// Functions for executing a program. // // Some of the code in this file is based on code from the Glibc manual, though the changes // performed have been massive. #include "config.h" #include #include #ifdef HAVE_SIGINFO_H #include #endif #include #ifdef HAVE_SPAWN_H #include #endif #include #include #include #include #include #include #include #include #include #include #include #include #include "builtin.h" #include "common.h" #include "env.h" #include "exec.h" #include "fallback.h" // IWYU pragma: keep #include "flog.h" #include "function.h" #include "io.h" #include "iothread.h" #include "null_terminated_array.h" #include "parse_tree.h" #include "parser.h" #include "path.h" #include "postfork.h" #include "proc.h" #include "reader.h" #include "redirection.h" #include "signal.h" #include "timer.h" #include "trace.h" #include "wutil.h" // IWYU pragma: keep /// Number of calls to fork() or posix_spawn(). static relaxed_atomic_t s_fork_count{0}; pgroup_provenance_t get_pgroup_provenance(const shared_ptr &j, const job_lineage_t &lineage) { bool first_proc_is_internal = j->processes.front()->is_internal(); bool has_internal = j->has_internal_proc(); bool has_external = j->has_external_proc(); assert(first_proc_is_internal ? has_internal : has_external); if (lineage.parent_pgid.has_value()) { // Our lineage indicates a pgid. This means the job is "nested" as a function or block // inside another job, which has a real pgroup. We're going to use that. return pgroup_provenance_t::lineage; } else if (!j->wants_job_control()) { // This job doesn't need job control, it can just live in the fish pgroup. return pgroup_provenance_t::fish_itself; } else if (has_external && !first_proc_is_internal) { // The first process is external, it will own the pgroup. return pgroup_provenance_t::first_external_proc; } else if (has_external && first_proc_is_internal) { // The terminal owner has to be the process which is permitted to read from stdin. // This is the first process in the pipeline. When executing, a process in the job will // claim the pgrp if it's not set; therefore set it according to the first process. // Only do this if there's an external process - see #6011. return pgroup_provenance_t::fish_itself; } else { assert(has_internal && !has_external && "Should be internal only"); // This job consists of only internal functions or builtins; we do not need to assign a // pgroup (yet). return pgroup_provenance_t::unassigned; } } /// This function is executed by the child process created by a call to fork(). It should be called /// after \c child_setup_process. It calls execve to replace the fish process image with the command /// specified in \c p. It never returns. Called in a forked child! Do not allocate memory, etc. static void safe_launch_process(process_t *p, const char *actual_cmd, const char *const *cargv, const char *const *cenvv) { UNUSED(p); int err; // This function never returns, so we take certain liberties with constness. char *const *envv = const_cast(cenvv); char *const *argv = const_cast(cargv); execve(actual_cmd, argv, envv); err = errno; // Something went wrong with execve, check for a ":", and run /bin/sh if encountered. This is a // weird predecessor to the shebang that is still sometimes used since it is supported on // Windows. OK to not use CLO_EXEC here because this is called after fork and the file is // immediately closed. int fd = open(actual_cmd, O_RDONLY); if (fd >= 0) { char begin[1] = {0}; ssize_t amt_read = read(fd, begin, 1); close(fd); if ((amt_read == 1) && (begin[0] == ':')) { // Relaunch it with /bin/sh. Don't allocate memory, so if you have more args than this, // update your silly script! Maybe this should be changed to be based on ARG_MAX // somehow. char sh_command[] = "/bin/sh"; char *argv2[128]; argv2[0] = sh_command; for (size_t i = 1; i < sizeof argv2 / sizeof *argv2; i++) { argv2[i] = argv[i - 1]; if (argv2[i] == nullptr) break; } execve(sh_command, argv2, envv); } } errno = err; safe_report_exec_error(errno, actual_cmd, argv, envv); exit_without_destructors(STATUS_EXEC_FAIL); } /// This function is similar to launch_process, except it is not called after a fork (i.e. it only /// calls exec) and therefore it can allocate memory. static void launch_process_nofork(env_stack_t &vars, process_t *p) { ASSERT_IS_MAIN_THREAD(); ASSERT_IS_NOT_FORKED_CHILD(); null_terminated_array_t argv_array; convert_wide_array_to_narrow(p->get_argv_array(), &argv_array); auto export_vars = vars.export_arr(); const char *const *envv = export_vars->get(); char *actual_cmd = wcs2str(p->actual_cmd); // Ensure the terminal modes are what they were before we changed them. restore_term_mode(); // Bounce to launch_process. This never returns. safe_launch_process(p, actual_cmd, argv_array.get(), envv); } // Returns whether we can use posix spawn for a given process in a given job. // // To avoid the race between the caller calling tcsetpgrp() and the client checking the // foreground process group, we don't use posix_spawn if we're going to foreground the process. (If // we use fork(), we can call tcsetpgrp after the fork, before the exec, and avoid the race). static bool can_use_posix_spawn_for_job(const std::shared_ptr &job, const dup2_list_t &dup2s) { // Hack - do not use posix_spawn if there are self-fd redirections. // For example if you were to write: // cmd 6< /dev/null // it is possible that the open() of /dev/null would result in fd 6. Here even if we attempted // to add a dup2 action, it would be ignored and the CLO_EXEC bit would remain. So don't use // posix_spawn in this case; instead we'll call fork() and clear the CLO_EXEC bit manually. for (const auto &action : dup2s.get_actions()) { if (action.src == action.target) return false; } if (job->wants_job_control()) { //!OCLINT(collapsible if statements) // We are going to use job control; therefore when we launch this job it will get its own // process group ID. But will it be foregrounded? if (job->should_claim_terminal()) { // It will be foregrounded, so we will call tcsetpgrp(), therefore do not use // posix_spawn. return false; } } return true; } static void internal_exec(env_stack_t &vars, job_t *j, const io_chain_t &block_io) { // Do a regular launch - but without forking first... process_t *p = j->processes.front().get(); io_chain_t all_ios = block_io; if (!all_ios.append_from_specs(p->redirection_specs(), vars.get_pwd_slash())) { return; } // child_setup_process makes sure signals are properly set up. dup2_list_t redirs = dup2_list_t::resolve_chain(all_ios); if (child_setup_process(INVALID_PID, false, redirs) == 0) { // Decrement SHLVL as we're removing ourselves from the shell "stack". auto shlvl_var = vars.get(L"SHLVL", ENV_GLOBAL | ENV_EXPORT); wcstring shlvl_str = L"0"; if (shlvl_var) { long shlvl = fish_wcstol(shlvl_var->as_string().c_str()); if (!errno && shlvl > 0) { shlvl_str = to_string(shlvl - 1); } } vars.set_one(L"SHLVL", ENV_GLOBAL | ENV_EXPORT, std::move(shlvl_str)); // launch_process _never_ returns. launch_process_nofork(vars, p); } } /// If our pgroup assignment mode wants us to use the first external proc, then apply it here. static void maybe_assign_pgid_from_child(const std::shared_ptr &j, pid_t child_pid) { // If our assignment mode is the first process, then assign it. if (j->pgid == INVALID_PID && j->pgroup_provenance == pgroup_provenance_t::first_external_proc) { j->pgid = child_pid; } } /// Construct an internal process for the process p. In the background, write the data \p outdata to /// stdout and \p errdata to stderr, respecting the io chain \p ios. For example if target_fd is 1 /// (stdout), and there is a dup2 3->1, then we need to write to fd 3. Then exit the internal /// process. static void run_internal_process(process_t *p, std::string &&outdata, std::string &&errdata, const io_chain_t &ios) { p->check_generations_before_launch(); // We want both the dup2s and the io_chain_ts to be kept alive by the background thread, because // they may own an fd that we want to write to. Move them all to a shared_ptr. The strings as // well (they may be long). // Construct a little helper struct to make it simpler to move into our closure without copying. struct write_fields_t { int src_outfd{-1}; std::string outdata{}; int src_errfd{-1}; std::string errdata{}; io_chain_t ios{}; maybe_t dup2s{}; std::shared_ptr internal_proc{}; proc_status_t success_status{}; bool skip_out() const { return outdata.empty() || src_outfd < 0; } bool skip_err() const { return errdata.empty() || src_errfd < 0; } }; auto f = std::make_shared(); f->outdata = std::move(outdata); f->errdata = std::move(errdata); // Construct and assign the internal process to the real process. p->internal_proc_ = std::make_shared(); f->internal_proc = p->internal_proc_; FLOGF(proc_internal_proc, L"Created internal proc %llu to write output for proc '%ls'", p->internal_proc_->get_id(), p->argv0()); // Resolve the IO chain. // Note it's important we do this even if we have no out or err data, because we may have been // asked to truncate a file (e.g. `echo -n '' > /tmp/truncateme.txt'). The open() in the dup2 // list resolution will ensure this happens. f->dup2s = dup2_list_t::resolve_chain(ios); // Figure out which source fds to write to. If they are closed (unlikely) we just exit // successfully. f->src_outfd = f->dup2s->fd_for_target_fd(STDOUT_FILENO); f->src_errfd = f->dup2s->fd_for_target_fd(STDERR_FILENO); // If we have nothing to write we can elide the thread. // TODO: support eliding output to /dev/null. if (f->skip_out() && f->skip_err()) { f->internal_proc->mark_exited(p->status); return; } // Ensure that ios stays alive, it may own fds. f->ios = ios; // If our process is a builtin, it will have already set its status value. Make sure we // propagate that if our I/O succeeds and don't read it on a background thread. TODO: have // builtin_run provide this directly, rather than setting it in the process. f->success_status = p->status; iothread_perform_cantwait([f]() { proc_status_t status = f->success_status; if (!f->skip_out()) { ssize_t ret = write_loop(f->src_outfd, f->outdata.data(), f->outdata.size()); if (ret < 0) { if (errno != EPIPE) { wperror(L"write"); } if (status.is_success()) { status = proc_status_t::from_exit_code(1); } } } if (!f->skip_err()) { ssize_t ret = write_loop(f->src_errfd, f->errdata.data(), f->errdata.size()); if (ret < 0) { if (errno != EPIPE) { wperror(L"write"); } if (status.is_success()) { status = proc_status_t::from_exit_code(1); } } } f->internal_proc->mark_exited(status); }); } /// If \p outdata or \p errdata are both empty, then mark the process as completed immediately. /// Otherwise, run an internal process. static void run_internal_process_or_short_circuit(parser_t &parser, const std::shared_ptr &j, process_t *p, std::string &&outdata, std::string &&errdata, const io_chain_t &ios) { if (outdata.empty() && errdata.empty()) { p->completed = true; if (p->is_last_in_job) { FLOGF(exec_job_status, L"Set status of job %d (%ls) to %d using short circuit", j->job_id(), j->preview().c_str(), p->status); parser.set_last_statuses(j->get_statuses()); } } else { run_internal_process(p, std::move(outdata), std::move(errdata), ios); } } /// Call fork() as part of executing a process \p p in a job \j. Execute \p child_action in the /// context of the child. Returns true if fork succeeded, false if fork failed. static bool fork_child_for_process(const std::shared_ptr &job, process_t *p, const dup2_list_t &dup2s, const char *fork_type, const std::function &child_action) { pid_t pid = execute_fork(); if (pid == 0) { // This is the child process. Setup redirections, print correct output to // stdout and stderr, and then exit. maybe_t new_termowner{}; p->pid = getpid(); child_set_group(job.get(), p); child_setup_process(job->should_claim_terminal() ? job->pgid : INVALID_PID, true, dup2s); child_action(); DIE("Child process returned control to fork_child lambda!"); } if (pid < 0) { FLOGF(warning, L"Failed to fork %s!\n", fork_type); job_mark_process_as_failed(job, p); return false; } // This is the parent process. Store away information on the child, and // possibly give it control over the terminal. s_fork_count++; FLOGF(exec_fork, L"Fork #%d, pid %d: %s for '%ls'", int(s_fork_count), pid, fork_type, p->argv0()); p->pid = pid; maybe_assign_pgid_from_child(job, p->pid); set_child_group(job.get(), p->pid); terminal_maybe_give_to_job(job.get(), false); return true; } /// Execute an internal builtin. Given a parser and a builtin process, execute the builtin with the /// given streams. If pipe_read is set, assign stdin to it; otherwise infer stdin from the IO chain. /// \return true on success, false if there is an exec error. static bool exec_internal_builtin_proc(parser_t &parser, process_t *p, const io_pipe_t *pipe_read, const io_chain_t &proc_io_chain, io_streams_t &streams) { assert(p->type == process_type_t::builtin && "Process must be a builtin"); int local_builtin_stdin = STDIN_FILENO; autoclose_fd_t locally_opened_stdin{}; // If this is the first process, check the io redirections and see where we should // be reading from. if (pipe_read) { local_builtin_stdin = pipe_read->source_fd; } else if (const auto in = proc_io_chain.io_for_fd(STDIN_FILENO)) { // Ignore fd redirections from an fd other than the // standard ones. e.g. in source <&3 don't actually read from fd 3, // which is internal to fish. We still respect this redirection in // that we pass it on as a block IO to the code that source runs, // and therefore this is not an error. bool ignore_redirect = in->io_mode == io_mode_t::fd && in->source_fd >= 0 && in->source_fd < 3; if (!ignore_redirect) { local_builtin_stdin = in->source_fd; } } if (local_builtin_stdin == -1) return false; // Determine if we have a "direct" redirection for stdin. bool stdin_is_directly_redirected = false; if (!p->is_first_in_job) { // We must have a pipe stdin_is_directly_redirected = true; } else { // We are not a pipe. Check if there is a redirection local to the process // that's not io_mode_t::close. for (const auto &redir : p->redirection_specs()) { if (redir.fd == STDIN_FILENO && !redir.is_close()) { stdin_is_directly_redirected = true; break; } } } streams.stdin_fd = local_builtin_stdin; streams.out_is_redirected = proc_io_chain.io_for_fd(STDOUT_FILENO) != nullptr; streams.err_is_redirected = proc_io_chain.io_for_fd(STDERR_FILENO) != nullptr; streams.stdin_is_directly_redirected = stdin_is_directly_redirected; streams.io_chain = &proc_io_chain; // Note this call may block for a long time, while the builtin performs I/O. p->status = builtin_run(parser, p->get_argv(), streams); return true; // "success" } /// Handle output from a builtin, by printing the contents of builtin_io_streams to the redirections /// given in io_chain. static bool handle_builtin_output(parser_t &parser, const std::shared_ptr &j, process_t *p, io_chain_t *io_chain, const io_streams_t &builtin_io_streams) { assert(p->type == process_type_t::builtin && "Process is not a builtin"); const output_stream_t &stdout_stream = builtin_io_streams.out; const output_stream_t &stderr_stream = builtin_io_streams.err; // Mark if we discarded output. if (stdout_stream.buffer().discarded()) { p->status = proc_status_t::from_exit_code(STATUS_READ_TOO_MUCH); } const shared_ptr stdout_io = io_chain->io_for_fd(STDOUT_FILENO); const shared_ptr stderr_io = io_chain->io_for_fd(STDERR_FILENO); // If we are directing output to a buffer, then we can just transfer it directly without needing // to write to the bufferfill pipe. Note this is how we handle explicitly separated stdout // output (i.e. string split0) which can't really be sent through a pipe. // TODO: we're sloppy about handling explicitly separated output. // Theoretically we could have explicitly separated output on stdout and also stderr output; in // that case we ought to thread the exp-sep output through to the io buffer. We're getting away // with this because the only thing that can output exp-sep output is `string split0` which // doesn't also produce stderr. Also note that we never send stderr to a buffer, so there's no // need for a similar check for stderr. bool stdout_done = false; if (stdout_io && stdout_io->io_mode == io_mode_t::bufferfill) { auto stdout_buffer = static_cast(stdout_io.get())->buffer(); stdout_buffer->append_from_stream(stdout_stream); stdout_done = true; } // Figure out any data remaining to write. We may have none in which case we can short-circuit. std::string outbuff = stdout_done ? std::string{} : wcs2string(stdout_stream.contents()); std::string errbuff = wcs2string(stderr_stream.contents()); // If we have no redirections for stdout/stderr, just write them directly. if (!stdout_io && !stderr_io) { bool did_err = false; if (write_loop(STDOUT_FILENO, outbuff.data(), outbuff.size()) < 0) { if (errno != EPIPE) { did_err = true; FLOG(error, L"Error while writing to stdout"); wperror(L"write_loop"); } } if (write_loop(STDERR_FILENO, errbuff.data(), errbuff.size()) < 0) { if (errno != EPIPE && !did_err) { did_err = true; FLOG(error, L"Error while writing to stderr"); wperror(L"write_loop"); } } if (did_err) { redirect_tty_output(); // workaround glibc bug FLOG(error, L"!builtin_io_done and errno != EPIPE"); show_stackframe(L'E'); } // Clear the buffers to indicate we finished. outbuff.clear(); errbuff.clear(); } // Some historical behavior. if (!outbuff.empty()) fflush(stdout); if (!errbuff.empty()) fflush(stderr); // Construct and run our background process. run_internal_process_or_short_circuit(parser, j, p, std::move(outbuff), std::move(errbuff), *io_chain); return true; } /// Executes an external command. /// \return true on success, false if there is an exec error. static bool exec_external_command(parser_t &parser, const std::shared_ptr &j, process_t *p, const io_chain_t &proc_io_chain) { assert(p->type == process_type_t::external && "Process is not external"); // Get argv and envv before we fork. null_terminated_array_t argv_array; convert_wide_array_to_narrow(p->get_argv_array(), &argv_array); // Convert our IO chain to a dup2 sequence. auto dup2s = dup2_list_t::resolve_chain(proc_io_chain); // Ensure that stdin is blocking before we hand it off (see issue #176). It's a // little strange that we only do this with stdin and not with stdout or stderr. // However in practice, setting or clearing O_NONBLOCK on stdin also sets it for the // other two fds, presumably because they refer to the same underlying file // (/dev/tty?). make_fd_blocking(STDIN_FILENO); auto export_arr = parser.vars().export_arr(); const char *const *argv = argv_array.get(); const char *const *envv = export_arr->get(); std::string actual_cmd_str = wcs2string(p->actual_cmd); const char *actual_cmd = actual_cmd_str.c_str(); const wchar_t *file = parser.libdata().current_filename; #if FISH_USE_POSIX_SPAWN // Prefer to use posix_spawn, since it's faster on some systems like OS X. bool use_posix_spawn = g_use_posix_spawn && can_use_posix_spawn_for_job(j, dup2s); if (use_posix_spawn) { s_fork_count++; // spawn counts as a fork+exec // Create posix spawn attributes and actions. pid_t pid = 0; posix_spawnattr_t attr = posix_spawnattr_t(); posix_spawn_file_actions_t actions = posix_spawn_file_actions_t(); bool made_it = fork_actions_make_spawn_properties(&attr, &actions, j.get(), dup2s); if (made_it) { // We successfully made the attributes and actions; actually call // posix_spawn. int spawn_ret = posix_spawn(&pid, actual_cmd, &actions, &attr, const_cast(argv), const_cast(envv)); // This usleep can be used to test for various race conditions // (https://github.com/fish-shell/fish-shell/issues/360). // usleep(10000); if (spawn_ret != 0) { safe_report_exec_error(spawn_ret, actual_cmd, argv, envv); // Make sure our pid isn't set. pid = 0; } // Clean up our actions. posix_spawn_file_actions_destroy(&actions); posix_spawnattr_destroy(&attr); } // A 0 pid means we failed to posix_spawn. Since we have no pid, we'll never get // told when it's exited, so we have to mark the process as failed. FLOGF(exec_fork, L"Fork #%d, pid %d: spawn external command '%s' from '%ls'", int(s_fork_count), pid, actual_cmd, file ? file : L""); if (pid == 0) { job_mark_process_as_failed(j, p); return false; } // these are all things do_fork() takes care of normally (for forked processes): p->pid = pid; maybe_assign_pgid_from_child(j, p->pid); // In glibc, posix_spawn uses fork() and the pgid group is set on the child side; // therefore the parent may not have seen it be set yet. // Ensure it gets set. See #4715, also https://github.com/Microsoft/WSL/issues/2997. set_child_group(j.get(), p->pid); terminal_maybe_give_to_job(j.get(), false); } else #endif { if (!fork_child_for_process(j, p, dup2s, "external command", [&] { safe_launch_process(p, actual_cmd, argv, envv); })) { return false; } } return true; } // Given that we are about to execute a function, push a function block and set up the // variable environment. static block_t *function_prepare_environment(parser_t &parser, wcstring_list_t argv, const function_properties_t &props) { // Extract the function name and remaining arguments. wcstring func_name; if (!argv.empty()) { // Extract and remove the function name from argv. func_name = std::move(*argv.begin()); argv.erase(argv.begin()); } block_t *fb = parser.push_block(block_t::function_block(func_name, argv, props.shadow_scope)); auto &vars = parser.vars(); // Setup the environment for the function. There are three components of the environment: // 1. named arguments // 2. inherited variables // 3. argv size_t idx = 0; for (const wcstring &named_arg : props.named_arguments) { if (idx < argv.size()) { vars.set_one(named_arg, ENV_LOCAL | ENV_USER, argv.at(idx)); } else { vars.set_empty(named_arg, ENV_LOCAL | ENV_USER); } idx++; } for (const auto &kv : props.inherit_vars) { vars.set(kv.first, ENV_LOCAL | ENV_USER, kv.second); } vars.set_argv(std::move(argv)); return fb; } // Given that we are done executing a function, restore the environment. static void function_restore_environment(parser_t &parser, const block_t *block) { parser.pop_block(block); // If we returned due to a return statement, then stop returning now. parser.libdata().returning = false; } // The "performer" function of a block or function process. // This accepts a place to execute as \p parser, and a parent job as \p parent, and then executes // the result, returning a status. // This is factored out in this funny way in preparation for concurrent execution. using proc_performer_t = std::function; // \return a function which may be to run the given process \p. // May return an empty std::function in the rare case that the to-be called fish function no longer // exists. This is just a dumb artifact of the fact that we only capture the functions name, not its // properties, when creating the job; thus a race could delete the function before we fetch its // properties. static proc_performer_t get_performer_for_process(process_t *p, job_t *job, const io_chain_t &io_chain) { assert((p->type == process_type_t::function || p->type == process_type_t::block_node) && "Unexpected process type"); // Make a lineage for our children. job_lineage_t lineage; lineage.parent_pgid = (job->pgid == INVALID_PID ? none() : maybe_t(job->pgid)); lineage.block_io = io_chain; lineage.root_constructed = job->root_constructed; lineage.root_has_job_control = job->wants_job_control(); if (p->type == process_type_t::block_node) { const parsed_source_ref_t &source = p->block_node_source; tnode_t node = p->internal_block_node; assert(source && node && "Process is missing node info"); return [=](parser_t &parser) { return parser.eval_node(source, node, lineage).status; }; } else { assert(p->type == process_type_t::function); auto props = function_get_properties(p->argv0()); if (!props) { FLOGF(error, _(L"Unknown function '%ls'"), p->argv0()); return proc_performer_t{}; } auto argv = move_to_sharedptr(p->get_argv_array().to_list()); return [=](parser_t &parser) { // Pull out the job list from the function. tnode_t body = props->func_node.child<1>(); const block_t *fb = function_prepare_environment(parser, *argv, *props); auto res = parser.eval_node(props->parsed_source, body, lineage); function_restore_environment(parser, fb); // If the function did not execute anything, treat it as success. if (res.was_empty) { res = proc_status_t::from_exit_code(EXIT_SUCCESS); } return res.status; }; } } /// Execute a block node or function "process". /// \p conflicts contains the list of fds which pipes should avoid. /// \p allow_buffering if true, permit buffering the output. /// \return true on success, false on error. static bool exec_block_or_func_process(parser_t &parser, const std::shared_ptr &j, process_t *p, const fd_set_t &conflicts, io_chain_t io_chain, bool allow_buffering) { // Create an output buffer if we're piping to another process. shared_ptr block_output_bufferfill{}; if (!p->is_last_in_job && allow_buffering) { // Be careful to handle failure, e.g. too many open fds. block_output_bufferfill = io_bufferfill_t::create(conflicts); if (!block_output_bufferfill) { job_mark_process_as_failed(j, p); return false; } // Teach the job about its bufferfill, and add it to our io chain. io_chain.push_back(block_output_bufferfill); } // If this function is the only process in the current job // and that job is in the foreground then mark this job as internal // so it doesn't increment the job id for any jobs created within this // function. if (p->is_first_in_job && p->is_last_in_job && j->flags().foreground) { j->mark_internal(); } // Get the process performer, and just execute it directly. // Do it in this scoped way so that the performer function can be eagerly deallocating releasing // its captured io chain. if (proc_performer_t performer = get_performer_for_process(p, j.get(), io_chain)) { p->status = performer(parser); } else { return false; } // If we have a block output buffer, populate it now. std::string buffer_contents; if (block_output_bufferfill) { // Remove our write pipe and forget it. This may close the pipe, unless another thread has // claimed it (background write) or another process has inherited it. io_chain.remove(block_output_bufferfill); auto block_output_buffer = io_bufferfill_t::finish(std::move(block_output_bufferfill)); buffer_contents = block_output_buffer->buffer().newline_serialized(); } run_internal_process_or_short_circuit(parser, j, p, std::move(buffer_contents), {} /* errdata */, io_chain); return true; } /// Executes a process \p in job \j, using the pipes \p pipes (which may have invalid fds if this is /// the first or last process). /// \p deferred_pipes represents the pipes from our deferred process; if set ensure they get closed /// in any child. If \p is_deferred_run is true, then this is a deferred run; this affects how /// certain buffering works. \returns true on success, false on exec error. static bool exec_process_in_job(parser_t &parser, process_t *p, const std::shared_ptr &j, const io_chain_t &block_io, autoclose_pipes_t pipes, const fd_set_t &conflicts, const autoclose_pipes_t &deferred_pipes, size_t stdout_read_limit, bool is_deferred_run = false) { // The write pipe (destined for stdout) needs to occur before redirections. For example, // with a redirection like this: // // `foo 2>&1 | bar` // // what we want to happen is this: // // dup2(pipe, stdout) // dup2(stdout, stderr) // // so that stdout and stderr both wind up referencing the pipe. // // The read pipe (destined for stdin) is more ambiguous. Imagine a pipeline like this: // // echo alpha | cat < beta.txt // // Should cat output alpha or beta? bash and ksh output 'beta', tcsh gets it right and // complains about ambiguity, and zsh outputs both (!). No shells appear to output 'alpha', // so we match bash here. That would mean putting the pipe first, so that it gets trumped by // the file redirection. // // However, eval does this: // // echo "begin; $argv "\n" ;end <&3 3<&-" | source 3<&0 // // which depends on the redirection being evaluated before the pipe. So the write end of the // pipe comes first, the read pipe of the pipe comes last. See issue #966. // Maybe trace this process. // TODO: 'and' and 'or' will not show. if (trace_enabled(parser)) { trace_argv(parser, nullptr, p->get_argv_array().to_list()); } // The IO chain for this process. io_chain_t process_net_io_chain = block_io; if (pipes.write.valid()) { process_net_io_chain.push_back(std::make_shared( p->pipe_write_fd, false /* not input */, std::move(pipes.write))); } // Append IOs from the process's redirection specs. // This may fail. if (!process_net_io_chain.append_from_specs(p->redirection_specs(), parser.vars().get_pwd_slash())) { // Error. return false; } // Read pipe goes last. shared_ptr pipe_read{}; if (pipes.read.valid()) { pipe_read = std::make_shared(STDIN_FILENO, true /* input */, std::move(pipes.read)); process_net_io_chain.push_back(pipe_read); } // If we have stashed pipes, make sure those get closed in the child. for (const autoclose_fd_t *afd : {&deferred_pipes.read, &deferred_pipes.write}) { if (afd->valid()) { process_net_io_chain.push_back(std::make_shared(afd->fd())); } } if (p->type != process_type_t::block_node) { // A simple `begin ... end` should not be considered an execution of a command. parser.libdata().exec_count++; } const block_t *block = nullptr; cleanup_t pop_block([&]() { if (block) parser.pop_block(block); }); if (!p->variable_assignments.empty()) { block = parser.push_block(block_t::variable_assignment_block()); } for (const auto &assignment : p->variable_assignments) { parser.vars().set(assignment.variable_name, ENV_LOCAL | ENV_EXPORT, assignment.values); } // Execute the process. p->check_generations_before_launch(); switch (p->type) { case process_type_t::function: case process_type_t::block_node: { // Allow buffering unless this is a deferred run. If deferred, then processes after us // were already launched, so they are ready to receive (or reject) our output. bool allow_buffering = !is_deferred_run; if (!exec_block_or_func_process(parser, j, p, conflicts, process_net_io_chain, allow_buffering)) { return false; } break; } case process_type_t::builtin: { io_streams_t builtin_io_streams{stdout_read_limit}; if (!exec_internal_builtin_proc(parser, p, pipe_read.get(), process_net_io_chain, builtin_io_streams)) { return false; } if (!handle_builtin_output(parser, j, p, &process_net_io_chain, builtin_io_streams)) { return false; } break; } case process_type_t::external: { if (!exec_external_command(parser, j, p, process_net_io_chain)) { return false; } break; } case process_type_t::exec: { // We should have handled exec up above. DIE("process_type_t::exec process found in pipeline, where it should never be. " "Aborting."); break; } } return true; } // Do we have a fish internal process that pipes into a real process? If so, we are going to // launch it last (if there's more than one, just the last one). That is to prevent buffering // from blocking further processes. See #1396. // Example: // for i in (seq 1 5); sleep 1; echo $i; end | cat // This should show the output as it comes, not buffer until the end. // Any such process (only one per job) will be called the "deferred" process. static process_t *get_deferred_process(const shared_ptr &j) { // By enumerating in reverse order, we can avoid walking the entire list for (auto i = j->processes.rbegin(); i != j->processes.rend(); ++i) { const auto &p = *i; if (p->type == process_type_t::exec) { // No tail reordering for execs. return nullptr; } else if (p->type != process_type_t::external) { if (p->is_last_in_job) { return nullptr; } return p.get(); } } return nullptr; } // Given that we are about to execute an exec() call, check if the parser is interactive and there // are extant background jobs. If so, warn the user and do not exec(). // \return true if we should allow exec, false to disallow it. static bool allow_exec_with_background_jobs(parser_t &parser) { // If we're not interactive, we cannot warn. if (!parser.is_interactive()) return true; // Construct the list of running background jobs. job_list_t bgs = jobs_requiring_warning_on_exit(parser); if (bgs.empty()) return true; // Compare run counts, so we only warn once. uint64_t current_run_count = reader_run_count(); uint64_t &last_exec_run_count = parser.libdata().last_exec_run_counter; if (isatty(STDIN_FILENO) && current_run_count - 1 != last_exec_run_count) { print_exit_warning_for_jobs(bgs); last_exec_run_count = current_run_count; return false; } else { hup_jobs(parser.jobs()); return true; } } bool exec_job(parser_t &parser, const shared_ptr &j, const job_lineage_t &lineage) { assert(j && "null job_t passed to exec_job!"); // Set to true if something goes wrong while executing the job, in which case the cleanup // code will kick in. bool exec_error = false; // If fish was invoked with -n or --no-execute, then no_exec will be set and we do nothing. if (no_exec()) { return true; } pid_t pgrp = getpgrp(); // Check to see if we should reclaim the foreground pgrp after the job finishes or stops. const bool reclaim_foreground_pgrp = (tcgetpgrp(STDIN_FILENO) == pgrp); // Perhaps we know our pgroup already. assert(j->pgid == INVALID_PID && "Should not yet have a pid."); switch (j->pgroup_provenance) { case pgroup_provenance_t::lineage: assert(*lineage.parent_pgid != INVALID_PID && "pgid should be none, not INVALID_PID"); j->pgid = *lineage.parent_pgid; break; case pgroup_provenance_t::fish_itself: j->pgid = pgrp; break; // The remaining cases are all deferred until later. case pgroup_provenance_t::unassigned: case pgroup_provenance_t::first_external_proc: break; } const size_t stdout_read_limit = parser.libdata().read_limit; // Get the list of all FDs so we can ensure our pipes do not conflict. fd_set_t conflicts = lineage.block_io.fd_set(); for (const auto &p : j->processes) { for (const auto &spec : p->redirection_specs()) { conflicts.add(spec.fd); } } // Handle an exec call. if (j->processes.front()->type == process_type_t::exec) { // If we are interactive, perhaps disallow exec if there are background jobs. if (!allow_exec_with_background_jobs(parser)) { return false; } internal_exec(parser.vars(), j.get(), lineage.block_io); // internal_exec only returns if it failed to set up redirections. // In case of an successful exec, this code is not reached. int status = j->flags().negate ? 0 : 1; parser.set_last_statuses(statuses_t::just(status)); // A false return tells the caller to remove the job from the list. return false; } cleanup_t timer = push_timer(j->flags().has_time_prefix && !no_exec()); // Get the deferred process, if any. We will have to remember its pipes. autoclose_pipes_t deferred_pipes; process_t *const deferred_process = get_deferred_process(j); // This loop loops over every process_t in the job, starting it as appropriate. This turns out // to be rather complex, since a process_t can be one of many rather different things. // // The loop also has to handle pipelining between the jobs. // // We can have up to three pipes "in flight" at a time: // // 1. The pipe the current process should read from (courtesy of the previous process) // 2. The pipe that the current process should write to // 3. The pipe that the next process should read from (courtesy of us) // autoclose_fd_t pipe_next_read; for (const auto &p : j->processes) { // proc_pipes is the pipes applied to this process. That is, it is the read end // containing the output of the previous process (if any), plus the write end that will // output to the next process (if any). autoclose_pipes_t proc_pipes; proc_pipes.read = std::move(pipe_next_read); if (!p->is_last_in_job) { auto pipes = make_autoclose_pipes(conflicts); if (!pipes) { FLOGF(warning, PIPE_ERROR); wperror(L"pipe"); job_mark_process_as_failed(j, p.get()); exec_error = true; break; } pipe_next_read = std::move(pipes->read); proc_pipes.write = std::move(pipes->write); } if (p.get() == deferred_process) { deferred_pipes = std::move(proc_pipes); } else { if (!exec_process_in_job(parser, p.get(), j, lineage.block_io, std::move(proc_pipes), conflicts, deferred_pipes, stdout_read_limit)) { exec_error = true; break; } } } pipe_next_read.close(); // Now execute any deferred process. if (!exec_error && deferred_process) { assert(deferred_pipes.write.valid() && "Deferred process should always have a write pipe"); if (!exec_process_in_job(parser, deferred_process, j, lineage.block_io, std::move(deferred_pipes), conflicts, {}, stdout_read_limit, true)) { exec_error = true; } } FLOGF(exec_job_exec, L"Executed job %d from command '%ls' with pgrp %d", j->job_id(), j->command_wcstr(), j->pgid); j->mark_constructed(); if (!j->is_foreground()) { parser.vars().set_one(L"last_pid", ENV_GLOBAL, to_string(j->pgid)); } if (exec_error) { return false; } j->continue_job(parser, reclaim_foreground_pgrp, false); return true; } /// Populate \p lst with the output of \p buffer, perhaps splitting lines according to \p split. static void populate_subshell_output(wcstring_list_t *lst, const io_buffer_t &buffer, bool split) { // Walk over all the elements. for (const auto &elem : buffer.buffer().elements()) { if (elem.is_explicitly_separated()) { // Just append this one. lst->push_back(str2wcstring(elem.contents)); continue; } // Not explicitly separated. We have to split it explicitly. assert(!elem.is_explicitly_separated() && "should not be explicitly separated"); const char *begin = elem.contents.data(); const char *end = begin + elem.contents.size(); if (split) { const char *cursor = begin; while (cursor < end) { // Look for the next separator. const char *stop = static_cast(std::memchr(cursor, '\n', end - cursor)); const bool hit_separator = (stop != nullptr); if (!hit_separator) { // If it's not found, just use the end. stop = end; } // Stop now points at the first character we do not want to copy. lst->push_back(str2wcstring(cursor, stop - cursor)); // If we hit a separator, skip over it; otherwise we're at the end. cursor = stop + (hit_separator ? 1 : 0); } } else { // We're not splitting output, but we still want to trim off a trailing newline. if (end != begin && end[-1] == '\n') { --end; } lst->push_back(str2wcstring(begin, end - begin)); } } } /// Execute \p cmd in a subshell in \p parser. If \p lst is not null, populate it with the output. /// Return $status in \p out_status. /// If \p apply_exit_status is false, then reset $status back to its original value. /// \p is_subcmd controls whether we apply a read limit. /// \p break_expand is used to propagate whether the result should be "expansion breaking" in the /// sense that subshells used during string expansion should halt that expansion. \return the value /// of $status. static int exec_subshell_internal(const wcstring &cmd, parser_t &parser, wcstring_list_t *lst, bool *break_expand, bool apply_exit_status, bool is_subcmd) { ASSERT_IS_MAIN_THREAD(); auto &ld = parser.libdata(); scoped_push is_subshell(&ld.is_subshell, true); scoped_push read_limit(&ld.read_limit, is_subcmd ? read_byte_limit : 0); auto prev_statuses = parser.get_last_statuses(); const cleanup_t put_back([&] { if (!apply_exit_status) { parser.set_last_statuses(prev_statuses); } }); const bool split_output = !parser.vars().get(L"IFS").missing_or_empty(); // IO buffer creation may fail (e.g. if we have too many open files to make a pipe), so this may // be null. auto bufferfill = io_bufferfill_t::create(fd_set_t{}, ld.read_limit); if (!bufferfill) { *break_expand = true; return STATUS_CMD_ERROR; } eval_res_t eval_res = parser.eval(cmd, io_chain_t{bufferfill}, block_type_t::subst); std::shared_ptr buffer = io_bufferfill_t::finish(std::move(bufferfill)); if (buffer->buffer().discarded()) { *break_expand = true; return STATUS_READ_TOO_MUCH; } if (eval_res.break_expand) { *break_expand = true; return eval_res.status.status_value(); } if (lst) { populate_subshell_output(lst, *buffer, split_output); } *break_expand = false; return eval_res.status.status_value(); } int exec_subshell_for_expand(const wcstring &cmd, parser_t &parser, wcstring_list_t &outputs) { ASSERT_IS_MAIN_THREAD(); bool break_expand = false; int ret = exec_subshell_internal(cmd, parser, &outputs, &break_expand, true, true); // Only return an error code if we should break expansion. return break_expand ? ret : STATUS_CMD_OK; } int exec_subshell(const wcstring &cmd, parser_t &parser, bool apply_exit_status) { bool break_expand = false; return exec_subshell_internal(cmd, parser, nullptr, &break_expand, apply_exit_status, false); } int exec_subshell(const wcstring &cmd, parser_t &parser, wcstring_list_t &outputs, bool apply_exit_status) { bool break_expand = false; return exec_subshell_internal(cmd, parser, &outputs, &break_expand, apply_exit_status, false); }