#ifndef FISH_IO_H #define FISH_IO_H #include #include #include #include // Note that we have to include something to get any _LIBCPP_VERSION defined so we can detect libc++ // So it's key that vector go above. If we didn't need vector for other reasons, we might include // ciso646, which does nothing #if defined(_LIBCPP_VERSION) || __cplusplus > 199711L // C++11 or libc++ (which is a C++11-only library, but the memory header works OK in C++03) #include using std::shared_ptr; #else // C++03 or libstdc++ #include using std::tr1::shared_ptr; #endif #include "common.h" #include "env.h" /// separated_buffer_t is composed of a sequence of elements, some of which may be explicitly /// separated (e.g. through string spit0) and some of which the separation is inferred. This enum /// tracks the type. enum class separation_type_t { /// This element's separation should be inferred, e.g. through IFS. inferred, /// This element was explicitly separated and should not be separated further. explicitly }; /// A separated_buffer_t contains a list of elements, some of which may be separated explicitly and /// others which must be separated further by the user (e.g. via IFS). template class separated_buffer_t { struct element_t { StringType contents; separation_type_t separation; element_t(StringType contents, separation_type_t sep) : contents(std::move(contents)), separation(sep) {} bool is_explicitly_separated() const { return separation == separation_type_t::explicitly; } }; /// Limit on how much data we'll buffer. Zero means no limit. size_t buffer_limit_; /// Current size of all contents. size_t contents_size_{0}; /// List of buffer elements. std::vector elements_; /// True if we're discarding input because our buffer_limit has been exceeded. bool discard = false; /// Mark that we are about to add the given size \p delta to the buffer. \return true if we /// succeed, false if we exceed buffer_limit. bool try_add_size(size_t delta) { if (discard) return false; contents_size_ += delta; if (contents_size_ < delta) { // Overflow! set_discard(); return false; } if (buffer_limit_ > 0 && contents_size_ > buffer_limit_) { set_discard(); return false; } return true; } /// separated_buffer_t may not be copied. separated_buffer_t(const separated_buffer_t &) = delete; void operator=(const separated_buffer_t &) = delete; public: /// Construct a separated_buffer_t with the given buffer limit \p limit, or 0 for no limit. separated_buffer_t(size_t limit) : buffer_limit_(limit) {} /// \return the buffer limit size, or 0 for no limit. size_t limit() const { return buffer_limit_; } /// \return the contents size. size_t size() const { return contents_size_; } /// \return whether the output has been discarded. bool discarded() const { return discard; } /// Mark the contents as discarded. void set_discard() { elements_.clear(); contents_size_ = 0; discard = true; } /// Serialize the contents to a single string, where explicitly separated elements have a /// newline appended. StringType newline_serialized() const { StringType result; result.reserve(size()); for (const auto &elem : elements_) { result.append(elem.contents); if (elem.is_explicitly_separated()) { result.push_back('\n'); } } return result; } /// \return the list of elements. const std::vector &elements() const { return elements_; } /// Append an element with range [begin, end) and the given separation type \p sep. template void append(Iterator begin, Iterator end, separation_type_t sep = separation_type_t::inferred) { if (!try_add_size(std::distance(begin, end))) return; // Try merging with the last element. if (sep == separation_type_t::inferred && !elements_.empty() && !elements_.back().is_explicitly_separated()) { elements_.back().contents.append(begin, end); } else { elements_.emplace_back(StringType(begin, end), sep); } } /// Append a string \p str with the given separation type \p sep. void append(const StringType &str, separation_type_t sep = separation_type_t::inferred) { append(str.begin(), str.end(), sep); } // Given that this is a narrow stream, convert a wide stream \p rhs to narrow and then append // it. template void append_wide_buffer(const separated_buffer_t &rhs) { for (const auto &rhs_elem : rhs.elements()) { append(wcs2string(rhs_elem.contents), rhs_elem.separation); } } }; /// Describes what type of IO operation an io_data_t represents. enum io_mode_t { IO_FILE, IO_PIPE, IO_FD, IO_BUFFER, IO_CLOSE }; /// Represents an FD redirection. class io_data_t { private: // No assignment or copying allowed. io_data_t(const io_data_t &rhs); void operator=(const io_data_t &rhs); protected: io_data_t(io_mode_t m, int f) : io_mode(m), fd(f) {} public: /// Type of redirect. const io_mode_t io_mode; /// FD to redirect. const int fd; virtual void print() const = 0; virtual ~io_data_t() = 0; }; class io_close_t : public io_data_t { public: explicit io_close_t(int f) : io_data_t(IO_CLOSE, f) {} void print() const override; }; class io_fd_t : public io_data_t { public: /// fd to redirect specified fd to. For example, in 2>&1, old_fd is 1, and io_data_t::fd is 2. const int old_fd; /// Whether this redirection was supplied by a script. For example, 'cmd <&3' would have /// user_supplied set to true. But a redirection that comes about through transmogrification /// would not. const bool user_supplied; void print() const override; io_fd_t(int f, int old, bool us) : io_data_t(IO_FD, f), old_fd(old), user_supplied(us) {} }; class io_file_t : public io_data_t { public: /// Filename, malloc'd. This needs to be used after fork, so don't use wcstring here. const char *const filename_cstr; /// file creation flags to send to open. const int flags; void print() const override; io_file_t(int f, const wcstring &fname, int fl = 0) : io_data_t(IO_FILE, f), filename_cstr(wcs2str(fname)), flags(fl) {} ~io_file_t() override { free((void *)filename_cstr); } }; class io_pipe_t : public io_data_t { protected: io_pipe_t(io_mode_t m, int f, bool i) : io_data_t(m, f), is_input(i) { pipe_fd[0] = pipe_fd[1] = -1; } public: int pipe_fd[2]; const bool is_input; void print() const override; io_pipe_t(int f, bool i) : io_data_t(IO_PIPE, f), is_input(i) { pipe_fd[0] = pipe_fd[1] = -1; } }; class io_chain_t; class output_stream_t; class io_buffer_t : public io_pipe_t { private: /// True if we're discarding input. bool discard{false}; /// Limit on how much data we'll buffer. Zero means no limit. size_t buffer_limit; /// Buffer to save output in. std::vector out_buffer; explicit io_buffer_t(int f, size_t limit) : io_pipe_t(IO_BUFFER, f, false /* not input */), buffer_limit(limit), out_buffer() {} public: void print() const override; ~io_buffer_t() override; /// Function to append to the buffer. void out_buffer_append(const char *ptr, size_t count) { if (discard) return; if (buffer_limit && out_buffer.size() + count > buffer_limit) { set_discard(); return; } out_buffer.insert(out_buffer.end(), ptr, ptr + count); } /// Function to get a pointer to the buffer. const char *out_buffer_ptr() const { return out_buffer.empty() ? NULL : &out_buffer.at(0); } /// Function to get the size of the buffer. size_t out_buffer_size() const { return out_buffer.size(); } /// Function that returns true if we discarded the input because there was too much data. bool output_discarded() { return discard; } /// Function to explicitly put the object in discard mode. Meant to be used when moving /// the results from an output_stream_t to an io_buffer_t. void set_discard() { discard = true; out_buffer.clear(); } /// This is used to transfer the buffer limit for this object to a output_stream_t object. size_t get_buffer_limit() { return buffer_limit; } /// Ensures that the pipes do not conflict with any fd redirections in the chain. bool avoid_conflicts_with_io_chain(const io_chain_t &ios); /// Close output pipe, and read from input pipe until eof. void read(); /// Appends data from a given output_stream_t. /// Marks the receiver as discarded if the stream was discarded. void append_from_stream(const output_stream_t &stream); /// Create a IO_BUFFER type io redirection, complete with a pipe and a vector for output. /// The default file descriptor used is STDOUT_FILENO for buffering. /// /// \param fd the fd that will be mapped in the child process, typically STDOUT_FILENO /// \param conflicts A set of IO redirections. The function ensures that any pipe it makes does /// not conflict with an fd redirection in this list. static shared_ptr create(int fd, const io_chain_t &conflicts, size_t buffer_limit = 0); }; class io_chain_t : public std::vector > { public: io_chain_t(); explicit io_chain_t(const shared_ptr &); void remove(const shared_ptr &element); void push_back(const shared_ptr &element); void push_front(const shared_ptr &element); void append(const io_chain_t &chain); shared_ptr get_io_for_fd(int fd) const; shared_ptr get_io_for_fd(int fd); }; /// Return the last io redirection in the chain for the specified file descriptor. shared_ptr io_chain_get(const io_chain_t &src, int fd); shared_ptr io_chain_get(io_chain_t &src, int fd); /// Given a pair of fds, if an fd is used by the given io chain, duplicate that fd repeatedly until /// we find one that does not conflict, or we run out of fds. Returns the new fds by reference, /// closing the old ones. If we get an error, returns false (in which case both fds are closed and /// set to -1). bool pipe_avoid_conflicts_with_io_chain(int fds[2], const io_chain_t &ios); /// Class representing the output that a builtin can generate. class output_stream_t { private: /// Storage for our data. separated_buffer_t buffer_; // No copying. output_stream_t(const output_stream_t &s) = delete; void operator=(const output_stream_t &s) = delete; public: output_stream_t(size_t buffer_limit) : buffer_(buffer_limit) {} void append(const wcstring &s) { buffer_.append(s.begin(), s.end()); } const separated_buffer_t &buffer() const { return buffer_; } void append(const wchar_t *s) { append(s, wcslen(s)); } void append(wchar_t s) { append(&s, 1); } void append(const wchar_t *s, size_t amt) { buffer_.append(s, s + amt); } void push_back(wchar_t c) { append(c); } void append_format(const wchar_t *format, ...) { va_list va; va_start(va, format); append_formatv(format, va); va_end(va); } void append_formatv(const wchar_t *format, va_list va) { append(vformat_string(format, va)); } bool empty() const { return buffer_.size() == 0; } wcstring contents() const { return buffer_.newline_serialized(); } }; struct io_streams_t { output_stream_t out; output_stream_t err; // fd representing stdin. This is not closed by the destructor. int stdin_fd; // Whether stdin is "directly redirected," meaning it is the recipient of a pipe (foo | cmd) or // direct redirection (cmd < foo.txt). An "indirect redirection" would be e.g. begin ; cmd ; end // < foo.txt bool stdin_is_directly_redirected; // Indicates whether stdout and stderr are redirected (e.g. to a file or piped). bool out_is_redirected; bool err_is_redirected; // Actual IO redirections. This is only used by the source builtin. Unowned. const io_chain_t *io_chain; io_streams_t(size_t read_limit) : out(read_limit), err(read_limit), stdin_fd(-1), stdin_is_directly_redirected(false), out_is_redirected(false), err_is_redirected(false), io_chain(NULL) {} }; #if 0 // Print debug information about the specified IO redirection chain to stderr. void io_print(const io_chain_t &chain); #endif #endif