/** \file exec.c Functions for executing a program. Some of the code in this file is based on code from the Glibc manual, though I the changes performed have been massive. */ #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "config.h" #include "util.h" #include "common.h" #include "wutil.h" #include "proc.h" #include "exec.h" #include "parser.h" #include "builtin.h" #include "function.h" #include "env.h" #include "wildcard.h" #include "sanity.h" #include "expand.h" #include "signal.h" #include "env_universal.h" /** Prototype for the getpgid library function. The prototype for this function seems to be missing in glibc, at least I've not found any combination of includes, macros and compiler switches that will include it. */ pid_t getpgid( pid_t pid ); /** file descriptor redirection error message */ #define FD_ERROR L"An error occurred while redirecting file descriptor %d" /** file redirection error message */ #define FILE_ERROR L"An error occurred while redirecting file '%ls'" /** fork error message */ #define FORK_ERROR L"Could not create child process - exiting" /** List of all pipes used by internal pipes. These must be closed in many situations in order to make sure that stray fds aren't lying around. */ static array_list_t *open_fds=0; void exec_close( int fd ) { int i; while( close(fd) == -1 ) { if( errno != EINTR ) { debug( 1, FD_ERROR, fd ); wperror( L"close" ); } } if( open_fds ) { for( i=0; iio_mode == IO_BUFFER ) || ( io->io_mode == IO_PIPE ) ) { if( io->param1.pipe_fd[0] == fd || io->param1.pipe_fd[1] == fd ) return 1; } return use_fd_in_pipe( fd, io->next ); } /** Close all fds in open_fds, except for those that are mentioned in the redirection list io. This should make sure that there are no stray opened file descriptors in the child. \param io the list of io redirections for this job. Pipes mentioned here should not be closed. */ static void close_unused_internal_pipes( io_data_t *io ) { int i=0; if( open_fds ) { for( ;iio_mode == IO_PIPE ) { int i; for( i=0; i<2; i++ ) { if(io->param1.pipe_fd[i] == fd ) { while(1) { if( (io->param1.pipe_fd[i] = dup(fd)) == -1) { if( errno != EINTR ) { debug( 1, FD_ERROR, fd ); wperror( L"dup" ); exit(1); } } else break; } } } } } /** Set up a childs io redirections. Should only be called by setup_child_process(). Does the following: First it closes any open file descriptors not related to the child by calling close_unused_internal_pipes() and closing the universal variable server file descriptor. It then goes on to perform all the redirections described by \c io. \param io the list of IO redirections for the child */ static void handle_child_io( io_data_t *io ) { close_unused_internal_pipes( io ); if( env_universal_server.fd >= 0 ) exec_close( env_universal_server.fd ); for( ; io; io=io->next ) { int tmp; if( io->io_mode == IO_FD && io->fd == io->param1.old_fd ) { continue; } if( io->fd > 2 ) { /* Make sure the fd used by this redirection is not used by i.e. a pipe. */ free_fd( io, io->fd ); } switch( io->io_mode ) { case IO_CLOSE: close(io->fd); break; case IO_FILE: { if( (tmp=wopen( io->param1.filename, io->param2.flags, 0777 ) )==-1 ) { debug( 1, FILE_ERROR, io->param1.filename ); wperror( L"open" ); exit(1); } else if( tmp != io->fd) { close(io->fd); if(dup2( tmp, io->fd ) == -1 ) { debug( 1, FD_ERROR, io->fd ); wperror( L"dup2" ); exit(1); } exec_close( tmp ); } break; } case IO_FD: { close(io->fd); /* debug( 3, L"Redirect fd %d in process %ls (%d) from fd %d", io->fd, p->actual_cmd, p->pid, io->old_fd ); */ if( dup2( io->param1.old_fd, io->fd ) == -1 ) { debug( 1, FD_ERROR, io->fd ); wperror( L"dup2" ); exit(1); } break; } case IO_BUFFER: case IO_PIPE: { close(io->fd); /* debug( 3, L"Pipe fd %d in process %ls (%d) (Through fd %d)", io->fd, p->actual_cmd, p->pid, io->pipe_fd[io->fd] ); */ int fd_to_dup = io->fd; if( dup2( io->param1.pipe_fd[fd_to_dup?1:0], io->fd ) == -1 ) { debug( 1, PIPE_ERROR ); wperror( L"dup2" ); exit(1); } if( fd_to_dup != 0 ) { exec_close( io->param1.pipe_fd[0]); exec_close( io->param1.pipe_fd[1]); } else exec_close( io->param1.pipe_fd[0] ); /* if( close( io[i].pipe_fd[ io->fd ] ) == -1 ) { wperror( L"close" ); exit(1); } */ /* if( close( io[i].pipe_fd[1] ) == -1 ) { wperror( L"close" ); exit(1); } */ /* fprintf( stderr, "fd %d points to fd %d\n", i, io[i].fd[i>0?1:0] );*/ break; } } } } /** Initialize a new child process. This should be called right away after forking in the child process. If job control is suitable, the process is put in the jobs group, all signal handlers are reset, SIGCHLD is unblocked (the exec call blocks blocks SIGCHLD), and all IO redirections and other file descriptor actions are performed. */ static void setup_child_process( job_t *j ) { if( is_interactive && !is_subshell && !is_block) { pid_t pid; /* Put the process into the process group and give the process group the terminal, if appropriate. This has to be done both by the shell and in the individual child processes because of potential race conditions. */ pid = getpid (); if (j->pgid == 0) j->pgid = pid; /* Wait till shell puts os in our own group */ while( getpgrp() != j->pgid ) sleep(0); /* Wait till shell gives us stdin */ if ( j->fg ) { while( tcgetpgrp( 0 ) != j->pgid ) sleep(0); } } /* Set the handling for job control signals back to the default. */ signal_reset_handlers(); handle_child_io( j->io ); /* Remove all signal blocks */ signal_unblock(); } /** This function is executed by the child process created by a call to fork(). It should be called after \c setup_child_process. It calls execve to replace the fish process image with the command specified in \c p. It never returns. */ static void launch_process( process_t *p ) { execve (wcs2str(p->actual_cmd), wcsv2strv( (const wchar_t **) p->argv), env_export_arr( 0 ) ); debug( 0, L"Failed to execute process %ls", p->actual_cmd ); wperror( L"execve" ); exit(1); } /** Check if the IO redirection chains contains redirections for the specified file descriptor */ static int has_fd( io_data_t *d, int fd ) { return io_get( d, fd ) != 0; } /** Make a copy of the specified io redirection chain, but change file redirection into fd redirection. This makes the redirection chain suitable for use as block-level io, since the file won't be repeatedly reopened for every command in the block. */ static io_data_t *io_transmogrify( io_data_t * in ) { io_data_t *out; if( !in ) return 0; out = malloc( sizeof( io_data_t ) ); if( !out ) die_mem(); out->fd = in->fd; out->io_mode = IO_FD; out->param2.close_old = 1; switch( in->io_mode ) { /* These redirections don't need transmogrification. They can be passed through. */ case IO_FD: case IO_CLOSE: case IO_BUFFER: case IO_PIPE: { memcpy( out, in, sizeof(io_data_t)); break; } /* Transmogrify file redirections */ case IO_FILE: { int fd; if( (fd=wopen( in->param1.filename, in->param2.flags, 0777 ) )==-1 ) { debug( 1, FILE_ERROR, in->param1.filename ); wperror( L"open" ); exit(1); } out->param1.old_fd = fd; break; } } out->next = io_transmogrify( in->next ); return out; } /** Free a transmogrified io chain. Only the chain itself and resources used by a transmogrified IO_FILE redirection are freed, since the original chain may still be needed. */ static void io_untransmogrify( io_data_t * in, io_data_t *out ) { if( !in ) return; io_untransmogrify( in->next, out->next ); switch( in->io_mode ) { case IO_FILE: exec_close( out->param1.old_fd ); break; } free(out); } /** Morph an io redirection chain into redirections suitable for passing to eval, call eval, and clean up morphed redirections. \param def the code to evaluate \param block_type the type of block to push on evaluation \param io the io redirections to be performed on this block */ static int internal_exec_helper( const wchar_t *def, int block_type, io_data_t *io ) { int res=0; io_data_t *io_internal = io_transmogrify( io ); int is_block_old=is_block; is_block=1; signal_unblock(); eval( def, io_internal, block_type ); signal_block(); /* io_data_t *buff = io_get( io, 1 ); if( buff && buff->io_mode == IO_BUFFER ) fwprintf( stderr, L"block %ls produced %d bytes of output\n", def, buff->out_buffer->used ); */ io_untransmogrify( io, io_internal ); job_reap( 0 ); is_block=is_block_old; return res; } /** This function should be called by the parent process right after fork() has been called. If job control is enabled, the child is put in the jobs group. */ static int handle_new_child( job_t *j, process_t *p ) { if(is_interactive && !is_subshell && !is_block) { int new_pgid=0; if (!j->pgid) { new_pgid=1; j->pgid = p->pid; } if( setpgid (p->pid, j->pgid) ) { if( getpgid( p->pid) != j->pgid ) { debug( 1, L"Could not send process %d from group %d to group %d", p->pid, getpgid( p->pid), j->pgid ); wperror( L"setpgid" ); } } if( j->fg ) { if( tcsetpgrp (0, j->pgid) ) { debug( 1, L"Could not send job %d ('%ls')to foreground", j->job_id, j->command ); wperror( L"tcsetpgrp" ); return -1; } } if( j->fg && new_pgid) { if( tcsetpgrp (0, j->pgid) ) { debug( 1, L"Could not send job %d ('%ls')to foreground", j->job_id, j->command ); wperror( L"tcsetpgrp" ); return -1; } } } else { j->pgid = getpid(); } return 0; } void exec( job_t *j ) { process_t *p; pid_t pid; int mypipe[2]; sigset_t chldset; sigemptyset( &chldset ); sigaddset( &chldset, SIGCHLD ); int skip_fork; io_data_t pipe_read, pipe_write; io_data_t *tmp; io_data_t *io_buffer =0; /* Set to 1 if something goes wrong while exec:ing the job, in which case the cleanup code will kick in. */ int exec_error=0; debug( 4, L"Exec job %ls with id %d", j->command, j->job_id ); if( j->first_process->type==INTERNAL_EXEC ) { /* Do a regular launch - but without forking first... */ signal_block(); /* setup_child_process make sure signals are propelry set up */ setup_child_process( j ); launch_process( j->first_process ); /* launch_process _never_ returns... */ } pipe_read.fd=0; pipe_write.fd=1; pipe_read.io_mode=IO_PIPE; pipe_read.param1.pipe_fd[0] = -1; pipe_read.param1.pipe_fd[1] = -1; pipe_write.io_mode=IO_PIPE; pipe_read.next=0; pipe_write.next=0; pipe_write.param1.pipe_fd[0]=pipe_write.param1.pipe_fd[1]=-1; //fwprintf( stderr, L"Run command %ls\n", j->command ); if( block_io ) { if( j->io ) j->io = io_add( io_duplicate(block_io), j->io ); else j->io=io_duplicate(block_io); } j->io = io_add( j->io, &pipe_write ); signal_block(); /* This loop loops over every process_t in the job, starting it as appropriate. This turns out to be rather complex, since a process_t can be one of many rather different things. The loop also has to handle pipelining between the jobs. */ for( p=j->first_process; p; p = p->next ) { mypipe[1]=-1; skip_fork=0; pipe_write.fd = p->pipe_fd; /* This call is used so the global environment variable array is regenerated, if needed, before the fork. That way, we avoid a lot of duplicate work where EVERY child would need to generate it */ if( p->type == EXTERNAL ) env_export_arr( 1 ); /* Set up fd:s that will be used in the pipe */ if( p == j->first_process->next ) { j->io = io_add( j->io, &pipe_read ); } if( p->next ) { // debug( 1, L"%ls|%ls" , p->argv[0], p->next->argv[0]); if( exec_pipe( mypipe ) == -1 ) { debug( 1, PIPE_ERROR ); wperror (L"pipe"); exec_error=1; break; } /* fwprintf( stderr, L"Make pipe from %ls to %ls using fds %d and %d\n", p->actual_cmd, p->next->actual_cmd, mypipe[0], mypipe[1] ); */ memcpy( pipe_write.param1.pipe_fd, mypipe, sizeof(int)*2); } else { /* This is the last element of the pipeline. */ /* Remove the io redirection for pipe output. */ j->io = io_remove( j->io, &pipe_write ); } switch( p->type ) { case INTERNAL_FUNCTION: { wchar_t **arg; int i; string_buffer_t sb; const wchar_t * def = function_get_definition( p->argv[0] ); // fwprintf( stderr, L"run function %ls\n", argv[0] ); if( def == 0 ) { debug( 0, L"Unknown function %ls", p->argv[0] ); break; } parser_push_block( FUNCTION_CALL ); if( builtin_count_args(p->argv)>1 ) { sb_init( &sb ); for( i=1, arg=p->argv+1; *arg; i++, arg++ ) { if( i != 1 ) sb_append( &sb, ARRAY_SEP_STR ); sb_append( &sb, *arg ); } env_set( L"argv", (wchar_t *)sb.buff, ENV_LOCAL ); sb_destroy( &sb ); } parser_forbid_function( p->argv[0] ); if( p->next ) { // fwprintf( stderr, L"Function %ls\n", def ); io_buffer = io_buffer_create(); j->io = io_add( j->io, io_buffer ); } internal_exec_helper( def, TOP, j->io ); parser_allow_function(); parser_pop_block(); break; } case INTERNAL_BLOCK: { if( p->next ) { // fwprintf( stderr, L"Block %ls\n", p->argv[0] ); io_buffer = io_buffer_create(); j->io = io_add( j->io, io_buffer ); } internal_exec_helper( p->argv[0], TOP, j->io ); break; } case INTERNAL_BUILTIN: { int builtin_stdin=0; int fg; int close_stdin=0; if( p == j->first_process ) { io_data_t *in = io_get( j->io, 0 ); if( in ) { switch( in->io_mode ) { case IO_FD: { builtin_stdin = in->param1.old_fd; /* fwprintf( stderr, L"Input redirection for builtin '%ls' from fd %d\n", p->argv[0], in->old_fd ); */ break; } case IO_PIPE: { builtin_stdin = in->param1.pipe_fd[0]; break; } case IO_FILE: { /* fwprintf( stderr, L"Input redirection for builtin from file %ls\n", in->filename); */ builtin_stdin=wopen( in->param1.filename, in->param2.flags, 0777 ); if( builtin_stdin == -1 ) { debug( 1, FILE_ERROR, in->param1.filename ); wperror( L"open" ); } else { close_stdin = 1; } break; } default: { builtin_stdin=-1; debug( 1, L"Unknown input redirection type %d", in->io_mode); break; } } } } else { builtin_stdin = pipe_read.param1.pipe_fd[0]; } if( builtin_stdin == -1 ) { exec_error=1; break; } builtin_push_io( builtin_stdin ); /* Since this may be the foreground job, and since a builtin may execute another foreground job, we need to pretend to suspend this job while running the builtin. */ builtin_out_redirect = has_fd( j->io, 1 ); builtin_err_redirect = has_fd( j->io, 2 ); fg = j->fg; j->fg = 0; signal_unblock(); p->status = builtin_run( p->argv ); signal_block(); /* Restore the fg flag, which is temporarily set to false during builtin execution so as not to confuse some job-handling builtins. */ j->fg = fg; /* if( is_interactive ) fwprintf( stderr, L"Builtin '%ls' finished\n", j->command ); */ if( close_stdin ) { // fwprintf( stderr, L"Close builtin_stdin\n" ); exec_close( builtin_stdin ); } break; } } if( exec_error ) break; switch( p->type ) { case INTERNAL_BLOCK: case INTERNAL_FUNCTION: { int status = proc_get_last_status(); /* Handle output from a block or function. This usually means do nothing, but in the case of pipes, we have to buffer such io, since otherwise the internal pipe buffer might overflow. */ if( !io_buffer ) { /* No buffer, se we exit directly. This means we have to manually set the exit status. */ if( p->next == 0 ) { proc_set_last_status( j->negate?(status?0:1):status); } p->completed = 1; break; } j->io = io_remove( j->io, io_buffer ); io_buffer_read( io_buffer ); if( io_buffer->param2.out_buffer->used != 0 ) { pid = fork(); if( pid == 0 ) { /* This is the child process. Write out the contents of the pipeline. */ p->pid = getpid(); setup_child_process( j ); write( io_buffer->fd, io_buffer->param2.out_buffer->buff, io_buffer->param2.out_buffer->used ); exit( status ); } else if( pid < 0 ) { /* The fork failed. */ debug( 0, FORK_ERROR ); wperror (L"fork"); exit (1); } else { /* This is the parent process. Store away information on the child, and possibly give it control over the terminal. */ p->pid = pid; if( handle_new_child( j, p ) ) exit(1); } } io_buffer_destroy( io_buffer ); io_buffer=0; break; } case INTERNAL_BUILTIN: { int skip_fork=0; /* If a builtin didn't produce any output, and it is not inside a pipeline, there is no need to fork */ skip_fork = ( !sb_out->used ) && ( !sb_err->used ) && ( !p->next ); /* If the output of a builtin is to be sent to an internal buffer, there is no need to fork. This helps out the performance quite a bit in complex completion code. */ io_data_t *io = io_get( j->io, 1 ); int buffer_stdout = io && io->io_mode == IO_BUFFER; if( ( !sb_err->used ) && ( !p->next ) && ( sb_out->used ) && ( buffer_stdout ) ) { // fwprintf( stderr, L"Skip fork of %ls\n", j->command ); char *res = wcs2str( (wchar_t *)sb_out->buff ); b_append( io->param2.out_buffer, res, strlen( res ) ); skip_fork = 1; free( res ); } if( skip_fork ) { p->completed=1; if( p->next == 0 ) { debug( 3, L"Set status of %ls to %d using short circut", j->command, p->status ); proc_set_last_status( j->negate?(p->status?0:1):p->status ); } break; } pid = fork(); if( pid == 0 ) { /* This is the child process. */ p->pid = getpid(); setup_child_process( j ); if( sb_out->used ) fwprintf( stdout, L"%ls", sb_out->buff ); if( sb_err->used ) fwprintf( stderr, L"%ls", sb_err->buff ); exit( p->status ); } else if( pid < 0 ) { /* The fork failed. */ debug( 0, FORK_ERROR ); wperror (L"fork"); exit (1); } else { /* This is the parent process. Store away information on the child, and possibly fice it control over the terminal. */ p->pid = pid; if( handle_new_child( j, p ) ) exit( 1 ); } break; } case EXTERNAL: { pid = fork(); if( pid == 0 ) { /* This is the child process. */ p->pid = getpid(); setup_child_process( j ); launch_process( p ); /* launch_process _never_ returns... */ } else if( pid < 0 ) { /* The fork failed. */ debug( 0, FORK_ERROR ); wperror( L"fork" ); exit( 1 ); } else { /* This is the parent process. Store away information on the child, and possibly fice it control over the terminal. */ p->pid = pid; if( handle_new_child( j, p ) ) exit( 1 ); } break; } } if( p->type == INTERNAL_BUILTIN ) builtin_pop_io(); /* Close the pipe the current process uses to read from the previous process_t */ if( pipe_read.param1.pipe_fd[0] >= 0 ) exec_close( pipe_read.param1.pipe_fd[0] ); /* Set up the pipe the next process uses to read from the current process_t */ if( p->next ) pipe_read.param1.pipe_fd[0] = mypipe[0]; /* If there is a next process, close the output end of the pipe (the child subprocess already has a copy of the pipe). */ if( p->next ) { exec_close(mypipe[1]); } } signal_unblock(); debug( 3, L"Job is constructed" ); j->io = io_remove( j->io, &pipe_read ); for( tmp = block_io; tmp; tmp=tmp->next ) j->io = io_remove( j->io, tmp ); j->constructed = 1; if( !j->fg ) { proc_last_bg_pid = j->pgid; } if( !exec_error ) { job_continue (j, 0); } debug( 3, L"End of exec()" ); } int exec_subshell( const wchar_t *cmd, array_list_t *l ) { char *begin, *end; char z=0; int prev_subshell = is_subshell; int status, prev_status; io_data_t *io_buffer; if( !cmd ) { debug( 1, L"Sent null command to subshell. This is a fish bug. If it can be reproduced, please send a bug report to %s", PACKAGE_BUGREPORT ); return 0; } is_subshell=1; io_buffer= io_buffer_create(); prev_status = proc_get_last_status(); eval( cmd, io_buffer, SUBST ); io_buffer_read( io_buffer ); status = proc_get_last_status(); proc_set_last_status( prev_status ); is_subshell = prev_subshell; b_append( io_buffer->param2.out_buffer, &z, 1 ); begin=end=io_buffer->param2.out_buffer->buff; if( l ) { while( 1 ) { switch( *end ) { case 0: if( begin != end ) { wchar_t *el = str2wcs( begin ); if( el ) al_push( l, el ); } io_buffer_destroy( io_buffer ); return status; case '\n': { wchar_t *el; *end=0; el = str2wcs( begin ); al_push( l, el ); begin = end+1; break; } } end++; } } io_buffer_destroy( io_buffer ); return status; }