// Functions that we may safely call after fork(). #include "config.h" // IWYU pragma: keep #include #include #include #include #include #include #include #if FISH_USE_POSIX_SPAWN #include #endif #include #include "common.h" #include "exec.h" #include "io.h" #include "iothread.h" #include "postfork.h" #include "proc.h" #include "signal.h" #include "wutil.h" // IWYU pragma: keep #ifndef JOIN_THREADS_BEFORE_FORK #define JOIN_THREADS_BEFORE_FORK 0 #endif /// The number of times to try to call fork() before giving up. #define FORK_LAPS 5 /// The number of nanoseconds to sleep between attempts to call fork(). #define FORK_SLEEP_TIME 1000000 /// Base open mode to pass to calls to open. #define OPEN_MASK 0666 /// Fork error message. #define FORK_ERROR "Could not create child process - exiting" /// File redirection clobbering error message. #define NOCLOB_ERROR "The file '%s' already exists" /// File redirection error message. #define FILE_ERROR "An error occurred while redirecting file '%s'" /// File descriptor redirection error message. #define FD_ERROR "An error occurred while redirecting file descriptor %s" /// Pipe error message. #define LOCAL_PIPE_ERROR "An error occurred while setting up pipe" static bool log_redirections = false; /// Cover for debug_safe that can take an int. The format string should expect a %s. static void debug_safe_int(int level, const char *format, int val) { char buff[128]; format_long_safe(buff, val); debug_safe(level, format, buff); } /// Called only by the child to set its own process group (possibly creating a new group in the /// process if it is the first in a JOB_CONTROL job. The parent will wait for this to finish. /// A process that isn't already in control of the terminal can't give itself control of the /// terminal without hanging, but it's not right for the child to try and give itself control /// from the very beginning because the parent may not have gotten around to doing so yet. Let /// the parent figure it out; if the child doesn't have terminal control and it later tries to /// read from the terminal, the kernel will send it SIGTTIN and it'll hang anyway. /// The key here is that the parent should transfer control of the terminal (if appropriate) /// prior to sending the child SIGCONT to wake it up to exec. /// /// Returns true on sucess, false on failiure. bool child_set_group(job_t *j, process_t *p) { bool retval = true; if (j->get_flag(JOB_CONTROL)) { // New jobs have the pgid set to -2 if (j->pgid == -2) { j->pgid = p->pid; } // Retry on EPERM because there's no way that a child cannot join an existing progress group // because we are SIGSTOPing the previous job in the chain. Sometimes we have to try a few // times to get the kernel to see the new group. (Linux 4.4.0) int failure = setpgid(p->pid, j->pgid); while (failure == -1 && (errno == EPERM || errno == EINTR)) { debug_safe(4, "Retrying setpgid in child process"); failure = setpgid(p->pid, j->pgid); } // TODO: Figure out why we're testing whether the pgid is correct after attempting to // set it failed. This was added in commit 4e912ef8 from 2012-02-27. failure = failure && getpgid(p->pid) != j->pgid; if (failure) { //!OCLINT(collapsible if statements) char pid_buff[128]; char job_id_buff[128]; char getpgid_buff[128]; char job_pgid_buff[128]; char argv0[64]; char command[64]; format_long_safe(pid_buff, p->pid); format_long_safe(job_id_buff, j->job_id); format_long_safe(getpgid_buff, getpgid(p->pid)); format_long_safe(job_pgid_buff, j->pgid); narrow_string_safe(argv0, p->argv0()); narrow_string_safe(command, j->command_wcstr()); debug_safe( 1, "Could not send own process %s, '%s' in job %s, '%s' from group %s to group %s", pid_buff, argv0, job_id_buff, command, getpgid_buff, job_pgid_buff); safe_perror("setpgid"); retval = false; } } else { // This is probably stays unused in the child. j->pgid = getpgrp(); } return retval; } /// Called only by the parent only after a child forks and successfully calls child_set_group, guaranteeing /// the job control process group has been created and that the child belongs to the correct process group. /// Here we can update our job_t structure to reflect the correct process group in the case of JOB_CONTROL, /// and we can give the new process group control of the terminal if it's to run in the foreground. Note that /// we can guarantee the child won't try to read from the terminal before we've had a chance to run this code, /// because we haven't woken them up with a SIGCONT yet. /// This musn't be called as a part of setup_child_process because that can hang indefinitely until data is /// available to read/write in the case of IO_FILE, which means we'll never reach our SIGSTOP and everything /// hangs. bool set_child_group(job_t *j, pid_t child_pid) { bool retval = true; if (j->get_flag(JOB_CONTROL)) { // New jobs have the pgid set to -2 if (j->pgid == -2) { j->pgid = child_pid; } } else { j->pgid = getpgrp(); } if (j->get_flag(JOB_TERMINAL) && j->get_flag(JOB_FOREGROUND)) { //!OCLINT(early exit) if (tcgetpgrp(STDIN_FILENO) == j->pgid) { // We've already assigned the process group control of the terminal when the first // process in the job was started. There's no need to do so again, and on some platforms // this can cause an EPERM error. In addition, if we've given control of the terminal to // a process group, attempting to call tcsetpgrp from the background will cause SIGTTOU // to be sent to everything in our process group (unless we handle it). debug(4, L"Process group %d already has control of terminal\n", j->pgid); } else { // No need to duplicate the code here, a function already exists that does just this. retval = terminal_give_to_job(j, false /*new job, so not continuing*/); } } return retval; } /// Set up a childs io redirections. Should only be called by setup_child_process(). Does the /// following: First it closes any open file descriptors not related to the child by calling /// close_unused_internal_pipes() and closing the universal variable server file descriptor. It then /// goes on to perform all the redirections described by \c io. /// /// \param io_chain the list of IO redirections for the child /// /// \return 0 on sucess, -1 on failure static int handle_child_io(const io_chain_t &io_chain) { for (size_t idx = 0; idx < io_chain.size(); idx++) { const io_data_t *io = io_chain.at(idx).get(); if (io->io_mode == IO_FD && io->fd == static_cast(io)->old_fd) { continue; } switch (io->io_mode) { case IO_CLOSE: { if (log_redirections) fwprintf(stderr, L"%d: close %d\n", getpid(), io->fd); if (close(io->fd)) { debug_safe_int(0, "Failed to close file descriptor %s", io->fd); safe_perror("close"); } break; } case IO_FILE: { // Here we definitely do not want to set CLO_EXEC because our child needs access. const io_file_t *io_file = static_cast(io); int tmp = open(io_file->filename_cstr, io_file->flags, OPEN_MASK); if (tmp < 0) { if ((io_file->flags & O_EXCL) && (errno == EEXIST)) { debug_safe(1, NOCLOB_ERROR, io_file->filename_cstr); } else { debug_safe(1, FILE_ERROR, io_file->filename_cstr); safe_perror("open"); } return -1; } else if (tmp != io->fd) { // This call will sometimes fail, but that is ok, this is just a precausion. close(io->fd); if (dup2(tmp, io->fd) == -1) { debug_safe_int(1, FD_ERROR, io->fd); safe_perror("dup2"); exec_close(tmp); return -1; } exec_close(tmp); } break; } case IO_FD: { int old_fd = static_cast(io)->old_fd; if (log_redirections) fwprintf(stderr, L"%d: fd dup %d to %d\n", getpid(), old_fd, io->fd); // This call will sometimes fail, but that is ok, this is just a precausion. close(io->fd); if (dup2(old_fd, io->fd) == -1) { debug_safe_int(1, FD_ERROR, io->fd); safe_perror("dup2"); return -1; } break; } case IO_BUFFER: case IO_PIPE: { const io_pipe_t *io_pipe = static_cast(io); // If write_pipe_idx is 0, it means we're connecting to the read end (first pipe // fd). If it's 1, we're connecting to the write end (second pipe fd). unsigned int write_pipe_idx = (io_pipe->is_input ? 0 : 1); #if 0 debug(0, L"%ls %ls on fd %d (%d %d)", write_pipe?L"write":L"read", (io->io_mode == IO_BUFFER)?L"buffer":L"pipe", io->fd, io->pipe_fd[0], io->pipe_fd[1]); #endif if (log_redirections) fwprintf(stderr, L"%d: %s dup %d to %d\n", getpid(), io->io_mode == IO_BUFFER ? "buffer" : "pipe", io_pipe->pipe_fd[write_pipe_idx], io->fd); if (dup2(io_pipe->pipe_fd[write_pipe_idx], io->fd) != io->fd) { debug_safe(1, LOCAL_PIPE_ERROR); safe_perror("dup2"); return -1; } if (io_pipe->pipe_fd[0] >= 0) exec_close(io_pipe->pipe_fd[0]); if (io_pipe->pipe_fd[1] >= 0) exec_close(io_pipe->pipe_fd[1]); break; } } } return 0; } int setup_child_process(process_t *p, const io_chain_t &io_chain) { bool ok = true; if (ok) { // In the case of IO_FILE, this can hang until data is available to read/write! ok = (0 == handle_child_io(io_chain)); if (p != 0 && !ok) { debug_safe(4, "handle_child_io failed in setup_child_process"); exit_without_destructors(1); } } if (ok) { // Set the handling for job control signals back to the default. signal_reset_handlers(); } return ok ? 0 : -1; } int g_fork_count = 0; /// This function is a wrapper around fork. If the fork calls fails with EAGAIN, it is retried /// FORK_LAPS times, with a very slight delay between each lap. If fork fails even then, the process /// will exit with an error message. pid_t execute_fork(bool wait_for_threads_to_die) { ASSERT_IS_MAIN_THREAD(); if (wait_for_threads_to_die || JOIN_THREADS_BEFORE_FORK) { // Make sure we have no outstanding threads before we fork. This is a pretty sketchy thing // to do here, both because exec.cpp shouldn't have to know about iothreads, and because the // completion handlers may do unexpected things. debug_safe(4, "waiting for threads to drain."); iothread_drain_all(); } pid_t pid; struct timespec pollint; int i; g_fork_count++; for (i = 0; i < FORK_LAPS; i++) { pid = fork(); if (pid >= 0) { return pid; } if (errno != EAGAIN) { break; } pollint.tv_sec = 0; pollint.tv_nsec = FORK_SLEEP_TIME; // Don't sleep on the final lap - sleeping might change the value of errno, which will break // the error reporting below. if (i != FORK_LAPS - 1) { nanosleep(&pollint, NULL); } } debug_safe(0, FORK_ERROR); safe_perror("fork"); FATAL_EXIT(); return 0; } #if FISH_USE_POSIX_SPAWN bool fork_actions_make_spawn_properties(posix_spawnattr_t *attr, posix_spawn_file_actions_t *actions, job_t *j, process_t *p, const io_chain_t &io_chain) { UNUSED(p); // Initialize the output. if (posix_spawnattr_init(attr) != 0) { return false; } if (posix_spawn_file_actions_init(actions) != 0) { posix_spawnattr_destroy(attr); return false; } bool should_set_process_group_id = false; int desired_process_group_id = 0; if (j->get_flag(JOB_CONTROL)) { should_set_process_group_id = true; // set_child_group puts each job into its own process group // do the same here if there is no PGID yet (i.e. PGID == -2) desired_process_group_id = j->pgid; if (desired_process_group_id == -2) { desired_process_group_id = 0; } } // Set the handling for job control signals back to the default. bool reset_signal_handlers = true; // Remove all signal blocks. bool reset_sigmask = true; // Set our flags. short flags = 0; if (reset_signal_handlers) flags |= POSIX_SPAWN_SETSIGDEF; if (reset_sigmask) flags |= POSIX_SPAWN_SETSIGMASK; if (should_set_process_group_id) flags |= POSIX_SPAWN_SETPGROUP; int err = 0; if (!err) err = posix_spawnattr_setflags(attr, flags); if (!err && should_set_process_group_id) err = posix_spawnattr_setpgroup(attr, desired_process_group_id); // Everybody gets default handlers. if (!err && reset_signal_handlers) { sigset_t sigdefault; get_signals_with_handlers(&sigdefault); err = posix_spawnattr_setsigdefault(attr, &sigdefault); } // No signals blocked. sigset_t sigmask; sigemptyset(&sigmask); if (!err && reset_sigmask) err = posix_spawnattr_setsigmask(attr, &sigmask); for (size_t idx = 0; idx < io_chain.size(); idx++) { const shared_ptr io = io_chain.at(idx); if (io->io_mode == IO_FD) { const io_fd_t *io_fd = static_cast(io.get()); if (io->fd == io_fd->old_fd) continue; } switch (io->io_mode) { case IO_CLOSE: { if (!err) err = posix_spawn_file_actions_addclose(actions, io->fd); break; } case IO_FILE: { const io_file_t *io_file = static_cast(io.get()); if (!err) err = posix_spawn_file_actions_addopen(actions, io->fd, io_file->filename_cstr, io_file->flags /* mode */, OPEN_MASK); break; } case IO_FD: { const io_fd_t *io_fd = static_cast(io.get()); if (!err) err = posix_spawn_file_actions_adddup2(actions, io_fd->old_fd /* from */, io->fd /* to */); break; } case IO_BUFFER: case IO_PIPE: { const io_pipe_t *io_pipe = static_cast(io.get()); unsigned int write_pipe_idx = (io_pipe->is_input ? 0 : 1); int from_fd = io_pipe->pipe_fd[write_pipe_idx]; int to_fd = io->fd; if (!err) err = posix_spawn_file_actions_adddup2(actions, from_fd, to_fd); if (write_pipe_idx > 0) { if (!err) err = posix_spawn_file_actions_addclose(actions, io_pipe->pipe_fd[0]); if (!err) err = posix_spawn_file_actions_addclose(actions, io_pipe->pipe_fd[1]); } else { if (!err) err = posix_spawn_file_actions_addclose(actions, io_pipe->pipe_fd[0]); } break; } } } // Clean up on error. if (err) { posix_spawnattr_destroy(attr); posix_spawn_file_actions_destroy(actions); } return !err; } #endif // FISH_USE_POSIX_SPAWN void safe_report_exec_error(int err, const char *actual_cmd, const char *const *argv, const char *const *envv) { debug_safe(0, "Failed to execute process '%s'. Reason:", actual_cmd); switch (err) { case E2BIG: { char sz1[128], sz2[128]; long arg_max = -1; size_t sz = 0; const char *const *p; for (p = argv; *p; p++) { sz += strlen(*p) + 1; } for (p = envv; *p; p++) { sz += strlen(*p) + 1; } format_size_safe(sz1, sz); arg_max = sysconf(_SC_ARG_MAX); if (arg_max > 0) { format_size_safe(sz2, static_cast(arg_max)); debug_safe(0, "The total size of the argument and environment lists %s exceeds the " "operating system limit of %s.", sz1, sz2); } else { debug_safe(0, "The total size of the argument and environment lists (%s) exceeds the " "operating system limit.", sz1); } debug_safe(0, "Try running the command again with fewer arguments."); break; } case ENOEXEC: { const char *err = safe_strerror(errno); debug_safe(0, "exec: %s", err); debug_safe(0, "The file '%s' is marked as an executable but could not be run by the " "operating system.", actual_cmd); break; } case ENOENT: { // ENOENT is returned by exec() when the path fails, but also returned by posix_spawn if // an open file action fails. These cases appear to be impossible to distinguish. We // address this by not using posix_spawn for file redirections, so all the ENOENTs we // find must be errors from exec(). char interpreter_buff[128] = {}, *interpreter; interpreter = get_interpreter(actual_cmd, interpreter_buff, sizeof interpreter_buff); if (interpreter && 0 != access(interpreter, X_OK)) { debug_safe(0, "The file '%s' specified the interpreter '%s', which is not an " "executable command.", actual_cmd, interpreter); } else { debug_safe(0, "The file '%s' does not exist or could not be executed.", actual_cmd); } break; } case ENOMEM: { debug_safe(0, "Out of memory"); break; } default: { const char *err = safe_strerror(errno); debug_safe(0, "exec: %s", err); // debug(0, L"The file '%ls' is marked as an executable but could not be run by the // operating system.", p->actual_cmd); break; } } } /// Perform output from builtins. May be called from a forked child, so don't do anything that may /// allocate memory, etc. bool do_builtin_io(const char *out, size_t outlen, const char *err, size_t errlen) { int saved_errno = 0; bool success = true; if (out && outlen && write_loop(STDOUT_FILENO, out, outlen) < 0) { saved_errno = errno; if (errno != EPIPE) { debug_safe(0, "Error while writing to stdout"); errno = saved_errno; safe_perror("write_loop"); } success = false; } if (err && errlen && write_loop(STDERR_FILENO, err, errlen) < 0) { saved_errno = errno; success = false; } errno = saved_errno; return success; }