// A small utility to print information related to pressing keys. This is similar to using tools // like `xxd` and `od -tx1z` but provides more information such as the time delay between each // character. It also allows pressing and interpreting keys that are normally special such as // [ctrl-C] (interrupt the program) or [ctrl-D] (EOF to signal the program should exit). // And unlike those other tools this one disables ICRNL mode so it can distinguish between // carriage-return (\cM) and newline (\cJ). // // Type "exit" or "quit" to terminate the program. #include "config.h" // IWYU pragma: keep #include #include #include #include #include #include #include #include #include #include "common.h" #include "env.h" #include "fallback.h" // IWYU pragma: keep #include "input.h" #include "input_common.h" #include "proc.h" #include "reader.h" #include "signal.h" #include "wutil.h" // IWYU pragma: keep struct config_paths_t determine_config_directory_paths(const char *argv0); static const char *ctrl_symbolic_names[] = {NULL, NULL, NULL, NULL, NULL, NULL, NULL, "\\a", "\\b", "\\t", "\\n", "\\v", "\\f", "\\r", NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, NULL, "\\e", NULL, NULL, NULL, NULL}; static bool keep_running = true; /// Return true if the recent sequence of characters indicates the user wants to exit the program. static bool should_exit(wchar_t wc) { unsigned char c = wc < 0x80 ? wc : 0; static unsigned char recent_chars[4] = {0}; recent_chars[0] = recent_chars[1]; recent_chars[1] = recent_chars[2]; recent_chars[2] = recent_chars[3]; recent_chars[3] = c; return (memcmp(recent_chars, "exit", 4) == 0 || memcmp(recent_chars, "quit", 4) == 0 || memcmp(recent_chars + 2, "\x3\x3", 2) == 0 || // ctrl-C, ctrl-C memcmp(recent_chars + 2, "\x4\x4", 2) == 0); // ctrl-D, ctrl-D } /// Return the name if the recent sequence of characters matches a known terminfo sequence. static char *const sequence_name(wchar_t wc) { unsigned char c = wc < 0x80 ? wc : 0; static char recent_chars[8] = {0}; recent_chars[0] = recent_chars[1]; recent_chars[1] = recent_chars[2]; recent_chars[2] = recent_chars[3]; recent_chars[3] = recent_chars[4]; recent_chars[4] = recent_chars[5]; recent_chars[5] = recent_chars[6]; recent_chars[6] = recent_chars[7]; recent_chars[7] = c; for (int idx = 7; idx >= 0; idx--) { wcstring out_name; wcstring seq = str2wcstring(recent_chars + idx, 8 - idx); bool found = input_terminfo_get_name(seq, &out_name); if (found) { return strdup(wcs2string(out_name).c_str()); } } return NULL; } /// Return true if the character must be escaped in the sequence of chars to be bound in `bind` /// command. static bool must_escape(wchar_t wc) { switch (wc) { case '[': case ']': case '(': case ')': case '<': case '>': case '{': case '}': case '*': case '\\': case '?': case '$': case '#': case ';': case '&': case '|': case '\'': case '"': return true; default: return false; } } static char *char_to_symbol(wchar_t wc, bool bind_friendly) { static char buf[128]; if (wc < ' ') { // ASCII control character. if (ctrl_symbolic_names[wc]) { if (bind_friendly) { snprintf(buf, sizeof(buf), "%s", ctrl_symbolic_names[wc]); } else { snprintf(buf, sizeof(buf), "\\c%c (or %s)", wc + 64, ctrl_symbolic_names[wc]); } } else { snprintf(buf, sizeof(buf), "\\c%c", wc + 64); } } else if (wc == ' ') { // The "space" character. snprintf(buf, sizeof(buf), "\\x%X (aka \"space\")", wc); } else if (wc == 0x7F) { // The "del" character. snprintf(buf, sizeof(buf), "\\x%X (aka \"del\")", wc); } else if (wc < 0x80) { // ASCII characters that are not control characters. if (bind_friendly && must_escape(wc)) { snprintf(buf, sizeof(buf), "\\%c", wc); } else { snprintf(buf, sizeof(buf), "%c", wc); } } else if (wc <= 0xFFFF) { snprintf(buf, sizeof(buf), "\\u%04X", wc); } else { snprintf(buf, sizeof(buf), "\\U%06X", wc); } return buf; } static void add_char_to_bind_command(wchar_t wc, std::vector &bind_chars) { bind_chars.push_back(wc); } static void output_bind_command(std::vector &bind_chars) { if (bind_chars.size()) { fputs("bind ", stdout); for (int i = 0; i < bind_chars.size(); i++) { fputs(char_to_symbol(bind_chars[i], true), stdout); } fputs(" 'do something'\n", stdout); bind_chars.clear(); } } static void output_info_about_char(wchar_t wc) { fprintf(stderr, "hex: %4X char: %s\n", wc, char_to_symbol(wc, false)); } static bool output_matching_key_name(wchar_t wc) { char *name = sequence_name(wc); if (name) { printf("bind -k %s 'do something'\n", name); free(name); return true; } return false; } static double output_elapsed_time(double prev_tstamp, bool first_char_seen) { // How much time has passed since the previous char was received in microseconds. double now = timef(); long long int delta_tstamp_us = 1000000 * (now - prev_tstamp); if (delta_tstamp_us >= 200000 && first_char_seen) putchar('\n'); if (delta_tstamp_us >= 1000000) { fprintf(stderr, " "); } else { fprintf(stderr, "(%3lld.%03lld ms) ", delta_tstamp_us / 1000, delta_tstamp_us % 1000); } return now; } /// Process the characters we receive as the user presses keys. static void process_input(bool continuous_mode) { bool first_char_seen = false; double prev_tstamp = 0.0; std::vector bind_chars; fprintf(stderr, "Press a key\n\n"); while (keep_running) { wchar_t wc = input_common_readch(true); if (wc == WEOF) { output_bind_command(bind_chars); if (first_char_seen && !continuous_mode) { return; } else { continue; } } prev_tstamp = output_elapsed_time(prev_tstamp, first_char_seen); add_char_to_bind_command(wc, bind_chars); output_info_about_char(wc); if (output_matching_key_name(wc)) { output_bind_command(bind_chars); } if (should_exit(wc)) { fprintf(stderr, "\nExiting at your request.\n"); break; } first_char_seen = true; } } /// Make sure we cleanup before exiting if we receive a signal that should cause us to exit. /// Otherwise just report receipt of the signal. static struct sigaction old_sigactions[32]; static void signal_handler(int signo, siginfo_t *siginfo, void *siginfo_arg) { debug(2, L"signal #%d (%ls) received", signo, sig2wcs(signo)); // SIGINT isn't included in the following conditional because it is handled specially by fish. // Specifically, it causes \cC to be reinserted into the tty input stream. if (signo == SIGHUP || signo == SIGTERM || signo == SIGABRT || signo == SIGSEGV) { keep_running = false; } if (old_sigactions[signo].sa_handler != SIG_IGN && old_sigactions[signo].sa_handler != SIG_DFL) { int needs_siginfo = old_sigactions[signo].sa_flags & SA_SIGINFO; if (needs_siginfo) { old_sigactions[signo].sa_sigaction(signo, siginfo, siginfo_arg); } else { old_sigactions[signo].sa_handler(signo); } } } /// Install a handler for every signal. This allows us to restore the tty modes so the terminal is /// still usable when we die. If the signal already has a handler arrange to invoke it from within /// our handler. static void install_our_signal_handlers() { struct sigaction new_sa, old_sa; sigemptyset(&new_sa.sa_mask); new_sa.sa_flags = SA_SIGINFO; new_sa.sa_sigaction = signal_handler; for (int signo = 1; signo < 32; signo++) { if (sigaction(signo, &new_sa, &old_sa) != -1) { memcpy(&old_sigactions[signo], &old_sa, sizeof(old_sa)); if (old_sa.sa_handler == SIG_IGN) { debug(3, "signal #%d (%ls) was being ignored", signo, sig2wcs(signo)); } if (old_sa.sa_flags && ~SA_SIGINFO != 0) { debug(3, L"signal #%d (%ls) handler had flags 0x%X", signo, sig2wcs(signo), old_sa.sa_flags); } } } } /// Setup our environment (e.g., tty modes), process key strokes, then reset the environment. static void setup_and_process_keys(bool continuous_mode) { is_interactive_session = 1; // by definition this program is interactive set_main_thread(); setup_fork_guards(); env_init(); reader_init(); input_init(); proc_push_interactive(1); signal_set_handlers(); install_our_signal_handlers(); if (continuous_mode) { fprintf(stderr, "\n"); fprintf(stderr, "To terminate this program type \"exit\" or \"quit\" in this window,\n"); fprintf(stderr, "or press [ctrl-C] or [ctrl-D] twice in a row.\n"); fprintf(stderr, "\n"); } process_input(continuous_mode); restore_term_mode(); restore_term_foreground_process_group(); input_destroy(); reader_destroy(); } int main(int argc, char **argv) { program_name = L"fish_key_reader"; bool continuous_mode = false; const char *short_opts = "+cd:D:"; const struct option long_opts[] = {{"continuous", no_argument, NULL, 'c'}, {"debug-level", required_argument, NULL, 'd'}, {"debug-stack-frames", required_argument, NULL, 'D'}, {NULL, 0, NULL, 0}}; int opt; while ((opt = getopt_long(argc, argv, short_opts, long_opts, NULL)) != -1) { switch (opt) { case 0: { fprintf(stderr, "getopt_long() unexpectedly returned zero\n"); exit(1); } case 'c': { continuous_mode = true; break; } case 'd': { char *end; long tmp; errno = 0; tmp = strtol(optarg, &end, 10); if (tmp >= 0 && tmp <= 10 && !*end && !errno) { debug_level = (int)tmp; } else { fwprintf(stderr, _(L"Invalid value '%s' for debug-level flag"), optarg); exit(1); } break; } case 'D': { char *end; long tmp; errno = 0; tmp = strtol(optarg, &end, 10); if (tmp > 0 && tmp <= 128 && !*end && !errno) { debug_stack_frames = (int)tmp; } else { fwprintf(stderr, _(L"Invalid value '%s' for debug-stack-frames flag"), optarg); exit(1); } break; } default: { // We assume getopt_long() has already emitted a diagnostic msg. exit(1); } } } argc -= optind; if (argc != 0) { fprintf(stderr, "Expected no arguments, got %d\n", argc); return 1; } if (!isatty(STDIN_FILENO)) { fprintf(stderr, "Stdin must be attached to a tty.\n"); return 1; } setup_and_process_keys(continuous_mode); return 0; }