// Functions for handling event triggers. #include "config.h" // IWYU pragma: keep #include #include #include #include #include #include #include #include #include #include "common.h" #include "event.h" #include "fallback.h" // IWYU pragma: keep #include "input_common.h" #include "io.h" #include "parser.h" #include "proc.h" #include "signal.h" #include "wutil.h" // IWYU pragma: keep class pending_signals_t { static constexpr size_t SIGNAL_COUNT = NSIG; /// A counter that is incremented each time a pending signal is received. std::atomic counter_{0}; /// List of pending signals. std::array, SIGNAL_COUNT> received_{}; /// The last counter visible in acquire_pending(). /// This is not accessed from a signal handler. owning_lock last_counter_{0}; public: pending_signals_t() = default; /// No copying. pending_signals_t(const pending_signals_t &); void operator=(const pending_signals_t &); /// Mark a signal as pending. This may be called from a signal handler. /// We expect only one signal handler to execute at once. /// Also note that these may be coalesced. void mark(int which) { if (which >= 0 && static_cast(which) < received_.size()) { // Must mark our received first, then pending. received_[which].store(true, std::memory_order_relaxed); uint32_t count = counter_.load(std::memory_order_relaxed); counter_.store(1 + count, std::memory_order_release); } } /// \return the list of signals that were set, clearing them. std::bitset acquire_pending() { auto current = last_counter_.acquire(); // Check the counter first. If it hasn't changed, no signals have been received. uint32_t count = counter_.load(std::memory_order_acquire); if (count == *current) { return {}; } // The signal count has changed. Store the new counter and fetch all the signals that are // set. *current = count; std::bitset result{}; uint32_t bit = 0; for (auto &signal : received_) { bool val = signal.load(std::memory_order_relaxed); if (val) { result.set(bit); signal.store(false, std::memory_order_relaxed); } bit++; } return result; } }; static pending_signals_t s_pending_signals; /// List of event handlers. static event_handler_list_t s_event_handlers; /// List of events that have been sent but have not yet been delivered because they are blocked. using event_list_t = std::vector>; static event_list_t blocked; /// Variables (one per signal) set when a signal is observed. This is inspected by a signal handler. static volatile bool s_observed_signals[NSIG] = {}; static void set_signal_observed(int sig, bool val) { ASSERT_IS_MAIN_THREAD(); if (sig >= 0 && (size_t)sig < sizeof s_observed_signals / sizeof *s_observed_signals) { s_observed_signals[sig] = val; } } /// Tests if one event instance matches the definition of a event class. static bool handler_matches(const event_handler_t &classv, const event_t &instance) { if (classv.desc.type == event_type_t::any) return true; if (classv.desc.type != instance.desc.type) return false; switch (classv.desc.type) { case event_type_t::signal: { return classv.desc.param1.signal == instance.desc.param1.signal; } case event_type_t::variable: { return instance.desc.str_param1 == classv.desc.str_param1; } case event_type_t::exit: { if (classv.desc.param1.pid == EVENT_ANY_PID) return true; return classv.desc.param1.pid == instance.desc.param1.pid; } case event_type_t::job_exit: { return classv.desc.param1.job_id == instance.desc.param1.job_id; } case event_type_t::generic: { return classv.desc.str_param1 == instance.desc.str_param1; } case event_type_t::any: default: { DIE("unexpected classv.type"); return false; } } } /// Test if specified event is blocked. static int event_is_blocked(const event_t &e) { (void)e; const block_t *block; parser_t &parser = parser_t::principal_parser(); size_t idx = 0; while ((block = parser.block_at_index(idx++))) { if (event_block_list_blocks_type(block->event_blocks)) return true; } return event_block_list_blocks_type(parser.global_event_blocks); } wcstring event_get_desc(const event_t &evt) { const event_description_t &ed = evt.desc; switch (ed.type) { case event_type_t::signal: { return format_string(_(L"signal handler for %ls (%ls)"), sig2wcs(ed.param1.signal), signal_get_desc(ed.param1.signal)); } case event_type_t::variable: { return format_string(_(L"handler for variable '%ls'"), ed.str_param1.c_str()); } case event_type_t::exit: { if (ed.param1.pid > 0) { return format_string(_(L"exit handler for process %d"), ed.param1.pid); } else { // In events, PGIDs are stored as negative PIDs job_t *j = job_t::from_pid(-ed.param1.pid); if (j) { return format_string(_(L"exit handler for job %d, '%ls'"), j->job_id, j->command_wcstr()); } else { return format_string(_(L"exit handler for job with process group %d"), -ed.param1.pid); } } DIE("Unreachable"); } case event_type_t::job_exit: { job_t *j = job_t::from_job_id(ed.param1.job_id); if (j) { return format_string(_(L"exit handler for job %d, '%ls'"), j->job_id, j->command_wcstr()); } else { return format_string(_(L"exit handler for job with job id %d"), ed.param1.job_id); } break; } case event_type_t::generic: { return format_string(_(L"handler for generic event '%ls'"), ed.str_param1.c_str()); } case event_type_t::any: { DIE("Unreachable"); } default: DIE("Unknown event type"); } } #if 0 static void show_all_handlers(void) { std::fwprintf(stdout, L"event handlers:\n"); for (event_list_t::const_iterator iter = events.begin(); iter != events.end(); ++iter) { const event_t *foo = *iter; wcstring tmp = event_get_desc(foo); std::fwprintf(stdout, L" handler now %ls\n", tmp.c_str()); } } #endif void event_add_handler(std::shared_ptr eh) { if (eh->desc.type == event_type_t::signal) { signal_handle(eh->desc.param1.signal, 1); set_signal_observed(eh->desc.param1.signal, true); } s_event_handlers.push_back(std::move(eh)); } void event_remove_function_handlers(const wcstring &name) { ASSERT_IS_MAIN_THREAD(); auto begin = s_event_handlers.begin(), end = s_event_handlers.end(); s_event_handlers.erase(std::remove_if(begin, end, [&](const shared_ptr &eh) { return eh->function_name == name; }), end); } event_handler_list_t event_get_function_handlers(const wcstring &name) { ASSERT_IS_MAIN_THREAD(); event_handler_list_t result; for (const shared_ptr &eh : s_event_handlers) { if (eh->function_name == name) { result.push_back(eh); } } return result; } bool event_is_signal_observed(int sig) { // We are in a signal handler! Don't allocate memory, etc. bool result = false; if (sig >= 0 && (unsigned long)sig < sizeof(s_observed_signals) / sizeof(*s_observed_signals)) { result = s_observed_signals[sig]; } return result; } /// Perform the specified event. Since almost all event firings will not be matched by even a single /// event handler, we make sure to optimize the 'no matches' path. This means that nothing is /// allocated/initialized unless needed. static void event_fire_internal(const event_t &event) { ASSERT_IS_MAIN_THREAD(); auto &ld = parser_t::principal_parser().libdata(); assert(ld.is_event >= 0 && "is_event should not be negative"); scoped_push inc_event{&ld.is_event, ld.is_event + 1}; // Capture the event handlers that match this event. event_handler_list_t fire; for (const auto &handler : s_event_handlers) { // Check if this event is a match. if (handler_matches(*handler, event)) { fire.push_back(handler); } } // Iterate over our list of matching events. Fire the ones that are still present. for (const shared_ptr &handler : fire) { // Only fire if this event is still present if (!contains(s_event_handlers, handler)) { continue; } // Construct a buffer to evaluate, starting with the function name and then all the // arguments. wcstring buffer = handler->function_name; for (const wcstring &arg : event.arguments) { buffer.push_back(L' '); buffer.append(escape_string(arg, ESCAPE_ALL)); } // debug( 1, L"Event handler fires command '%ls'", buffer.c_str() ); // Event handlers are not part of the main flow of code, so they are marked as // non-interactive. proc_push_interactive(0); parser_t &parser = parser_t::principal_parser(); auto prev_statuses = parser.get_last_statuses(); block_t *b = parser.push_block(block_t::event_block(event)); parser.eval(buffer, io_chain_t(), TOP); parser.pop_block(b); proc_pop_interactive(); parser.set_last_statuses(std::move(prev_statuses)); } } /// Handle all pending signal events. void event_fire_delayed() { // Hack: only allow events on the main thread. // TODO: rationalize how events work with multiple threads. if (!is_main_thread()) return; auto &parser = parser_t::principal_parser(); // Do not invoke new event handlers from within event handlers. if (parser.libdata().is_event) return; event_list_t to_send; to_send.swap(blocked); assert(blocked.empty()); // Append all signal events to to_send. auto signals = s_pending_signals.acquire_pending(); if (signals.any()) { for (uint32_t sig = 0; sig < signals.size(); sig++) { if (signals.test(sig)) { auto e = std::make_shared(event_type_t::signal); e->desc.param1.signal = sig; e->arguments.push_back(sig2wcs(sig)); to_send.push_back(std::move(e)); } } } // Fire or re-block all events. for (const auto &evt : to_send) { if (event_is_blocked(*evt)) { blocked.push_back(evt); } else { event_fire_internal(*evt); } } } void event_enqueue_signal(int signal) { // Beware, we are in a signal handler s_pending_signals.mark(signal); } void event_fire(const event_t &event) { // Hack: only allow events on the main thread. // TODO: rationalize how events work with multiple threads. if (!is_main_thread()) return; // Fire events triggered by signals. event_fire_delayed(); if (event_is_blocked(event)) { blocked.push_back(std::make_shared(event)); } else { event_fire_internal(event); } } /// Mapping between event type to name. /// Note we don't bother to sort this. struct event_type_name_t { event_type_t type; const wchar_t *name; }; static const event_type_name_t events_mapping[] = {{event_type_t::signal, L"signal"}, {event_type_t::variable, L"variable"}, {event_type_t::exit, L"exit"}, {event_type_t::job_exit, L"job-id"}, {event_type_t::generic, L"generic"}}; maybe_t event_type_for_name(const wcstring &name) { for (const auto &em : events_mapping) { if (name == em.name) { return em.type; } } return none(); } static const wchar_t *event_name_for_type(event_type_t type) { for (const auto &em : events_mapping) { if (type == em.type) { return em.name; } } return L""; } void event_print(io_streams_t &streams, maybe_t type_filter) { event_handler_list_t tmp = s_event_handlers; std::sort(tmp.begin(), tmp.end(), [](const shared_ptr &e1, const shared_ptr &e2) { const event_description_t &d1 = e1->desc; const event_description_t &d2 = e2->desc; if (d1.type != d2.type) { return d1.type < d2.type; } switch (d1.type) { case event_type_t::signal: return d1.signal < d2.signal; case event_type_t::exit: return d1.param1.pid < d2.param1.pid; case event_type_t::job_exit: return d1.param1.job_id < d2.param1.job_id; case event_type_t::variable: case event_type_t::any: case event_type_t::generic: return d1.str_param1 < d2.str_param1; } DIE("Unreachable"); }); maybe_t last_type{}; for (const shared_ptr &evt : tmp) { // If we have a filter, skip events that don't match. if (type_filter && *type_filter != evt->desc.type) { continue; } if (!last_type || *last_type != evt->desc.type) { if (last_type) streams.out.append(L"\n"); last_type = static_cast(evt->desc.type); streams.out.append_format(L"Event %ls\n", event_name_for_type(*last_type)); } switch (evt->desc.type) { case event_type_t::signal: streams.out.append_format(L"%ls %ls\n", sig2wcs(evt->desc.param1.signal), evt->function_name.c_str()); break; case event_type_t::exit: case event_type_t::job_exit: streams.out.append_format(L"%d %ls\n", evt->desc.param1, evt->function_name.c_str()); break; case event_type_t::variable: case event_type_t::generic: streams.out.append_format(L"%ls %ls\n", evt->desc.str_param1.c_str(), evt->function_name.c_str()); break; case event_type_t::any: DIE("Unreachable"); default: streams.out.append_format(L"%ls\n", evt->function_name.c_str()); break; } } } void event_fire_generic(const wchar_t *name, const wcstring_list_t *args) { CHECK(name, ); event_t ev(event_type_t::generic); ev.desc.str_param1 = name; if (args) ev.arguments = *args; event_fire(ev); } event_description_t event_description_t::signal(int sig) { event_description_t event(event_type_t::signal); event.param1.signal = sig; return event; } event_description_t event_description_t::variable(wcstring str) { event_description_t event(event_type_t::variable); event.str_param1 = std::move(str); return event; } event_description_t event_description_t::generic(wcstring str) { event_description_t event(event_type_t::generic); event.str_param1 = std::move(str); return event; } event_t event_t::variable(wcstring name, wcstring_list_t args) { event_t evt{event_type_t::variable}; evt.desc.str_param1 = std::move(name); evt.arguments = std::move(args); return evt; }