#include "config.h" // IWYU pragma: keep #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include "iothread.h" #include "wutil.h" #ifdef _POSIX_THREAD_THREADS_MAX #if _POSIX_THREAD_THREADS_MAX < 64 #define IO_MAX_THREADS _POSIX_THREAD_THREADS_MAX #endif #endif #ifndef IO_MAX_THREADS #define IO_MAX_THREADS 64 #endif // Values for the wakeup bytes sent to the ioport. #define IO_SERVICE_MAIN_THREAD_REQUEST_QUEUE 99 #define IO_SERVICE_RESULT_QUEUE 100 static void iothread_service_main_thread_requests(); static void iothread_service_result_queue(); typedef std::function void_function_t; struct spawn_request_t { void_function_t handler; void_function_t completion; spawn_request_t() {} spawn_request_t(void_function_t &&f, void_function_t &&comp) : handler(f), completion(comp) {} // Move-only spawn_request_t &operator=(const spawn_request_t &) = delete; spawn_request_t &operator=(spawn_request_t &&) = default; spawn_request_t(const spawn_request_t &) = delete; spawn_request_t(spawn_request_t &&) = default; }; struct main_thread_request_t { std::atomic done{false}; void_function_t func; main_thread_request_t(void_function_t &&f) : func(f) {} // No moving OR copying // main_thread_requests are always stack allocated, and we deal in pointers to them void operator=(const main_thread_request_t &) = delete; main_thread_request_t(const main_thread_request_t &) = delete; main_thread_request_t(main_thread_request_t &&) = delete; }; // Spawn support. Requests are allocated and come in on request_queue and go out on result_queue struct thread_data_t { std::queue request_queue; int thread_count = 0; }; static owning_lock s_spawn_requests; static owning_lock> s_result_queue; // "Do on main thread" support. static std::mutex s_main_thread_performer_lock; // protects the main thread requests static std::condition_variable s_main_thread_performer_cond; // protects the main thread requests static std::mutex s_main_thread_request_q_lock; // protects the queue static std::queue s_main_thread_request_queue; // Notifying pipes. static int s_read_pipe, s_write_pipe; static void iothread_init() { static bool inited = false; if (!inited) { inited = true; // Initialize the completion pipes. int pipes[2] = {0, 0}; assert_with_errno(pipe(pipes) != -1); s_read_pipe = pipes[0]; s_write_pipe = pipes[1]; set_cloexec(s_read_pipe); set_cloexec(s_write_pipe); } } static bool dequeue_spawn_request(spawn_request_t *result) { auto requests = s_spawn_requests.acquire(); if (!requests->request_queue.empty()) { *result = std::move(requests->request_queue.front()); requests->request_queue.pop(); return true; } return false; } static void enqueue_thread_result(spawn_request_t req) { s_result_queue.acquire()->push(std::move(req)); } static void *this_thread() { return (void *)(intptr_t)pthread_self(); } /// The function that does thread work. static void *iothread_worker(void *unused) { UNUSED(unused); struct spawn_request_t req; while (dequeue_spawn_request(&req)) { debug(5, "pthread %p dequeued", this_thread()); // Perform the work req.handler(); // If there's a completion handler, we have to enqueue it on the result queue. // Note we're using std::function's weirdo operator== here if (req.completion != nullptr) { // Enqueue the result, and tell the main thread about it. enqueue_thread_result(std::move(req)); const char wakeup_byte = IO_SERVICE_RESULT_QUEUE; assert_with_errno(write_loop(s_write_pipe, &wakeup_byte, sizeof wakeup_byte) != -1); } } // We believe we have exhausted the thread request queue. We want to decrement // thread_count and exit. But it's possible that a request just came in. Furthermore, // it's possible that the main thread saw that thread_count is full, and decided to not // spawn a new thread, trusting in one of the existing threads to handle it. But we've already // committed to not handling anything else. Therefore, we have to decrement // the thread count under the lock, which we still hold. Likewise, the main thread must // check the value under the lock. int new_thread_count = --s_spawn_requests.acquire()->thread_count; assert(new_thread_count >= 0); debug(5, "pthread %p exiting", this_thread()); // We're done. return NULL; } /// Spawn another thread. No lock is held when this is called. static void iothread_spawn() { // Spawn a thread. If this fails, it means there's already a bunch of threads; it is very // unlikely that they are all on the verge of exiting, so one is likely to be ready to handle // extant requests. So we can ignore failure with some confidence. pthread_t thread = 0; if (make_pthread(&thread, iothread_worker, nullptr)) { // We will never join this thread. DIE_ON_FAILURE(pthread_detach(thread)); } } int iothread_perform_impl(void_function_t &&func, void_function_t &&completion) { ASSERT_IS_MAIN_THREAD(); ASSERT_IS_NOT_FORKED_CHILD(); iothread_init(); struct spawn_request_t req(std::move(func), std::move(completion)); int local_thread_count = -1; bool spawn_new_thread = false; { // Lock around a local region. auto spawn_reqs = s_spawn_requests.acquire(); spawn_reqs->request_queue.push(std::move(req)); if (spawn_reqs->thread_count < IO_MAX_THREADS) { spawn_reqs->thread_count++; spawn_new_thread = true; } local_thread_count = spawn_reqs->thread_count; } // Kick off the thread if we decided to do so. if (spawn_new_thread) { iothread_spawn(); } return local_thread_count; } int iothread_port() { iothread_init(); return s_read_pipe; } void iothread_service_completion() { ASSERT_IS_MAIN_THREAD(); char wakeup_byte; assert_with_errno(read_loop(iothread_port(), &wakeup_byte, sizeof wakeup_byte) == 1); if (wakeup_byte == IO_SERVICE_MAIN_THREAD_REQUEST_QUEUE) { iothread_service_main_thread_requests(); } else if (wakeup_byte == IO_SERVICE_RESULT_QUEUE) { iothread_service_result_queue(); } else { debug(0, "Unknown wakeup byte %02x in %s", wakeup_byte, __FUNCTION__); } } static bool iothread_wait_for_pending_completions(long timeout_usec) { const long usec_per_sec = 1000000; struct timeval tv; tv.tv_sec = timeout_usec / usec_per_sec; tv.tv_usec = timeout_usec % usec_per_sec; const int fd = iothread_port(); fd_set fds; FD_ZERO(&fds); FD_SET(fd, &fds); int ret = select(fd + 1, &fds, NULL, NULL, &tv); return ret > 0; } /// Note that this function is quite sketchy. In particular, it drains threads, not requests, /// meaning that it may leave requests on the queue. This is the desired behavior (it may be called /// before fork, and we don't want to bother servicing requests before we fork), but in the test /// suite we depend on it draining all requests. In practice, this works, because a thread in /// practice won't exit while there is outstanding requests. /// /// At the moment, this function is only used in the test suite and in a /// drain-all-threads-before-fork compatibility mode that no architecture requires, so it's OK that /// it's terrible. void iothread_drain_all() { ASSERT_IS_MAIN_THREAD(); ASSERT_IS_NOT_FORKED_CHILD(); #define TIME_DRAIN 0 #if TIME_DRAIN int thread_count = s_spawn_requests.acquire().value.thread_count; double now = timef(); #endif // Nasty polling via select(). while (s_spawn_requests.acquire()->thread_count > 0) { if (iothread_wait_for_pending_completions(1000)) { iothread_service_completion(); } } #if TIME_DRAIN double after = timef(); std::fwprintf(stdout, L"(Waited %.02f msec for %d thread(s) to drain)\n", 1000 * (after - now), thread_count); #endif } /// "Do on main thread" support. static void iothread_service_main_thread_requests() { ASSERT_IS_MAIN_THREAD(); // Move the queue to a local variable. std::queue request_queue; { scoped_lock queue_lock(s_main_thread_request_q_lock); request_queue.swap(s_main_thread_request_queue); } if (!request_queue.empty()) { // Perform each of the functions. Note we are NOT responsible for deleting these. They are // stack allocated in their respective threads! while (!request_queue.empty()) { main_thread_request_t *req = request_queue.front(); request_queue.pop(); req->func(); req->done = true; } // Ok, we've handled everybody. Announce the good news, and allow ourselves to be unlocked. // Note we must do this while holding the lock. Otherwise we race with the waiting threads: // // 1. waiting thread checks for done, sees false // 2. main thread performs request, sets done to true, posts to condition // 3. waiting thread unlocks lock, waits on condition (forever) // // Because the waiting thread performs step 1 under the lock, if we take the lock, we avoid // posting before the waiting thread is waiting. scoped_lock broadcast_lock(s_main_thread_performer_lock); s_main_thread_performer_cond.notify_all(); } } // Service the queue of results static void iothread_service_result_queue() { // Move the queue to a local variable. std::queue result_queue; (*s_result_queue.acquire()).swap(result_queue); // Perform each completion in order while (!result_queue.empty()) { spawn_request_t req(std::move(result_queue.front())); result_queue.pop(); // ensure we don't invoke empty functions, that raises an exception if (req.completion != nullptr) { req.completion(); } } } void iothread_perform_on_main(void_function_t &&func) { if (is_main_thread()) { func(); return; } // Make a new request. Note we are synchronous, so this can be stack allocated! main_thread_request_t req(std::move(func)); // Append it. Do not delete the nested scope as it is crucial to the proper functioning of this // code by virtue of the lock management. { scoped_lock queue_lock(s_main_thread_request_q_lock); s_main_thread_request_queue.push(&req); } // Tell the pipe. const char wakeup_byte = IO_SERVICE_MAIN_THREAD_REQUEST_QUEUE; assert_with_errno(write_loop(s_write_pipe, &wakeup_byte, sizeof wakeup_byte) != -1); // Wait on the condition, until we're done. std::unique_lock perform_lock(s_main_thread_performer_lock); while (!req.done) { // It would be nice to support checking for cancellation here, but the clients need a // deterministic way to clean up to avoid leaks s_main_thread_performer_cond.wait(perform_lock); } // Ok, the request must now be done. assert(req.done); } bool make_pthread(pthread_t *result, void *(*func)(void *), void *param) { // The spawned thread inherits our signal mask. We don't want the thread to ever receive signals // on the spawned thread, so temporarily block all signals, spawn the thread, and then restore // it. sigset_t new_set, saved_set; sigfillset(&new_set); DIE_ON_FAILURE(pthread_sigmask(SIG_BLOCK, &new_set, &saved_set)); // Spawn a thread. If this fails, it means there's already a bunch of threads; it is very // unlikely that they are all on the verge of exiting, so one is likely to be ready to handle // extant requests. So we can ignore failure with some confidence. pthread_t thread = 0; int err = pthread_create(&thread, NULL, func, param); if (err == 0) { // Success, return the thread. debug(5, "pthread %p spawned", (void *)(intptr_t)thread); *result = thread; } else { perror("pthread_create"); } // Restore our sigmask. DIE_ON_FAILURE(pthread_sigmask(SIG_SETMASK, &saved_set, NULL)); return err == 0; } using void_func_t = std::function; static void *func_invoker(void *param) { void_func_t *vf = static_cast(param); (*vf)(); delete vf; return nullptr; } bool make_pthread(pthread_t *result, void_func_t &&func) { // Copy the function into a heap allocation. void_func_t *vf = new void_func_t(std::move(func)); if (make_pthread(result, func_invoker, vf)) { return true; } // Thread spawning failed, clean up our heap allocation. delete vf; return false; }