// Utilities for keeping track of jobs, processes and subshells, as well as signal handling // functions for tracking children. These functions do not themselves launch new processes, the exec // library will call proc to create representations of the running jobs as needed. // // Some of the code in this file is based on code from the Glibc manual. // IWYU pragma: no_include <__bit_reference> #include "config.h" #include #include #include #include #include #include #include #if HAVE_TERM_H #include #include #elif HAVE_NCURSES_TERM_H #include #endif #include #ifdef HAVE_SIGINFO_H #include #endif #ifdef HAVE_SYS_SELECT_H #include #endif #include // IWYU pragma: keep #include #include // IWYU pragma: keep #include #include #include #include "common.h" #include "event.h" #include "fallback.h" // IWYU pragma: keep #include "flog.h" #include "global_safety.h" #include "io.h" #include "output.h" #include "parse_tree.h" #include "parser.h" #include "proc.h" #include "reader.h" #include "sanity.h" #include "signal.h" #include "wutil.h" // IWYU pragma: keep /// The signals that signify crashes to us. static const int crashsignals[] = {SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV, SIGSYS}; static relaxed_atomic_bool_t s_is_interactive_session{false}; bool is_interactive_session() { return s_is_interactive_session; } void set_interactive_session(bool flag) { s_is_interactive_session = flag; } static relaxed_atomic_bool_t s_is_login{false}; bool get_login() { return s_is_login; } void mark_login() { s_is_login = true; } static relaxed_atomic_bool_t s_no_exec{false}; bool no_exec() { return s_no_exec; } void mark_no_exec() { s_no_exec = true; } bool have_proc_stat() { // Check for /proc/self/stat to see if we are running with Linux-style procfs. static const bool s_result = (access("/proc/self/stat", R_OK) == 0); return s_result; } static relaxed_atomic_t job_control_mode{job_control_t::interactive}; job_control_t get_job_control_mode() { return job_control_mode; } void set_job_control_mode(job_control_t mode) { job_control_mode = mode; } void proc_init() { signal_set_handlers_once(false); } // Basic thread safe job IDs. The vector consumed_job_ids has a true value wherever the job ID // corresponding to that slot is in use. The job ID corresponding to slot 0 is 1. static owning_lock> locked_consumed_job_ids; job_id_t acquire_job_id() { auto consumed_job_ids = locked_consumed_job_ids.acquire(); // Find the index of the first 0 slot. auto slot = std::find(consumed_job_ids->begin(), consumed_job_ids->end(), false); if (slot != consumed_job_ids->end()) { // We found a slot. Note that slot 0 corresponds to job ID 1. *slot = true; return (job_id_t)(slot - consumed_job_ids->begin() + 1); } // We did not find a slot; create a new slot. The size of the vector is now the job ID // (since it is one larger than the slot). consumed_job_ids->push_back(true); return (job_id_t)consumed_job_ids->size(); } void release_job_id(job_id_t jid) { assert(jid > 0); auto consumed_job_ids = locked_consumed_job_ids.acquire(); size_t slot = (size_t)(jid - 1), count = consumed_job_ids->size(); // Make sure this slot is within our vector and is currently set to consumed. assert(slot < count); assert(consumed_job_ids->at(slot) == true); // Clear it and then resize the vector to eliminate unused trailing job IDs. consumed_job_ids->at(slot) = false; while (count--) { if (consumed_job_ids->at(count)) break; } consumed_job_ids->resize(count + 1); } job_t *job_t::from_job_id(job_id_t id) { ASSERT_IS_MAIN_THREAD(); return parser_t::principal_parser().job_get(id); } job_t *job_t::from_pid(pid_t pid) { ASSERT_IS_MAIN_THREAD(); return parser_t::principal_parser().job_get_from_pid(pid); } /// Return true if all processes in the job have stopped or completed. bool job_t::is_stopped() const { for (const process_ptr_t &p : processes) { if (!p->completed && !p->stopped) { return false; } } return true; } /// Return true if the last processes in the job has completed. bool job_t::is_completed() const { assert(!processes.empty()); for (const process_ptr_t &p : processes) { if (!p->completed) { return false; } } return true; } bool job_t::job_chain_is_fully_constructed() const { const job_t *cursor = this; while (cursor) { if (!cursor->is_constructed()) return false; cursor = cursor->get_parent().get(); } return true; } void job_t::set_flag(job_flag_t flag, bool set) { this->flags.set(flag, set); } bool job_t::get_flag(job_flag_t flag) const { return this->flags.get(flag); } bool job_t::signal(int signal) { // Presumably we are distinguishing between the two cases below because we do // not want to send ourselves the signal in question in case the job shares // a pgid with the shell. if (pgid != getpgrp()) { if (killpg(pgid, signal) == -1) { char buffer[512]; sprintf(buffer, "killpg(%d, %s)", pgid, strsignal(signal)); wperror(str2wcstring(buffer).c_str()); return false; } } else { for (const auto &p : processes) { if (!p->completed && p->pid && kill(p->pid, signal) == -1) { return false; } } } return true; } statuses_t job_t::get_statuses() const { statuses_t st{}; st.pipestatus.reserve(processes.size()); for (const auto &p : processes) { st.pipestatus.push_back(p->status.status_value()); } int laststatus = st.pipestatus.back(); st.status = (get_flag(job_flag_t::NEGATE) ? !laststatus : laststatus); return st; } void internal_proc_t::mark_exited(proc_status_t status) { assert(!exited() && "Process is already exited"); status_.store(status, std::memory_order_relaxed); exited_.store(true, std::memory_order_release); topic_monitor_t::principal().post(topic_t::internal_exit); FLOG(proc_internal_proc, L"Internal proc", internal_proc_id_, L"exited with status", status.status_value()); } static int64_t next_proc_id() { static std::atomic s_next{}; return ++s_next; } internal_proc_t::internal_proc_t() : internal_proc_id_(next_proc_id()) {} void job_mark_process_as_failed(const std::shared_ptr &job, const process_t *failed_proc) { // The given process failed to even lift off (e.g. posix_spawn failed) and so doesn't have a // valid pid. Mark it and everything after it as dead. bool found = false; for (process_ptr_t &p : job->processes) { found = found || (p.get() == failed_proc); if (found) { p->completed = true; } } } /// Set the status of \p proc to \p status. static void handle_child_status(process_t *proc, proc_status_t status) { proc->status = status; if (status.stopped()) { proc->stopped = true; } else { proc->completed = true; } // If the child was killed by SIGINT or SIGQUIT, then treat it as if we received that signal. if (status.signal_exited()) { int sig = status.signal_code(); if (sig == SIGINT || sig == SIGQUIT) { if (is_interactive_session()) { // In an interactive session, tell the principal parser to skip all blocks we're // executing so control-C returns control to the user. parser_t::skip_all_blocks(); } else { // Deliver the SIGINT or SIGQUIT signal to ourself since we're not interactive. struct sigaction act; sigemptyset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = SIG_DFL; sigaction(sig, &act, 0); kill(getpid(), sig); } } } } process_t::process_t() = default; void process_t::check_generations_before_launch() { gens_ = topic_monitor_t::principal().current_generations(); } job_t::job_t(job_id_t job_id, const properties_t &props, io_chain_t bio, std::shared_ptr parent) : properties(props), block_io(std::move(bio)), parent_job(std::move(parent)), job_id(job_id) {} job_t::~job_t() { release_job_id(job_id); } /// Return all the IO redirections. Start with the block IO, then walk over the processes. io_chain_t job_t::all_io_redirections() const { io_chain_t result = this->block_io; for (const process_ptr_t &p : this->processes) { result.append(p->io_chain()); } return result; } typedef unsigned int process_generation_count_t; /// A list of pids/pgids that have been disowned. They are kept around until either they exit or /// we exit. Poll these from time-to-time to prevent zombie processes from happening (#5342). static owning_lock> s_disowned_pids; void add_disowned_pgid(pid_t pgid) { // NEVER add our own (or an invalid) pgid as they are not unique to only // one job, and may result in a deadlock if we attempt the wait. if (pgid != getpgrp() && pgid > 0) { // waitpid(2) is signalled to wait on a process group rather than a // process id by using the negative of its value. s_disowned_pids.acquire()->push_back(pgid * -1); } } // Reap any pids in our disowned list that have exited. This is used to avoid zombies. static void reap_disowned_pids() { auto disowned_pids = s_disowned_pids.acquire(); auto try_reap1 = [](pid_t pid) { int status; return waitpid(pid, &status, WNOHANG) > 0; }; disowned_pids->erase(std::remove_if(disowned_pids->begin(), disowned_pids->end(), try_reap1), disowned_pids->end()); } /// See if any reapable processes have exited, and mark them accordingly. /// \param block_ok if no reapable processes have exited, block until one is (or until we receive a /// signal). static void process_mark_finished_children(parser_t &parser, bool block_ok) { ASSERT_IS_MAIN_THREAD(); // Get the exit and signal generations of all reapable processes. // The exit generation tells us if we have an exit; the signal generation allows for detecting // SIGHUP and SIGINT. // Get the gen count of all reapable processes. topic_set_t reaptopics{}; generation_list_t gens{}; gens.fill(invalid_generation); for (const auto &j : parser.jobs()) { for (const auto &proc : j->processes) { if (auto mtopic = j->reap_topic_for_process(proc.get())) { topic_t topic = *mtopic; reaptopics.set(topic); gens[topic] = std::min(gens[topic], proc->gens_[topic]); reaptopics.set(topic_t::sighupint); gens[topic_t::sighupint] = std::min(gens[topic_t::sighupint], proc->gens_[topic_t::sighupint]); } } } if (reaptopics.none()) { // No reapable processes, nothing to wait for. return; } // Now check for changes, optionally waiting. auto changed_topics = topic_monitor_t::principal().check(&gens, reaptopics, block_ok); if (changed_topics.none()) return; // We got some changes. Since we last checked we received SIGCHLD, and or HUP/INT. // Update the hup/int generations and reap any reapable processes. for (const auto &j : parser.jobs()) { for (const auto &proc : j->processes) { if (auto mtopic = j->reap_topic_for_process(proc.get())) { // Update the signal hup/int gen. proc->gens_[topic_t::sighupint] = gens[topic_t::sighupint]; if (proc->gens_[*mtopic] < gens[*mtopic]) { // Potentially reapable. Update its gen count and try reaping it. proc->gens_[*mtopic] = gens[*mtopic]; if (proc->internal_proc_) { // Try reaping an internal process. if (proc->internal_proc_->exited()) { proc->status = proc->internal_proc_->get_status(); proc->completed = true; FLOGF(proc_reap_internal, "Reaped internal process '%ls' (id %llu, status %d)", proc->argv0(), proc->internal_proc_->get_id(), proc->status.status_value()); } } else if (proc->pid > 0) { // Try reaping an external process. int status = -1; auto pid = waitpid(proc->pid, &status, WNOHANG | WUNTRACED); if (pid > 0) { assert(pid == proc->pid && "Unexpcted waitpid() return"); handle_child_status(proc.get(), proc_status_t::from_waitpid(status)); FLOGF(proc_reap_external, "Reaped external process '%ls' (pid %d, status %d)", proc->argv0(), pid, proc->status.status_value()); } } else { assert(0 && "Don't know how to reap this process"); } } } } } // Remove any zombies. reap_disowned_pids(); } /// Given a command like "cat file", truncate it to a reasonable length. static wcstring truncate_command(const wcstring &cmd) { const size_t max_len = 32; if (cmd.size() <= max_len) { // No truncation necessary. return cmd; } // Truncation required. const wchar_t *ellipsis_str = get_ellipsis_str(); const size_t ellipsis_length = std::wcslen(ellipsis_str); // no need for wcwidth size_t trunc_length = max_len - ellipsis_length; // Eat trailing whitespace. while (trunc_length > 0 && iswspace(cmd.at(trunc_length - 1))) { trunc_length -= 1; } wcstring result = wcstring(cmd, 0, trunc_length); // Append ellipsis. result.append(ellipsis_str); return result; } /// Format information about job status for the user to look at. typedef enum { JOB_STOPPED, JOB_ENDED } job_status_t; static void print_job_status(const job_t *j, job_status_t status) { const wchar_t *msg = L"Job %d, '%ls' has ended"; // this is the most common status msg if (status == JOB_STOPPED) msg = L"Job %d, '%ls' has stopped"; outputter_t outp; outp.writestr("\r"); outp.writestr(format_string(_(msg), j->job_id, truncate_command(j->command()).c_str())); if (clr_eol) outp.term_puts(clr_eol, 1); outp.writestr(L"\n"); fflush(stdout); outp.flush_to(STDOUT_FILENO); } event_t proc_create_event(const wchar_t *msg, event_type_t type, pid_t pid, int status) { event_t event{type}; event.desc.param1.pid = pid; event.arguments.push_back(msg); event.arguments.push_back(to_string(pid)); event.arguments.push_back(to_string(status)); return event; } /// Remove all disowned jobs whose job chain is fully constructed (that is, do not erase disowned /// jobs that still have an in-flight parent job). Note we never print statuses for such jobs. void remove_disowned_jobs(job_list_t &jobs) { auto iter = jobs.begin(); while (iter != jobs.end()) { const auto &j = *iter; if (j->get_flag(job_flag_t::DISOWN_REQUESTED) && j->job_chain_is_fully_constructed()) { iter = jobs.erase(iter); } else { ++iter; } } } /// Given a a process in a job, print the status message for the process as appropriate, and then /// mark the status code so we don't print again. Populate any events into \p exit_events. /// \return true if we printed a status message, false if not. static bool try_clean_process_in_job(process_t *p, job_t *j, std::vector *exit_events, bool only_one_job) { if (!p->completed || !p->pid) { return false; } auto s = p->status; // Add an exit event if the process did not come from a job handler. if (!j->from_event_handler()) { exit_events->push_back(proc_create_event(L"PROCESS_EXIT", event_type_t::exit, p->pid, s.normal_exited() ? s.exit_code() : -1)); } // Ignore SIGPIPE. We issue it ourselves to the pipe writer when the pipe reader dies. if (!s.signal_exited() || s.signal_code() == SIGPIPE) { return false; } int proc_is_job = (p->is_first_in_job && p->is_last_in_job); if (proc_is_job) j->set_flag(job_flag_t::NOTIFIED, true); // Handle signals other than SIGPIPE. // Always report crashes. if (j->skip_notification() && !contains(crashsignals, s.signal_code())) { return false; } // Print nothing if we get SIGINT in the foreground process group, to avoid spamming // obvious stuff on the console (#1119). If we get SIGINT for the foreground // process, assume the user typed ^C and can see it working. It's possible they // didn't, and the signal was delivered via pkill, etc., but the SIGINT/SIGTERM // distinction is precisely to allow INT to be from a UI // and TERM to be programmatic, so this assumption is keeping with the design of // signals. If echoctl is on, then the terminal will have written ^C to the console. // If off, it won't have. We don't echo ^C either way, so as to respect the user's // preference. bool printed = false; if (s.signal_code() != SIGINT || !j->is_foreground()) { if (proc_is_job) { // We want to report the job number, unless it's the only job, in which case // we don't need to. const wcstring job_number_desc = only_one_job ? wcstring() : format_string(_(L"Job %d, "), j->job_id); std::fwprintf(stdout, _(L"%ls: %ls\'%ls\' terminated by signal %ls (%ls)"), program_name, job_number_desc.c_str(), truncate_command(j->command()).c_str(), sig2wcs(s.signal_code()), signal_get_desc(s.signal_code())); } else { const wcstring job_number_desc = only_one_job ? wcstring() : format_string(L"from job %d, ", j->job_id); const wchar_t *fmt = _(L"%ls: Process %d, \'%ls\' %ls\'%ls\' terminated by signal %ls (%ls)"); std::fwprintf(stdout, fmt, program_name, p->pid, p->argv0(), job_number_desc.c_str(), truncate_command(j->command()).c_str(), sig2wcs(s.signal_code()), signal_get_desc(s.signal_code())); } if (clr_eol) outputter_t::stdoutput().term_puts(clr_eol, 1); std::fwprintf(stdout, L"\n"); printed = true; } // Clear status so it is not reported more than once. // TODO: this seems like a clumsy way to ensure that. p->status = proc_status_t::from_exit_code(0); return printed; } /// \return whether this job wants a status message printed when it stops or completes. static bool job_wants_message(const shared_ptr &j) { // Did we already print a status message? if (j->get_flag(job_flag_t::NOTIFIED)) return false; // Do we just skip notifications? if (j->skip_notification()) return false; // Are we foreground? // The idea here is to not print status messages for jobs that execute in the foreground (i.e. // without & and without being `bg`). if (j->is_foreground()) return false; return true; } /// Remove completed jobs from the job list, printing status messages as appropriate. /// \return whether something was printed. static bool process_clean_after_marking(parser_t &parser, bool allow_interactive) { ASSERT_IS_MAIN_THREAD(); bool printed = false; // This function may fire an event handler, we do not want to call ourselves recursively (to // avoid infinite recursion). if (parser.libdata().is_cleaning_procs) { return false; } parser.libdata().is_cleaning_procs = true; const cleanup_t cleanup([&] { parser.libdata().is_cleaning_procs = false; }); // This may be invoked in an exit handler, after the TERM has been torn down // Don't try to print in that case (#3222) const bool interactive = allow_interactive && cur_term != NULL; // Remove all disowned jobs. remove_disowned_jobs(parser.jobs()); // Accumulate exit events into a new list, which we fire after the list manipulation is // complete. std::vector exit_events; // Print status messages for completed or stopped jobs. const bool only_one_job = parser.jobs().size() == 1; for (const auto &j : parser.jobs()) { // Skip unconstructed jobs. if (!j->is_constructed()) { continue; } // If we are not interactive, skip cleaning jobs that want to print an interactive message. if (!interactive && job_wants_message(j)) { continue; } // Clean processes within the job. // Note this may print the message on behalf of the job, affecting the result of // job_wants_message(). for (process_ptr_t &p : j->processes) { if (try_clean_process_in_job(p.get(), j.get(), &exit_events, only_one_job)) { printed = true; } } // Print the message if we need to. if (job_wants_message(j) && (j->is_completed() || j->is_stopped())) { print_job_status(j.get(), j->is_completed() ? JOB_ENDED : JOB_STOPPED); j->set_flag(job_flag_t::NOTIFIED, true); printed = true; } // Prepare events for completed jobs, except for jobs that themselves came from event // handlers. if (!j->from_event_handler() && j->is_completed()) { if (j->pgid != INVALID_PID) { exit_events.push_back( proc_create_event(L"JOB_EXIT", event_type_t::exit, -j->pgid, 0)); } exit_events.push_back( proc_create_event(L"JOB_EXIT", event_type_t::job_exit, j->job_id, 0)); } } // Remove completed jobs. // Do this before calling out to user code in the event handler below, to ensure an event // handler doesn't remove jobs on our behalf. auto is_complete = [](const shared_ptr &j) { return j->is_completed(); }; auto &jobs = parser.jobs(); jobs.erase(std::remove_if(jobs.begin(), jobs.end(), is_complete), jobs.end()); // Post pending exit events. for (const auto &evt : exit_events) { event_fire(parser, evt); } if (printed) { fflush(stdout); } return printed; } bool job_reap(parser_t &parser, bool allow_interactive) { ASSERT_IS_MAIN_THREAD(); process_mark_finished_children(parser, false); // Preserve the exit status. auto saved_statuses = parser.get_last_statuses(); bool printed = process_clean_after_marking(parser, allow_interactive); // Restore the exit status. parser.set_last_statuses(std::move(saved_statuses)); return printed; } /// Maximum length of a /proc/[PID]/stat filename. #define FN_SIZE 256 /// Get the CPU time for the specified process. unsigned long proc_get_jiffies(process_t *p) { if (!have_proc_stat()) return 0; if (p->pid <= 0) return 0; wchar_t fn[FN_SIZE]; char state; int pid, ppid, pgrp, session, tty_nr, tpgid, exit_signal, processor; long int cutime, cstime, priority, nice, placeholder, itrealvalue, rss; unsigned long int flags, minflt, cminflt, majflt, cmajflt, utime, stime, starttime, vsize, rlim, startcode, endcode, startstack, kstkesp, kstkeip, signal, blocked, sigignore, sigcatch, wchan, nswap, cnswap; char comm[1024]; std::swprintf(fn, FN_SIZE, L"/proc/%d/stat", p->pid); FILE *f = wfopen(fn, "r"); if (!f) return 0; // TODO: replace the use of fscanf() as it is brittle and should never be used. int count = fscanf(f, "%9d %1023s %c %9d %9d %9d %9d %9d %9lu " "%9lu %9lu %9lu %9lu %9lu %9lu %9ld %9ld %9ld " "%9ld %9ld %9ld %9lu %9lu %9ld %9lu %9lu %9lu " "%9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu " "%9lu %9d %9d ", &pid, comm, &state, &ppid, &pgrp, &session, &tty_nr, &tpgid, &flags, &minflt, &cminflt, &majflt, &cmajflt, &utime, &stime, &cutime, &cstime, &priority, &nice, &placeholder, &itrealvalue, &starttime, &vsize, &rss, &rlim, &startcode, &endcode, &startstack, &kstkesp, &kstkeip, &signal, &blocked, &sigignore, &sigcatch, &wchan, &nswap, &cnswap, &exit_signal, &processor); fclose(f); if (count < 17) return 0; return utime + stime + cutime + cstime; } /// Update the CPU time for all jobs. void proc_update_jiffies(parser_t &parser) { for (const auto &job : parser.jobs()) { for (process_ptr_t &p : job->processes) { gettimeofday(&p->last_time, 0); p->last_jiffies = proc_get_jiffies(p.get()); } } } // Return control of the terminal to a job's process group. restore_attrs is true if we are // restoring a previously-stopped job, in which case we need to restore terminal attributes. int terminal_maybe_give_to_job(const job_t *j, bool continuing_from_stopped) { enum { notneeded = 0, success = 1, error = -1 }; if (!j->should_claim_terminal()) { // The job doesn't want the terminal. return notneeded; } if (j->pgid == 0) { FLOG(proc_termowner, L"terminal_give_to_job() returning early due to no process group"); return notneeded; } // If we are continuing, ensure that stdin is marked as blocking first (issue #176). if (continuing_from_stopped) { make_fd_blocking(STDIN_FILENO); } // It may not be safe to call tcsetpgrp if we've already done so, as at that point we are no // longer the controlling process group for the terminal and no longer have permission to set // the process group that is in control, causing tcsetpgrp to return EPERM, even though that's // not the documented behavior in tcsetpgrp(3), which instead says other bad things will happen // (it says SIGTTOU will be sent to all members of the background *calling* process group, but // it's more complicated than that, SIGTTOU may or may not be sent depending on the TTY // configuration and whether or not signal handlers for SIGTTOU are installed. Read: // http://curiousthing.org/sigttin-sigttou-deep-dive-linux In all cases, our goal here was just // to hand over control of the terminal to this process group, which is a no-op if it's already // been done. if (j->pgid == INVALID_PID || tcgetpgrp(STDIN_FILENO) == j->pgid) { FLOGF(proc_termowner, L"Process group %d already has control of terminal", j->pgid); } else { FLOGF(proc_termowner, L"Attempting to bring process group to foreground via tcsetpgrp for job->pgid %d", j->pgid); // The tcsetpgrp(2) man page says that EPERM is thrown if "pgrp has a supported value, but // is not the process group ID of a process in the same session as the calling process." // Since we _guarantee_ that this isn't the case (the child calls setpgid before it calls // SIGSTOP, and the child was created in the same session as us), it seems that EPERM is // being thrown because of an caching issue - the call to tcsetpgrp isn't seeing the // newly-created process group just yet. On this developer's test machine (WSL running Linux // 4.4.0), EPERM does indeed disappear on retry. The important thing is that we can // guarantee the process isn't going to exit while we wait (which would cause us to possibly // block indefinitely). while (tcsetpgrp(STDIN_FILENO, j->pgid) != 0) { FLOGF(proc_termowner, L"tcsetpgrp failed: %d", errno); bool pgroup_terminated = false; // No need to test for EINTR as we are blocking signals if (errno == EINVAL) { // OS X returns EINVAL if the process group no longer lives. Probably other OSes, // too. Unlike EPERM below, EINVAL can only happen if the process group has // terminated. pgroup_terminated = true; } else if (errno == EPERM) { // Retry so long as this isn't because the process group is dead. int wait_result = waitpid(-1 * j->pgid, &wait_result, WNOHANG); if (wait_result == -1) { // Note that -1 is technically an "error" for waitpid in the sense that an // invalid argument was specified because no such process group exists any // longer. This is the observed behavior on Linux 4.4.0. a "success" result // would mean processes from the group still exist but is still running in some // state or the other. pgroup_terminated = true; } else { // Debug the original tcsetpgrp error (not the waitpid errno) to the log, and // then retry until not EPERM or the process group has exited. debug(2, L"terminal_give_to_job(): EPERM.\n", j->pgid); continue; } } else { if (errno == ENOTTY) { redirect_tty_output(); } debug(1, _(L"Could not send job %d ('%ls') with pgid %d to foreground"), j->job_id, j->command_wcstr(), j->pgid); wperror(L"tcsetpgrp"); return error; } if (pgroup_terminated) { // All processes in the process group has exited. // Since we delay reaping any processes in a process group until all members of that // job/group have been started, the only way this can happen is if the very last // process in the group terminated and didn't need to access the terminal, otherwise // it would have hung waiting for terminal IO (SIGTTIN). We can safely ignore this. debug(3, L"tcsetpgrp called but process group %d has terminated.\n", j->pgid); return notneeded; } break; } } if (continuing_from_stopped) { auto result = tcsetattr(STDIN_FILENO, TCSADRAIN, &j->tmodes); if (result == -1) { // No need to test for EINTR and retry since we have blocked all signals if (errno == ENOTTY) { redirect_tty_output(); } debug(1, _(L"Could not send job %d ('%ls') to foreground"), j->job_id, j->preview().c_str()); wperror(L"tcsetattr"); return error; } } return success; } pid_t terminal_acquire_before_builtin(int job_pgid) { pid_t selfpgid = getpgrp(); pid_t current_owner = tcgetpgrp(STDIN_FILENO); if (current_owner >= 0 && current_owner != selfpgid && current_owner == job_pgid) { if (tcsetpgrp(STDIN_FILENO, selfpgid) == 0) { return current_owner; } } return -1; } /// Returns control of the terminal to the shell, and saves the terminal attribute state to the job, /// so that we can restore the terminal ownership to the job at a later time. static bool terminal_return_from_job(job_t *j) { errno = 0; if (j->pgid == 0) { debug(2, "terminal_return_from_job() returning early due to no process group"); return true; } if (tcsetpgrp(STDIN_FILENO, getpgrp()) == -1) { if (errno == ENOTTY) redirect_tty_output(); debug(1, _(L"Could not return shell to foreground")); wperror(L"tcsetpgrp"); return false; } // Save jobs terminal modes. if (tcgetattr(STDIN_FILENO, &j->tmodes)) { if (errno == EIO) redirect_tty_output(); debug(1, _(L"Could not return shell to foreground")); wperror(L"tcgetattr"); return false; } // Disabling this per // https://github.com/adityagodbole/fish-shell/commit/9d229cd18c3e5c25a8bd37e9ddd3b67ddc2d1b72 On // Linux, 'cd . ; ftp' prevents you from typing into the ftp prompt. See // https://github.com/fish-shell/fish-shell/issues/121 #if 0 // Restore the shell's terminal modes. if (tcsetattr(STDIN_FILENO, TCSADRAIN, &shell_modes) == -1) { if (errno == EIO) redirect_tty_output(); debug(1, _(L"Could not return shell to foreground")); wperror(L"tcsetattr"); return false; } #endif return true; } void job_t::continue_job(parser_t &parser, bool reclaim_foreground_pgrp, bool send_sigcont) { // Put job first in the job list. parser.job_promote(this); set_flag(job_flag_t::NOTIFIED, false); FLOGF(proc_job_run, L"%ls job %d, gid %d (%ls), %ls, %ls", send_sigcont ? L"Continue" : L"Start", job_id, pgid, command_wcstr(), is_completed() ? L"COMPLETED" : L"UNCOMPLETED", parser.libdata().is_interactive ? L"INTERACTIVE" : L"NON-INTERACTIVE"); // Make sure we retake control of the terminal before leaving this function. bool term_transferred = false; cleanup_t take_term_back([&]() { if (term_transferred && reclaim_foreground_pgrp) { terminal_return_from_job(this); } }); if (!is_completed()) { int transfer = terminal_maybe_give_to_job(this, send_sigcont); if (transfer < 0) { // terminal_maybe_give_to_job prints an error. return; } term_transferred = (transfer > 0); // If both requested and necessary, send the job a continue signal. if (send_sigcont) { // This code used to check for JOB_CONTROL to decide between using killpg to signal all // processes in the group or iterating over each process in the group and sending the // signal individually. job_t::signal() does the same, but uses the shell's own pgroup // to make that distinction. if (!signal(SIGCONT)) { debug(2, "Failed to send SIGCONT to any processes in pgroup %d!", pgid); // This returns without bubbling up the error. Presumably that is OK. return; } // reset the status of each process instance for (auto &p : processes) { p->stopped = false; } } if (is_foreground()) { // Wait for the status of our own job to change. while (!reader_exit_forced() && !is_stopped() && !is_completed()) { process_mark_finished_children(parser, true); } } } if (is_foreground() && is_completed()) { // Set $status only if we are in the foreground and the last process in the job has // finished and is not a short-circuited builtin. auto &p = processes.back(); if (p->status.normal_exited() || p->status.signal_exited()) { parser.set_last_statuses(get_statuses()); } } } void proc_sanity_check(const parser_t &parser) { const job_t *fg_job = NULL; for (const auto &j : parser.jobs()) { if (!j->is_constructed()) continue; // More than one foreground job? if (j->is_foreground() && !(j->is_stopped() || j->is_completed())) { if (fg_job) { FLOGF(error, _(L"More than one job in foreground: job 1: '%ls' job 2: '%ls'"), fg_job->command_wcstr(), j->command_wcstr()); sanity_lose(); } fg_job = j.get(); } for (const process_ptr_t &p : j->processes) { // Internal block nodes do not have argv - see issue #1545. bool null_ok = (p->type == process_type_t::block_node); validate_pointer(p->get_argv(), _(L"Process argument list"), null_ok); validate_pointer(p->argv0(), _(L"Process name"), null_ok); if ((p->stopped & (~0x00000001)) != 0) { FLOGF(error, _(L"Job '%ls', process '%ls' has inconsistent state \'stopped\'=%d"), j->command_wcstr(), p->argv0(), p->stopped); sanity_lose(); } if ((p->completed & (~0x00000001)) != 0) { FLOGF(error, _(L"Job '%ls', process '%ls' has inconsistent state \'completed\'=%d"), j->command_wcstr(), p->argv0(), p->completed); sanity_lose(); } } } } void proc_wait_any(parser_t &parser) { ASSERT_IS_MAIN_THREAD(); process_mark_finished_children(parser, true /* block_ok */); process_clean_after_marking(parser, parser.libdata().is_interactive); } void hup_background_jobs(const parser_t &parser) { // TODO: we should probably hup all jobs across all parsers here. for (const auto &j : parser.jobs()) { // Make sure we don't try to SIGHUP the calling builtin if (j->pgid == INVALID_PID || !j->wants_job_control()) { continue; } if (!j->is_completed()) { if (j->is_stopped()) { j->signal(SIGCONT); } j->signal(SIGHUP); } } } static std::atomic s_is_within_fish_initialization{false}; void set_is_within_fish_initialization(bool flag) { s_is_within_fish_initialization.store(flag); } bool is_within_fish_initialization() { return s_is_within_fish_initialization.load(); }