// A specialized tokenizer for tokenizing the fish language. In the future, the tokenizer should be // extended to support marks, tokenizing multiple strings and disposing of unused string segments. #include "config.h" // IWYU pragma: keep #include #include #include #include #include #include #include #include "common.h" #include "fallback.h" // IWYU pragma: keep #include "future_feature_flags.h" #include "tokenizer.h" #include "wutil.h" // IWYU pragma: keep // _(s) is already wgettext(s).c_str(), so let's not convert back to wcstring const wchar_t * tokenizer_get_error_message(tokenizer_error_t err) { switch (err) { case tokenizer_error_t::none: return L""; case tokenizer_error_t::unterminated_quote: return _(L"Unexpected end of string, quotes are not balanced"); case tokenizer_error_t::unterminated_subshell: return _(L"Unexpected end of string, expecting ')'"); case tokenizer_error_t::unterminated_slice: return _(L"Unexpected end of string, square brackets do not match"); case tokenizer_error_t::unterminated_escape: return _(L"Unexpected end of string, incomplete escape sequence"); case tokenizer_error_t::invalid_redirect: return _(L"Invalid input/output redirection"); case tokenizer_error_t::invalid_pipe: return _(L"Cannot use stdin (fd 0) as pipe output"); case tokenizer_error_t::closing_unopened_subshell: return _(L"Unexpected ')' for unopened parenthesis"); case tokenizer_error_t::illegal_slice: return _(L"Unexpected '[' at this location"); case tokenizer_error_t::closing_unopened_brace: return _(L"Unexpected '}' for unopened brace expansion"); case tokenizer_error_t::unterminated_brace: return _(L"Unexpected end of string, incomplete parameter expansion"); case tokenizer_error_t::expected_pclose_found_bclose: return _(L"Unexpected '}' found, expecting ')'"); case tokenizer_error_t::expected_bclose_found_pclose: return _(L"Unexpected ')' found, expecting '}'"); } assert(0 && "Unexpected tokenizer error"); return nullptr; } // Whether carets redirect stderr. static bool caret_redirs() { return !feature_test(features_t::stderr_nocaret); } /// Return an error token and mark that we no longer have a next token. tok_t tokenizer_t::call_error(tokenizer_error_t error_type, const wchar_t *token_start, const wchar_t *error_loc) { assert(error_type != tokenizer_error_t::none && "tokenizer_error_t::none passed to call_error"); assert(error_loc >= token_start && "Invalid error location"); assert(this->buff >= token_start && "Invalid buff location"); this->has_next = false; tok_t result; result.type = TOK_ERROR; result.error = error_type; result.offset = token_start - this->start; result.length = this->buff - token_start; result.error_offset = error_loc - token_start; return result; } tokenizer_t::tokenizer_t(const wchar_t *start, tok_flags_t flags) : buff(start), start(start) { assert(start != nullptr && "Invalid start"); this->accept_unfinished = static_cast(flags & TOK_ACCEPT_UNFINISHED); this->show_comments = static_cast(flags & TOK_SHOW_COMMENTS); this->show_blank_lines = static_cast(flags & TOK_SHOW_BLANK_LINES); } bool tokenizer_t::next(struct tok_t *result) { assert(result != NULL); maybe_t tok = this->tok_next(); if (!tok) { return false; } *result = std::move(*tok); return true; } /// Tests if this character can be a part of a string. The redirect ^ is allowed unless it's the /// first character. Hash (#) starts a comment if it's the first character in a token; otherwise it /// is considered a string character. See issue #953. static bool tok_is_string_character(wchar_t c, bool is_first) { switch (c) { case L'\0': case L' ': case L'\n': case L'|': case L'\t': case L';': case L'\r': case L'<': case L'>': case L'&': { // Unconditional separators. return false; } case L'^': { // Conditional separator. return !caret_redirs() || !is_first; } default: { return true; } } } /// Quick test to catch the most common 'non-magical' characters, makes read_string slightly faster /// by adding a fast path for the most common characters. This is obviously not a suitable /// replacement for iswalpha. static inline int myal(wchar_t c) { return (c >= L'a' && c <= L'z') || (c >= L'A' && c <= L'Z'); } namespace tok_modes { enum { regular_text = 0, // regular text subshell = 1 << 0, // inside of subshell parentheses array_brackets = 1 << 1, // inside of array brackets curly_braces = 1 << 2, char_escape = 1 << 3, }; } using tok_mode_t = uint32_t; /// Read the next token as a string. tok_t tokenizer_t::read_string() { tok_mode_t mode{tok_modes::regular_text}; std::vector paran_offsets; std::vector brace_offsets; std::vector expecting; int slice_offset = 0; const wchar_t *const buff_start = this->buff; bool is_first = true; while (true) { wchar_t c = *this->buff; #if false wcstring msg = L"Handling 0x%x (%lc)"; tok_mode mode_begin = mode; #endif if (c == L'\0') { break; } // Make sure this character isn't being escaped before anything else if ((mode & tok_modes::char_escape) == tok_modes::char_escape) { mode &= ~(tok_modes::char_escape); // and do nothing more } else if (myal(c)) { // Early exit optimization in case the character is just a letter, // which has no special meaning to the tokenizer, i.e. the same mode continues. } // Now proceed with the evaluation of the token, first checking to see if the token // has been explicitly ignored (escaped). else if (c == L'\\') { mode |= tok_modes::char_escape; } else if (c == L'(') { paran_offsets.push_back(this->buff - this->start); expecting.push_back(L')'); mode |= tok_modes::subshell; } else if (c == L'{') { brace_offsets.push_back(this->buff - this->start); expecting.push_back(L'}'); mode |= tok_modes::curly_braces; } else if (c == L')') { if (expecting.size() > 0 && expecting.back() == L'}') { return this->call_error(tokenizer_error_t::expected_bclose_found_pclose, this->start, this->buff); } switch (paran_offsets.size()) { case 0: return this->call_error(tokenizer_error_t::closing_unopened_subshell, this->start, this->buff); case 1: mode &= ~(tok_modes::subshell); default: paran_offsets.pop_back(); } expecting.pop_back(); } else if (c == L'}') { if (expecting.size() > 0 && expecting.back() == L')') { return this->call_error(tokenizer_error_t::expected_pclose_found_bclose, this->start, this->buff); } switch (brace_offsets.size()) { case 0: return this->call_error(tokenizer_error_t::closing_unopened_brace, this->buff, this->start + wcslen(this->start)); case 1: mode &= ~(tok_modes::curly_braces); default: brace_offsets.pop_back(); } expecting.pop_back(); } else if (c == L'[') { if (this->buff != buff_start) { mode |= tok_modes::array_brackets; slice_offset = this->buff - this->start; } else { // This is actually allowed so the test operator `[` can be used as the head of a // command } } // Only exit bracket mode if we are in bracket mode. // Reason: `]` can be a parameter, e.g. last parameter to `[` test alias. // e.g. echo $argv[([ $x -eq $y ])] # must not end bracket mode on first bracket else if (c == L']' && ((mode & tok_modes::array_brackets) == tok_modes::array_brackets)) { mode &= ~(tok_modes::array_brackets); } else if (c == L'\'' || c == L'"') { const wchar_t *end = quote_end(this->buff); if (end) { this->buff = end; } else { const wchar_t *error_loc = this->buff; this->buff += std::wcslen(this->buff); if ((!this->accept_unfinished)) { return this->call_error(tokenizer_error_t::unterminated_quote, buff_start, error_loc); } break; } } else if (mode == tok_modes::regular_text && !tok_is_string_character(c, is_first)) { break; } #if false if (mode != mode_begin) { msg.append(L": mode 0x%x -> 0x%x\n"); } else { msg.push_back(L'\n'); } debug(0, msg.c_str(), c, c, int(mode_begin), int(mode)); #endif this->buff++; is_first = false; } if ((!this->accept_unfinished) && (mode != tok_modes::regular_text)) { tok_t error; if ((mode & tok_modes::char_escape) == tok_modes::char_escape) { error = this->call_error(tokenizer_error_t::unterminated_escape, buff_start, this->buff - 1); } else if ((mode & tok_modes::array_brackets) == tok_modes::array_brackets) { error = this->call_error(tokenizer_error_t::unterminated_slice, buff_start, this->start + slice_offset); } else if ((mode & tok_modes::subshell) == tok_modes::subshell) { assert(paran_offsets.size() > 0); size_t offset_of_open_paran = paran_offsets.back(); error = this->call_error(tokenizer_error_t::unterminated_subshell, buff_start, this->start + offset_of_open_paran); } else if ((mode & tok_modes::curly_braces) == tok_modes::curly_braces) { assert(brace_offsets.size() > 0); size_t offset_of_open_brace = brace_offsets.back(); error = this->call_error(tokenizer_error_t::unterminated_brace, buff_start, this->start + offset_of_open_brace); } return error; } tok_t result; result.type = TOK_STRING; result.offset = buff_start - this->start; result.length = this->buff - buff_start; return result; } // Reads a redirection or an "fd pipe" (like 2>|) from a string. // Returns the parsed pipe or redirection, or none() on error. struct parsed_redir_or_pipe_t { // Number of characters consumed. size_t consumed{0}; // The token type, always either TOK_PIPE or TOK_REDIRECT. token_type type{TOK_REDIRECT}; // The redirection mode if the type is TOK_REDIRECT. redirection_type_t redirection_mode{redirection_type_t::overwrite}; // The redirected fd, or -1 on overflow. int fd{0}; }; static maybe_t read_redirection_or_fd_pipe(const wchar_t *buff) { bool errored = false; parsed_redir_or_pipe_t result; size_t idx = 0; // Determine the fd. This may be specified as a prefix like '2>...' or it may be implicit like // '>' or '^'. Try parsing out a number; if we did not get any digits then infer it from the // first character. Watch out for overflow. long long big_fd = 0; for (; iswdigit(buff[idx]); idx++) { // Note that it's important we consume all the digits here, even if it overflows. if (big_fd <= INT_MAX) big_fd = big_fd * 10 + (buff[idx] - L'0'); } result.fd = (big_fd > INT_MAX ? -1 : static_cast(big_fd)); if (idx == 0) { // We did not find a leading digit, so there's no explicit fd. Infer it from the type. switch (buff[idx]) { case L'>': { result.fd = STDOUT_FILENO; break; } case L'<': { result.fd = STDIN_FILENO; break; } case L'^': { if (caret_redirs()) { result.fd = STDERR_FILENO; } else { errored = true; } break; } default: { errored = true; break; } } } // Either way we should have ended on the redirection character itself like '>'. // Don't allow an fd with a caret redirection - see #1873 wchar_t redirect_char = buff[idx++]; // note increment of idx if (redirect_char == L'>' || (redirect_char == L'^' && idx == 1 && caret_redirs())) { result.redirection_mode = redirection_type_t::overwrite; if (buff[idx] == redirect_char) { // Doubled up like ^^ or >>. That means append. result.redirection_mode = redirection_type_t::append; idx++; } } else if (redirect_char == L'<') { result.redirection_mode = redirection_type_t::input; } else { // Something else. errored = true; } // Bail on error. if (errored) { return none(); } // Optional characters like & or ?, or the pipe char |. wchar_t opt_char = buff[idx]; if (opt_char == L'&') { result.redirection_mode = redirection_type_t::fd; idx++; } else if (opt_char == L'?') { result.redirection_mode = redirection_type_t::noclob; idx++; } else if (opt_char == L'|') { // So the string looked like '2>|'. This is not a redirection - it's a pipe! That gets // handled elsewhere. result.type = TOK_PIPE; idx++; } result.consumed = idx; return result; } maybe_t redirection_type_for_string(const wcstring &str, int *out_fd) { auto v = read_redirection_or_fd_pipe(str.c_str()); // Redirections only, no pipes. if (!v || v->type != TOK_REDIRECT || v->fd < 0) return none(); if (out_fd) *out_fd = v->fd; return v->redirection_mode; } int fd_redirected_by_pipe(const wcstring &str) { // Hack for the common case. if (str == L"|") { return STDOUT_FILENO; } auto v = read_redirection_or_fd_pipe(str.c_str()); return (v && v->type == TOK_PIPE) ? v->fd : -1; } int oflags_for_redirection_type(redirection_type_t type) { switch (type) { case redirection_type_t::append: { return O_CREAT | O_APPEND | O_WRONLY; } case redirection_type_t::overwrite: { return O_CREAT | O_WRONLY | O_TRUNC; } case redirection_type_t::noclob: { return O_CREAT | O_EXCL | O_WRONLY; } case redirection_type_t::input: { return O_RDONLY; } case redirection_type_t::fd: default: { return -1; } } } /// Test if a character is whitespace. Differs from iswspace in that it does not consider a newline /// to be whitespace. static bool iswspace_not_nl(wchar_t c) { switch (c) { case L' ': case L'\t': case L'\r': return true; case L'\n': return false; default: return iswspace(c); } } maybe_t tokenizer_t::tok_next() { if (!this->has_next) { return none(); } // Consume non-newline whitespace. If we get an escaped newline, mark it and continue past it. bool preceding_escaped_nl = false; for (;;) { if (this->buff[0] == L'\\' && this->buff[1] == L'\n') { this->buff += 2; this->continue_line_after_comment = true; preceding_escaped_nl = true; } else if (iswspace_not_nl(this->buff[0])) { this->buff++; } else { break; } } while (*this->buff == L'#') { // We have a comment, walk over the comment. const wchar_t *comment_start = this->buff; while (this->buff[0] != L'\n' && this->buff[0] != L'\0') this->buff++; size_t comment_len = this->buff - comment_start; // If we are going to continue after the comment, skip any trailing newline. if (this->buff[0] == L'\n' && this->continue_line_after_comment) this->buff++; // Maybe return the comment. if (this->show_comments) { tok_t result; result.type = TOK_COMMENT; result.offset = comment_start - this->start; result.length = comment_len; result.preceding_escaped_nl = preceding_escaped_nl; return result; } while (iswspace_not_nl(this->buff[0])) this->buff++; } // We made it past the comments and ate any trailing newlines we wanted to ignore. this->continue_line_after_comment = false; size_t start_pos = this->buff - this->start; tok_t result; result.offset = start_pos; switch (*this->buff) { case L'\0': { this->has_next = false; return none(); } case L'\r': // carriage-return case L'\n': // newline case L';': { result.type = TOK_END; result.length = 1; this->buff++; // Hack: when we get a newline, swallow as many as we can. This compresses multiple // subsequent newlines into a single one. if (!this->show_blank_lines) { while (*this->buff == L'\n' || *this->buff == 13 /* CR */ || *this->buff == ' ' || *this->buff == '\t') { this->buff++; } } break; } case L'&': { if (this->buff[1] == L'&') { result.type = TOK_ANDAND; result.length = 2; this->buff += 2; } else { result.type = TOK_BACKGROUND; result.length = 1; this->buff++; } break; } case L'|': { if (this->buff[1] == L'|') { result.type = TOK_OROR; result.length = 2; this->buff += 2; } else { result.type = TOK_PIPE; result.redirected_fd = 1; result.length = 1; this->buff++; } break; } case L'>': case L'<': { // There's some duplication with the code in the default case below. The key difference // here is that we must never parse these as a string; a failed redirection is an error! auto redir_or_pipe = read_redirection_or_fd_pipe(this->buff); if (!redir_or_pipe || redir_or_pipe->fd < 0) { return this->call_error(tokenizer_error_t::invalid_redirect, this->buff, this->buff); } result.type = redir_or_pipe->type; result.redirected_fd = redir_or_pipe->fd; result.length = redir_or_pipe->consumed; this->buff += redir_or_pipe->consumed; break; } default: { // Maybe a redirection like '2>&1', maybe a pipe like 2>|, maybe just a string. const wchar_t *error_location = this->buff; maybe_t redir_or_pipe; if (iswdigit(*this->buff) || (*this->buff == L'^' && caret_redirs())) { redir_or_pipe = read_redirection_or_fd_pipe(this->buff); } if (redir_or_pipe && redir_or_pipe->consumed > 0) { // It looks like a redirection or a pipe. But we don't support piping fd 0. Note // that fd 0 may be -1, indicating overflow; but we don't treat that as a tokenizer // error. if (redir_or_pipe->type == TOK_PIPE && redir_or_pipe->fd == 0) { return this->call_error(tokenizer_error_t::invalid_pipe, error_location, error_location); } result.type = redir_or_pipe->type; result.redirected_fd = redir_or_pipe->fd; result.length = redir_or_pipe->consumed; this->buff += redir_or_pipe->consumed; } else { // Not a redirection or pipe, so just a string. result = this->read_string(); } break; } } result.preceding_escaped_nl = preceding_escaped_nl; return result; } wcstring tok_first(const wcstring &str) { tokenizer_t t(str.c_str(), 0); tok_t token; if (t.next(&token) && token.type == TOK_STRING) { return t.text_of(token); } return {}; } bool move_word_state_machine_t::consume_char_punctuation(wchar_t c) { enum { s_always_one = 0, s_rest, s_whitespace_rest, s_whitespace, s_alphanumeric, s_end }; bool consumed = false; while (state != s_end && !consumed) { switch (state) { case s_always_one: { // Always consume the first character. consumed = true; if (iswspace(c)) { state = s_whitespace; } else { // Don't allow switching type (ws->nonws) after non-whitespace. state = s_rest; } break; } case s_rest: { if (iswspace(c)) { // Consume only trailing whitespace. state = s_whitespace_rest; } else if (iswalnum(c)) { // Consume only alnums. state = s_alphanumeric; } else { consumed = false; state = s_end; } break; } case s_whitespace_rest: case s_whitespace: { // "whitespace" consumes whitespace and switches to alnums, // "whitespace_rest" only consumes whitespace. if (iswspace(c)) { // Consumed whitespace. consumed = true; } else { state = state == s_whitespace ? s_alphanumeric : s_end; } break; } case s_alphanumeric: { if (iswalnum(c)) { consumed = true; // consumed alphanumeric } else { state = s_end; } break; } case s_end: default: { break; } } } return consumed; } bool move_word_state_machine_t::is_path_component_character(wchar_t c) { // Always treat separators as first. All this does is ensure that we treat ^ as a string // character instead of as stderr redirection, which I hypothesize is usually what is desired. return tok_is_string_character(c, true) && !std::wcschr(L"/={,}'\":@", c); } bool move_word_state_machine_t::consume_char_path_components(wchar_t c) { enum { s_initial_punctuation, s_whitespace, s_separator, s_slash, s_path_component_characters, s_end }; // std::fwprintf(stdout, L"state %d, consume '%lc'\n", state, c); bool consumed = false; while (state != s_end && !consumed) { switch (state) { case s_initial_punctuation: { if (!is_path_component_character(c)) { consumed = true; } state = s_whitespace; break; } case s_whitespace: { if (iswspace(c)) { consumed = true; // consumed whitespace } else if (c == L'/' || is_path_component_character(c)) { state = s_slash; // path component } else { state = s_separator; // path separator } break; } case s_separator: { if (!iswspace(c) && !is_path_component_character(c)) { consumed = true; // consumed separator } else { state = s_end; } break; } case s_slash: { if (c == L'/') { consumed = true; // consumed slash } else { state = s_path_component_characters; } break; } case s_path_component_characters: { if (is_path_component_character(c)) { consumed = true; // consumed string character except slash } else { state = s_end; } break; } case s_end: default: { break; } } } return consumed; } bool move_word_state_machine_t::consume_char_whitespace(wchar_t c) { enum { s_always_one = 0, s_blank, s_graph, s_end }; bool consumed = false; while (state != s_end && !consumed) { switch (state) { case s_always_one: { consumed = true; // always consume the first character state = s_blank; break; } case s_blank: { if (iswblank(c)) { consumed = true; // consumed whitespace } else { state = s_graph; } break; } case s_graph: { if (iswgraph(c)) { consumed = true; // consumed printable non-space } else { state = s_end; } break; } case s_end: default: { break; } } } return consumed; } bool move_word_state_machine_t::consume_char(wchar_t c) { switch (style) { case move_word_style_punctuation: { return consume_char_punctuation(c); } case move_word_style_path_components: { return consume_char_path_components(c); } case move_word_style_whitespace: { return consume_char_whitespace(c); } } DIE("should not reach this statement"); // silence some compiler errors about not returning } move_word_state_machine_t::move_word_state_machine_t(move_word_style_t syl) : state(0), style(syl) {} void move_word_state_machine_t::reset() { state = 0; }