/* * TINYEXPR - Tiny recursive descent parser and evaluation engine in C * * Copyright (c) 2015, 2016 Lewis Van Winkle * * http://CodePlea.com * * This software is provided 'as-is', without any express or implied * warranty. In no event will the authors be held liable for any damages * arising from the use of this software. * * Permission is granted to anyone to use this software for any purpose, * including commercial applications, and to alter it and redistribute it * freely, subject to the following restrictions: * * 1. The origin of this software must not be misrepresented; you must not * claim that you wrote the original software. If you use this software * in a product, an acknowledgement in the product documentation would be * appreciated but is not required. * 2. Altered source versions must be plainly marked as such, and must not be * misrepresented as being the original software. * 3. This notice may not be removed or altered from any source distribution. */ // This version has been altered and ported to C++ for inclusion in fish. #include "tinyexpr.h" #include #include #include #include #include #include #include #include #include // TODO: It would be nice not to rely on a typedef for this, especially one that can only do // functions with two args. using te_fun2 = double (*)(double, double); using te_fun1 = double (*)(double); using te_fun0 = double (*)(); enum { TE_CONSTANT = 0, TE_FUNCTION0, TE_FUNCTION1, TE_FUNCTION2, TE_FUNCTION3, TOK_NULL, TOK_ERROR, TOK_END, TOK_SEP, TOK_OPEN, TOK_CLOSE, TOK_NUMBER, TOK_INFIX }; static int get_arity(const int type) { if (type == TE_FUNCTION3) return 3; if (type == TE_FUNCTION2) return 2; if (type == TE_FUNCTION1) return 1; return 0; } typedef struct te_expr { int type; union { double value; const void *function; }; te_expr *parameters[]; } te_expr; using te_builtin = struct { const char *name; const void *address; int type; }; using state = struct { union { double value; const void *function; }; const char *start; const char *next; int type; te_error_type_t error; }; /* Parses the input expression. */ /* Returns NULL on error. */ te_expr *te_compile(const char *expression, te_error_t *error); /* Evaluates the expression. */ double te_eval(const te_expr *n); /* Frees the expression. */ /* This is safe to call on NULL pointers. */ void te_free(te_expr *n); // TODO: That move there? Ouch. Replace with a proper class with a constructor. #define NEW_EXPR(type, ...) new_expr((type), std::move((const te_expr *[]){__VA_ARGS__})) static te_expr *new_expr(const int type, const te_expr *parameters[]) { const int arity = get_arity(type); const int psize = sizeof(te_expr *) * arity; const int size = sizeof(te_expr) + psize; auto ret = static_cast(malloc(size)); // This sets float to 0, which depends on the implementation. // We rely on IEEE-754 floats anyway, so it's okay. std::memset(ret, 0, size); if (arity && parameters) { std::memcpy(ret->parameters, parameters, psize); } ret->type = type; return ret; } static void te_free_parameters(te_expr *n) { if (!n) return; int arity = get_arity(n->type); // Free all parameters from the back to the front. while (arity > 0) { te_free(n->parameters[arity - 1]); arity--; } } void te_free(te_expr *n) { if (!n) return; te_free_parameters(n); free(n); } static constexpr double pi() { return M_PI; } static constexpr double tau() { return 2 * M_PI; } static constexpr double e() { return M_E; } static double fac(double a) { /* simplest version of fac */ if (a < 0.0) return NAN; if (a > UINT_MAX) return INFINITY; auto ua = static_cast(a); unsigned long int result = 1, i; for (i = 1; i <= ua; i++) { if (i > ULONG_MAX / result) return INFINITY; result *= i; } return static_cast(result); } static double ncr(double n, double r) { if (n < 0.0 || r < 0.0 || n < r) return NAN; if (n > UINT_MAX || r > UINT_MAX) return INFINITY; unsigned long int un = static_cast(n), ur = static_cast(r), i; unsigned long int result = 1; if (ur > un / 2) ur = un - ur; for (i = 1; i <= ur; i++) { if (result > ULONG_MAX / (un - ur + i)) return INFINITY; result *= un - ur + i; result /= i; } return result; } static double npr(double n, double r) { return ncr(n, r) * fac(r); } static constexpr double bit_and(double a, double b) { return static_cast(static_cast(a) & static_cast(b)); } static constexpr double bit_or(double a, double b) { return static_cast(static_cast(a) | static_cast(b)); } static constexpr double bit_xor(double a, double b) { return static_cast(static_cast(a) ^ static_cast(b)); } static const te_builtin functions[] = { /* must be in alphabetical order */ {"abs", reinterpret_cast(static_cast(fabs)), TE_FUNCTION1}, {"acos", reinterpret_cast(static_cast(acos)), TE_FUNCTION1}, {"asin", reinterpret_cast(static_cast(asin)), TE_FUNCTION1}, {"atan", reinterpret_cast(static_cast(atan)), TE_FUNCTION1}, {"atan2", reinterpret_cast(static_cast(atan2)), TE_FUNCTION2}, {"bitand", reinterpret_cast(static_cast(bit_and)), TE_FUNCTION2}, {"bitor", reinterpret_cast(static_cast(bit_or)), TE_FUNCTION2}, {"bitxor", reinterpret_cast(static_cast(bit_xor)), TE_FUNCTION2}, {"ceil", reinterpret_cast(static_cast(ceil)), TE_FUNCTION1}, {"cos", reinterpret_cast(static_cast(cos)), TE_FUNCTION1}, {"cosh", reinterpret_cast(static_cast(cosh)), TE_FUNCTION1}, {"e", reinterpret_cast(static_cast(e)), TE_FUNCTION0}, {"exp", reinterpret_cast(static_cast(exp)), TE_FUNCTION1}, {"fac", reinterpret_cast(static_cast(fac)), TE_FUNCTION1}, {"floor", reinterpret_cast(static_cast(floor)), TE_FUNCTION1}, {"ln", reinterpret_cast(static_cast(log)), TE_FUNCTION1}, {"log", reinterpret_cast(static_cast(log10)), TE_FUNCTION1}, {"log10", reinterpret_cast(static_cast(log10)), TE_FUNCTION1}, {"ncr", reinterpret_cast(static_cast(ncr)), TE_FUNCTION2}, {"npr", reinterpret_cast(static_cast(npr)), TE_FUNCTION2}, {"pi", reinterpret_cast(static_cast(pi)), TE_FUNCTION0}, {"pow", reinterpret_cast(static_cast(pow)), TE_FUNCTION2}, {"round", reinterpret_cast(static_cast(round)), TE_FUNCTION1}, {"sin", reinterpret_cast(static_cast(sin)), TE_FUNCTION1}, {"sinh", reinterpret_cast(static_cast(sinh)), TE_FUNCTION1}, {"sqrt", reinterpret_cast(static_cast(sqrt)), TE_FUNCTION1}, {"tan", reinterpret_cast(static_cast(tan)), TE_FUNCTION1}, {"tanh", reinterpret_cast(static_cast(tanh)), TE_FUNCTION1}, {"tau", reinterpret_cast(static_cast(tau)), TE_FUNCTION0}, }; static const te_builtin *find_builtin(const char *name, int len) { const auto end = std::end(functions); const te_builtin *found = std::lower_bound(std::begin(functions), end, name, [len](const te_builtin &lhs, const char *rhs) { // The length is important because that's where // the parens start return std::strncmp(lhs.name, rhs, len) < 0; }); // We need to compare again because we might have gotten the first "larger" element. if (found != end && std::strncmp(found->name, name, len) == 0 && found->name[len] == 0) return found; return nullptr; } static constexpr double add(double a, double b) { return a + b; } static constexpr double sub(double a, double b) { return a - b; } static constexpr double mul(double a, double b) { return a * b; } static constexpr double divide(double a, double b) { // If b isn't zero, divide. // If a isn't zero, return signed INFINITY. // Else, return NAN. return b ? a / b : a ? copysign(1, a) * copysign(1, b) * INFINITY : NAN; } static constexpr double negate(double a) { return -a; } static void next_token(state *s) { s->type = TOK_NULL; do { if (!*s->next) { s->type = TOK_END; return; } /* Try reading a number. */ if ((s->next[0] >= '0' && s->next[0] <= '9') || s->next[0] == '.') { s->value = strtod(s->next, const_cast(&s->next)); s->type = TOK_NUMBER; } else { /* Look for a function call. */ // But not when it's an "x" followed by whitespace // - that's the alternative multiplication operator. if (s->next[0] >= 'a' && s->next[0] <= 'z' && !(s->next[0] == 'x' && isspace(s->next[1]))) { const char *start; start = s->next; while ((s->next[0] >= 'a' && s->next[0] <= 'z') || (s->next[0] >= '0' && s->next[0] <= '9') || (s->next[0] == '_')) s->next++; const te_builtin *var = find_builtin(start, s->next - start); if (var) { switch (var->type) { case TE_FUNCTION0: case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3: s->type = var->type; s->function = var->address; break; } } else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) { // Our error is more specific, so it takes precedence. s->type = TOK_ERROR; s->error = TE_ERROR_UNKNOWN_FUNCTION; } } else { /* Look for an operator or special character. */ switch (s->next++[0]) { // The "te_fun2" casts are necessary to pick the right overload. case '+': s->type = TOK_INFIX; s->function = reinterpret_cast(static_cast(add)); break; case '-': s->type = TOK_INFIX; s->function = reinterpret_cast(static_cast(sub)); break; case 'x': case '*': // We've already checked for whitespace above. s->type = TOK_INFIX; s->function = reinterpret_cast(static_cast(mul)); break; case '/': s->type = TOK_INFIX; s->function = reinterpret_cast(static_cast(divide)); break; case '^': s->type = TOK_INFIX; s->function = reinterpret_cast(static_cast(pow)); break; case '%': s->type = TOK_INFIX; s->function = reinterpret_cast(static_cast(fmod)); break; case '(': s->type = TOK_OPEN; break; case ')': s->type = TOK_CLOSE; break; case ',': s->type = TOK_SEP; break; case ' ': case '\t': case '\n': case '\r': break; case '=': case '>': case '<': case '&': case '|': case '!': s->type = TOK_ERROR; s->error = TE_ERROR_LOGICAL_OPERATOR; break; default: s->type = TOK_ERROR; s->error = TE_ERROR_MISSING_OPERATOR; break; } } } } while (s->type == TOK_NULL); } static te_expr *expr(state *s); static te_expr *power(state *s); static te_expr *base(state *s) { /* = | {"(" ")"} | | * "(" {"," } ")" | "(" ")" */ te_expr *ret; int arity; switch (s->type) { case TOK_NUMBER: ret = new_expr(TE_CONSTANT, nullptr); ret->value = s->value; next_token(s); break; case TE_FUNCTION0: ret = new_expr(s->type, nullptr); ret->function = s->function; next_token(s); if (s->type == TOK_OPEN) { next_token(s); if (s->type == TOK_CLOSE) { next_token(s); } else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) { s->type = TOK_ERROR; s->error = TE_ERROR_MISSING_CLOSING_PAREN; } } break; case TE_FUNCTION1: case TE_FUNCTION2: case TE_FUNCTION3: arity = get_arity(s->type); ret = new_expr(s->type, nullptr); ret->function = s->function; next_token(s); if (s->type == TOK_OPEN) { int i; for (i = 0; i < arity; i++) { next_token(s); ret->parameters[i] = expr(s); if (s->type != TOK_SEP) { break; } } if (s->type == TOK_CLOSE && i == arity - 1) { next_token(s); } else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNEXPECTED_TOKEN) { // If we had the right number of arguments, we're missing a closing paren. if (i == arity - 1 && s->type != TOK_ERROR) { s->error = TE_ERROR_MISSING_CLOSING_PAREN; } else { // Otherwise we complain about the number of arguments *first*, // a closing parenthesis should be more obvious. s->error = i < arity ? TE_ERROR_TOO_FEW_ARGS : TE_ERROR_TOO_MANY_ARGS; } s->type = TOK_ERROR; } } else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) { s->type = TOK_ERROR; s->error = TE_ERROR_MISSING_OPENING_PAREN; } break; case TOK_OPEN: next_token(s); ret = expr(s); if (s->type == TOK_CLOSE) { next_token(s); } else if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) { s->type = TOK_ERROR; s->error = TE_ERROR_MISSING_CLOSING_PAREN; } break; case TOK_END: // The expression ended before we expected it. // e.g. `2 - `. // This means we have too few things. // Instead of introducing another error, just call it // "too few args". ret = new_expr(0, nullptr); s->type = TOK_ERROR; s->error = TE_ERROR_TOO_FEW_ARGS; ret->value = NAN; break; default: ret = new_expr(0, nullptr); if (s->type != TOK_ERROR || s->error == TE_ERROR_UNKNOWN) { s->type = TOK_ERROR; s->error = TE_ERROR_UNEXPECTED_TOKEN; } ret->value = NAN; break; } return ret; } static te_expr *power(state *s) { /* = {("-" | "+")} */ int sign = 1; while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) { if (s->function == sub) sign = -sign; next_token(s); } te_expr *ret; if (sign == 1) { ret = base(s); } else { ret = NEW_EXPR(TE_FUNCTION1, base(s)); ret->function = reinterpret_cast(negate); } return ret; } static te_expr *factor(state *s) { /* = {"^" } */ te_expr *ret = power(s); te_expr *insertion = nullptr; while (s->type == TOK_INFIX && (s->function == reinterpret_cast(static_cast(pow)))) { auto t = reinterpret_cast(const_cast(s->function)); next_token(s); if (insertion) { /* Make exponentiation go right-to-left. */ te_expr *insert = NEW_EXPR(TE_FUNCTION2, insertion->parameters[1], power(s)); insert->function = reinterpret_cast(t); insertion->parameters[1] = insert; insertion = insert; } else { ret = NEW_EXPR(TE_FUNCTION2, ret, power(s)); ret->function = reinterpret_cast(t); insertion = ret; } } return ret; } static te_expr *term(state *s) { /* = {("*" | "/" | "%") } */ te_expr *ret = factor(s); while (s->type == TOK_INFIX && (s->function == reinterpret_cast(static_cast(mul)) || s->function == reinterpret_cast(static_cast(divide)) || s->function == reinterpret_cast(static_cast(fmod)))) { auto t = reinterpret_cast(const_cast(s->function)); next_token(s); ret = NEW_EXPR(TE_FUNCTION2, ret, factor(s)); ret->function = reinterpret_cast(t); } return ret; } static te_expr *expr(state *s) { /* = {("+" | "-") } */ te_expr *ret = term(s); while (s->type == TOK_INFIX && (s->function == add || s->function == sub)) { auto t = reinterpret_cast(const_cast(s->function)); next_token(s); ret = NEW_EXPR(TE_FUNCTION2, ret, term(s)); ret->function = reinterpret_cast(t); } return ret; } #define TE_FUN(...) ((double (*)(__VA_ARGS__))n->function) #define M(e) te_eval(n->parameters[e]) double te_eval(const te_expr *n) { if (!n) return NAN; switch (n->type) { case TE_CONSTANT: return n->value; case TE_FUNCTION0: return TE_FUN(void)(); case TE_FUNCTION1: return TE_FUN(double)(M(0)); case TE_FUNCTION2: return TE_FUN(double, double)(M(0), M(1)); case TE_FUNCTION3: return TE_FUN(double, double, double)(M(0), M(1), M(2)); default: return NAN; } } #undef TE_FUN #undef M static void optimize(te_expr *n) { /* Evaluates as much as possible. */ if (n->type == TE_CONSTANT) return; const int arity = get_arity(n->type); bool known = true; for (int i = 0; i < arity; ++i) { optimize(n->parameters[i]); if ((n->parameters[i])->type != TE_CONSTANT) { known = false; } } if (known) { const double value = te_eval(n); te_free_parameters(n); n->type = TE_CONSTANT; n->value = value; } } te_expr *te_compile(const char *expression, te_error_t *error) { state s; s.start = s.next = expression; s.error = TE_ERROR_NONE; next_token(&s); te_expr *root = expr(&s); if (s.type != TOK_END) { te_free(root); if (error) { error->position = (s.next - s.start) + 1; if (s.error != TE_ERROR_NONE) { error->type = s.error; } else { // If we're not at the end but there's no error, then that means we have a // superfluous token that we have no idea what to do with. This occurs in e.g. `2 + // 2 4` - the "4" is just not part of the expression. We can report either "too many // arguments" or "expected operator", but the operator should be reported between // the "2" and the "4". So we report TOO_MANY_ARGS on the "4". error->type = TE_ERROR_TOO_MANY_ARGS; } } return nullptr; } else { optimize(root); if (error) error->position = 0; return root; } } double te_interp(const char *expression, te_error_t *error) { te_expr *n = te_compile(expression, error); double ret; if (n) { ret = te_eval(n); te_free(n); } else { ret = NAN; } return ret; }