//! Functions for handling event triggers //! //! Because most of these functions can be called by signal handler, it is important to make it well //! defined when these functions produce output or perform memory allocations, since such functions //! may not be safely called by signal handlers. use std::sync::atomic::{AtomicBool, AtomicU32, Ordering}; use std::sync::{Arc, Mutex}; use crate::common::{escape, scoped_push_replacer, ScopeGuard}; use crate::flog::FLOG; use crate::io::{IoChain, IoStreams}; use crate::job_group::MaybeJobId; use crate::parser::{Block, Parser}; use crate::proc::Pid; use crate::signal::{signal_check_cancel, signal_handle, Signal}; use crate::termsize; use crate::wchar::prelude::*; pub enum event_type_t { any, signal, variable, process_exit, job_exit, caller_exit, generic, } #[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)] pub enum EventDescription { /// Matches any event type (not always any event, as the function name may limit the choice as /// well). Any, /// An event triggered by a signal. Signal { signal: Signal }, /// An event triggered by a variable update. Variable { name: WString }, /// An event triggered by a process exit. ProcessExit { /// Process ID. Use [`None`] to match any pid. pid: Option, }, /// An event triggered by a job exit. JobExit { /// pid requested by the event, or [`None`] for all. pid: Option, /// `internal_job_id` of the job to match. /// If this is 0, we match either all jobs (`pid == ANY_PID`) or no jobs (otherwise). internal_job_id: u64, }, /// An event triggered by a job exit, triggering the 'caller'-style events only. CallerExit { /// Internal job ID. caller_id: u64, }, /// A generic event. Generic { /// The parameter describing this generic event. param: WString, }, } impl EventDescription { fn str_param1(&self) -> Option<&wstr> { match self { EventDescription::Any | EventDescription::Signal { .. } | EventDescription::ProcessExit { .. } | EventDescription::JobExit { .. } | EventDescription::CallerExit { .. } => None, EventDescription::Variable { name } => Some(name), EventDescription::Generic { param } => Some(param), } } fn name(&self) -> &'static wstr { match self { EventDescription::Any => L!("any"), EventDescription::Signal { .. } => L!("signal"), EventDescription::Variable { .. } => L!("variable"), EventDescription::ProcessExit { .. } => L!("process-exit"), EventDescription::JobExit { .. } => L!("job-exit"), EventDescription::CallerExit { .. } => L!("caller-exit"), EventDescription::Generic { .. } => L!("generic"), } } fn matches_filter(&self, filter: &wstr) -> bool { if filter.is_empty() { return true; } match self { EventDescription::Any => false, EventDescription::ProcessExit { .. } | EventDescription::JobExit { .. } | EventDescription::CallerExit { .. } if filter == "exit" => { true } _ => filter == self.name(), } } } impl From<&EventDescription> for event_type_t { fn from(desc: &EventDescription) -> Self { match desc { EventDescription::Any => event_type_t::any, EventDescription::Signal { .. } => event_type_t::signal, EventDescription::Variable { .. } => event_type_t::variable, EventDescription::ProcessExit { .. } => event_type_t::process_exit, EventDescription::JobExit { .. } => event_type_t::job_exit, EventDescription::CallerExit { .. } => event_type_t::caller_exit, EventDescription::Generic { .. } => event_type_t::generic, } } } #[derive(Debug)] pub struct EventHandler { /// Properties of the event to match. pub desc: EventDescription, /// Name of the function to invoke. pub function_name: WString, /// A flag set when an event handler is removed from the global list. /// Once set, this is never cleared. pub removed: AtomicBool, /// A flag set when an event handler is first fired. pub fired: AtomicBool, } impl EventHandler { pub fn new(desc: EventDescription, name: Option) -> Self { Self { desc, function_name: name.unwrap_or_default(), removed: AtomicBool::new(false), fired: AtomicBool::new(false), } } /// Return true if a handler is "one shot": it fires at most once. fn is_one_shot(&self) -> bool { match self.desc { EventDescription::ProcessExit { pid } => pid.is_some(), EventDescription::JobExit { pid, .. } => pid.is_some(), EventDescription::CallerExit { .. } => true, EventDescription::Signal { .. } | EventDescription::Variable { .. } | EventDescription::Generic { .. } | EventDescription::Any => false, } } /// Tests if this event handler matches an event that has occurred. fn matches(&self, event: &Event) -> bool { match (&self.desc, &event.desc) { (EventDescription::Any, _) => true, ( EventDescription::Signal { signal }, EventDescription::Signal { signal: ev_signal }, ) => signal == ev_signal, (EventDescription::Variable { name }, EventDescription::Variable { name: ev_name }) => { name == ev_name } ( EventDescription::ProcessExit { pid }, EventDescription::ProcessExit { pid: ev_pid }, ) => pid.is_none() || pid == ev_pid, ( EventDescription::JobExit { pid, internal_job_id, }, EventDescription::JobExit { internal_job_id: ev_internal_job_id, .. }, ) => pid.is_none() || internal_job_id == ev_internal_job_id, ( EventDescription::CallerExit { caller_id }, EventDescription::CallerExit { caller_id: ev_caller_id, }, ) => caller_id == ev_caller_id, ( EventDescription::Generic { param }, EventDescription::Generic { param: ev_param }, ) => param == ev_param, (_, _) => false, } } } type EventHandlerList = Vec>; #[derive(Debug, Clone, PartialEq, Eq)] pub struct Event { desc: EventDescription, arguments: Vec, } impl Event { pub fn generic(desc: WString) -> Self { Self { desc: EventDescription::Generic { param: desc }, arguments: vec![], } } pub fn variable_erase(name: WString) -> Self { Self { desc: EventDescription::Variable { name: name.clone() }, arguments: vec!["VARIABLE".into(), "ERASE".into(), name], } } pub fn variable_set(name: WString) -> Self { Self { desc: EventDescription::Variable { name: name.clone() }, arguments: vec!["VARIABLE".into(), "SET".into(), name], } } pub fn process_exit(pid: Pid, status: i32) -> Self { Self { desc: EventDescription::ProcessExit { pid: Some(pid) }, arguments: vec![ "PROCESS_EXIT".into(), pid.to_string().into(), status.to_string().into(), ], } } pub fn job_exit(pgid: Pid, jid: u64) -> Self { Self { desc: EventDescription::JobExit { pid: Some(pgid), internal_job_id: jid, }, arguments: vec![ "JOB_EXIT".into(), pgid.to_string().into(), "0".into(), // historical ], } } pub fn caller_exit(internal_job_id: u64, job_id: MaybeJobId) -> Self { Self { desc: EventDescription::CallerExit { caller_id: internal_job_id, }, arguments: vec![ "JOB_EXIT".into(), job_id.to_wstring(), "0".into(), // historical ], } } /// Test if specified event is blocked. fn is_blocked(&self, parser: &Parser) -> bool { for block in parser.blocks_iter_rev() { if block.event_blocks { return true; } } parser.global_event_blocks.load(Ordering::Relaxed) != 0 } } /// All the signals we are interested in are in the 1-32 range (with 32 being the typical SIGRTMAX), /// but we can expand it to 64 just to be safe. All code checks if a signal value is within bounds /// before handling it. const SIGNAL_COUNT: usize = 64; struct PendingSignals { /// A counter that is incremented each time a pending signal is received. counter: AtomicU32, /// List of pending signals. received: [AtomicBool; SIGNAL_COUNT], /// The last counter visible in `acquire_pending()`. /// This is not accessed from a signal handler. last_counter: Mutex, } impl PendingSignals { /// Mark a signal as pending. This may be called from a signal handler. We expect only one /// signal handler to execute at once. Also note that these may be coalesced. pub fn mark(&self, sig: libc::c_int) { if let Some(received) = self.received.get(usize::try_from(sig).unwrap()) { received.store(true, Ordering::Relaxed); self.counter.fetch_add(1, Ordering::Relaxed); } } /// Return the list of signals that were set as the bits in a u64, clearing them. pub fn acquire_pending(&self) -> u64 { let mut current = self .last_counter .lock() .expect("mutex should not be poisoned"); // Check the counter first. If it hasn't changed, no signals have been received. let count = self.counter.load(Ordering::Acquire); if count == *current { return 0; } // The signal count has changed. Store the new counter and fetch all set signals. *current = count; let mut result = 0; for (i, received) in self.received.iter().enumerate() { if received.load(Ordering::Relaxed) { result |= 1_u64 << i; received.store(false, Ordering::Relaxed); } } result } } // Required until inline const is stabilized. #[allow(clippy::declare_interior_mutable_const)] const ATOMIC_BOOL_FALSE: AtomicBool = AtomicBool::new(false); #[allow(clippy::declare_interior_mutable_const)] const ATOMIC_U32_0: AtomicU32 = AtomicU32::new(0); static PENDING_SIGNALS: PendingSignals = PendingSignals { counter: AtomicU32::new(0), received: [ATOMIC_BOOL_FALSE; SIGNAL_COUNT], last_counter: Mutex::new(0), }; /// List of event handlers. **While this is locked to allow safely accessing/modifying the vector, /// note that it does NOT provide exclusive access to the [`EventHandler`] objects which are shared /// references (in an `Arc`).** static EVENT_HANDLERS: Mutex = Mutex::new(Vec::new()); /// Tracks the number of registered event handlers for each signal. /// This is inspected by a signal handler. We assume no values in here overflow. static OBSERVED_SIGNALS: [AtomicU32; SIGNAL_COUNT] = [ATOMIC_U32_0; SIGNAL_COUNT]; /// List of events that have been sent but have not yet been delivered because they are blocked. /// /// This was part of profile_item_t accessed as parser.libdata().blocked_events and has been /// temporarily moved here. There was no mutex around this in the cpp code. TODO: Move it back. static BLOCKED_EVENTS: Mutex> = Mutex::new(Vec::new()); fn inc_signal_observed(sig: Signal) { if let Some(sig) = OBSERVED_SIGNALS.get(usize::from(sig)) { sig.fetch_add(1, Ordering::Relaxed); } } fn dec_signal_observed(sig: Signal) { if let Some(sig) = OBSERVED_SIGNALS.get(usize::from(sig)) { sig.fetch_sub(1, Ordering::Relaxed); } } /// Returns whether an event listener is registered for the given signal. This is safe to call from /// a signal handler. pub fn is_signal_observed(sig: libc::c_int) -> bool { // We are in a signal handler! OBSERVED_SIGNALS .get(usize::try_from(sig).unwrap()) .map_or(false, |s| s.load(Ordering::Relaxed) > 0) } pub fn get_desc(parser: &Parser, evt: &Event) -> WString { let s = match &evt.desc { EventDescription::Signal { signal } => { format!("signal handler for {} ({})", signal.name(), signal.desc(),) } EventDescription::Variable { name } => format!("handler for variable '{name}'"), EventDescription::ProcessExit { pid: None } => "exit handler for any process".to_string(), EventDescription::ProcessExit { pid: Some(pid) } => { format!("exit handler for process {pid}") } EventDescription::JobExit { pid, .. } => { if let Some(pid) = pid { if let Some(job) = parser.job_get_from_pid(*pid) { format!("exit handler for job {}, '{}'", job.job_id(), job.command()) } else { format!("exit handler for job with pid {pid}") } } else { "exit handler for any job".to_string() } } EventDescription::CallerExit { .. } => { "exit handler for command substitution caller".to_string() } EventDescription::Generic { param } => format!("handler for generic event '{param}'"), EventDescription::Any => unreachable!(), }; WString::from_str(&s) } /// Add an event handler. pub fn add_handler(eh: EventHandler) { if let EventDescription::Signal { signal } = eh.desc { signal_handle(signal); inc_signal_observed(signal); } EVENT_HANDLERS .lock() .expect("event handler list should not be poisoned") .push(Arc::new(eh)); } /// Remove handlers where `pred` returns true. Simultaneously update our `signal_observed` array. fn remove_handlers_if(pred: impl Fn(&EventHandler) -> bool) -> usize { let mut handlers = EVENT_HANDLERS .lock() .expect("event handler list should not be poisoned"); let mut removed = 0; for i in (0..handlers.len()).rev() { let handler = &handlers[i]; if pred(handler) { handler.removed.store(true, Ordering::Relaxed); if let EventDescription::Signal { signal } = handler.desc { dec_signal_observed(signal); } handlers.remove(i); removed += 1; } } removed } /// Remove all events for the given function name. pub fn remove_function_handlers(name: &wstr) -> usize { remove_handlers_if(|h| h.function_name == name) } /// Return all event handlers for the given function. pub fn get_function_handlers(name: &wstr) -> EventHandlerList { EVENT_HANDLERS .lock() .expect("event handler list should not be poisoned") .iter() .filter(|h| h.function_name == name) .cloned() .collect() } /// Perform the specified event. Since almost all event firings will not be matched by even a single /// event handler, we make sure to optimize the 'no matches' path. This means that nothing is /// allocated/initialized unless needed. fn fire_internal(parser: &Parser, event: &Event) { assert!( parser.libdata().is_event >= 0, "is_event should not be negative" ); // Suppress fish_trace during events. let is_event = parser.libdata().is_event; let _inc_event = scoped_push_replacer( |new_value| std::mem::replace(&mut parser.libdata_mut().is_event, new_value), is_event + 1, ); let _suppress_trace = scoped_push_replacer( |new_value| std::mem::replace(&mut parser.libdata_mut().suppress_fish_trace, new_value), true, ); // Capture the event handlers that match this event. let fire: Vec<_> = EVENT_HANDLERS .lock() .expect("event handler list should not be poisoned") .iter() .filter(|h| h.matches(event)) .cloned() .collect(); // Iterate over our list of matching events. Fire the ones that are still present. let mut fired_one_shot = false; for handler in fire { // A previous handler may have erased this one. if handler.removed.load(Ordering::Relaxed) { continue; }; // Construct a buffer to evaluate, starting with the function name and then all the // arguments. let mut buffer = handler.function_name.clone(); for arg in &event.arguments { buffer.push(' '); buffer.push_utfstr(&escape(arg)); } // Event handlers are not part of the main flow of code, so they are marked as // non-interactive. let saved_is_interactive = std::mem::replace(&mut parser.libdata_mut().is_interactive, false); let saved_statuses = parser.get_last_statuses(); let _cleanup = ScopeGuard::new((), |()| { parser.set_last_statuses(saved_statuses); parser.libdata_mut().is_interactive = saved_is_interactive; }); FLOG!( event, "Firing event '", event.desc.str_param1().unwrap_or(L!("")), "' to handler '", handler.function_name, "'" ); let b = parser.push_block(Block::event_block(event.clone())); parser.eval(&buffer, &IoChain::new()); parser.pop_block(b); handler.fired.store(true, Ordering::Relaxed); fired_one_shot |= handler.is_one_shot(); } if fired_one_shot { remove_handlers_if(|h| h.fired.load(Ordering::Relaxed) && h.is_one_shot()); } } /// Fire all delayed events attached to the given parser. pub fn fire_delayed(parser: &Parser) { { let ld = &parser.libdata(); // Do not invoke new event handlers from within event handlers. if ld.is_event != 0 { return; }; } // Do not invoke new event handlers if we are unwinding (#6649). if signal_check_cancel() != 0 { return; }; // We unfortunately can't keep this locked until we're done with it because the SIGWINCH handler // code might call back into here and we would delay processing of the events, leading to a test // failure under CI. let mut to_send = std::mem::take(&mut *BLOCKED_EVENTS.lock().expect("Mutex poisoned!")); // Append all signal events to to_send. // 'signals' contains a bit set for each signal that has been received. let mut signals: u64 = PENDING_SIGNALS.acquire_pending(); while signals != 0 { let sig = signals.trailing_zeros() as i32; signals &= !(1_u64 << sig); let sig = Signal::new(sig); // HACK: The only variables we change in response to a *signal* are $COLUMNS and $LINES. // Do that now. if sig == libc::SIGWINCH { termsize::SHARED_CONTAINER.updating(parser); } let event = Event { desc: EventDescription::Signal { signal: sig }, arguments: vec![sig.name().into()], }; to_send.push(event); } // Fire or re-block all events. Don't obtain BLOCKED_EVENTS until we know that we have at least // one event that is blocked. let mut blocked_events = None; for event in to_send { if event.is_blocked(parser) { if blocked_events.is_none() { blocked_events = Some(BLOCKED_EVENTS.lock().expect("Mutex poisoned")); } blocked_events.as_mut().unwrap().push(event); } else { // fire_internal() does not access BLOCKED_EVENTS so this call can't deadlock. fire_internal(parser, &event); } } } /// Enqueue a signal event. Invoked from a signal handler. pub fn enqueue_signal(signal: libc::c_int) { // Beware, we are in a signal handler PENDING_SIGNALS.mark(signal); } /// Fire the specified event event, executing it on `parser`. pub fn fire(parser: &Parser, event: Event) { // Fire events triggered by signals. fire_delayed(parser); if event.is_blocked(parser) { BLOCKED_EVENTS.lock().expect("Mutex poisoned!").push(event); } else { fire_internal(parser, &event); } } pub const EVENT_FILTER_NAMES: [&wstr; 7] = [ L!("signal"), L!("variable"), L!("exit"), L!("process-exit"), L!("job-exit"), L!("caller-exit"), L!("generic"), ]; /// Print all events. If type_filter is not empty, only output events with that type. pub fn print(streams: &mut IoStreams, type_filter: &wstr) { let mut tmp = EVENT_HANDLERS .lock() .expect("event handler list should not be poisoned") .clone(); tmp.sort_by(|e1, e2| e1.desc.cmp(&e2.desc)); let mut last_type = std::mem::discriminant(&EventDescription::Any); for evt in tmp { // If we have a filter, skip events that don't match. if !evt.desc.matches_filter(type_filter) { continue; } // Print a "Event $TYPE" header for each event type. // This compares only the event *type*, not the entire event, // so we don't compare variable events for different variables as different. // // This assumes EventDescription::Any is not a valid value for an event to have // - it's marked "unreachable!()" below! if last_type != std::mem::discriminant(&evt.desc) { if last_type != std::mem::discriminant(&EventDescription::Any) { streams.out.append(L!("\n")); } last_type = std::mem::discriminant(&evt.desc); streams.out.append(sprintf!("Event %ls\n", evt.desc.name())); } match &evt.desc { EventDescription::Signal { signal } => { let name: WString = signal.name().into(); streams .out .append(sprintf!("%ls %ls\n", name, evt.function_name)); } EventDescription::ProcessExit { .. } | EventDescription::JobExit { .. } => {} EventDescription::CallerExit { .. } => { streams .out .append(sprintf!("caller-exit %ls\n", evt.function_name)); } EventDescription::Variable { name: param } | EventDescription::Generic { param } => { streams .out .append(sprintf!("%ls %ls\n", param, evt.function_name)); } EventDescription::Any => unreachable!(), } } } /// Fire a generic event with the specified name. pub fn fire_generic(parser: &Parser, name: WString, arguments: Vec) { fire( parser, Event { desc: EventDescription::Generic { param: name }, arguments, }, ) }