(parser, parser.libdata().is_interactive); } void hup_jobs(const job_list_t &jobs) { pid_t fish_pgrp = getpgrp(); for (const auto &j : jobs) { auto pgid = j->get_pgid(); if (pgid && *pgid != fish_pgrp && !j->is_completed()) { if (j->is_stopped()) { j->signal(SIGCONT); } j->signal(SIGHUP); } } } void tty_transfer_t::to_job_group(const job_group_ref_t &jg) { assert(!owner_ && "Terminal already transferred"); if (tty_transfer_t::try_transfer(jg)) { owner_ = jg; } } void tty_transfer_t::save_tty_modes() { if (owner_) { struct termios tmodes {}; if (tcgetattr(STDIN_FILENO, &tmodes) == 0) { owner_->tmodes = tmodes; } else if (errno != ENOTTY) { wperror(L"tcgetattr"); } } } void tty_transfer_t::reclaim() { if (this->owner_) { FLOG(proc_pgroup, "fish reclaiming terminal"); if (tcsetpgrp(STDIN_FILENO, getpgrp()) == -1) { FLOGF(warning, _(L"Could not return shell to foreground")); wperror(L"tcsetpgrp"); } this->owner_ = nullptr; } } tty_transfer_t::~tty_transfer_t() { assert(!this->owner_ && "Forgot to reclaim() the tty"); }