/** \file parse_util.c Various mostly unrelated utility functions related to parsing, loading and evaluating fish code. This library can be seen as a 'toolbox' for functions that are used in many places in fish and that are somehow related to parsing the code. */ #include "config.h" #include #include #include #include #include #include #include #include #include #include #include #include "fallback.h" #include "util.h" #include "wutil.h" #include "common.h" #include "tokenizer.h" #include "parse_util.h" #include "expand.h" #include "intern.h" #include "exec.h" #include "env.h" #include "signal.h" #include "wildcard.h" #include "parse_tree.h" #include "parser.h" /** Error message for improper use of the exec builtin */ #define EXEC_ERR_MSG _(L"This command can not be used in a pipeline") int parse_util_lineno(const wchar_t *str, size_t offset) { if (! str) return 0; int res = 1; for (size_t i=0; str[i] && i= off2-off-1) { line_offset2 = off2-off-1; } return off + line_offset2; } int parse_util_locate_cmdsubst(const wchar_t *in, wchar_t **begin, wchar_t **end, bool allow_incomplete) { wchar_t *pos; wchar_t prev=0; int syntax_error=0; int paran_count=0; wchar_t *paran_begin=0, *paran_end=0; CHECK(in, 0); for (pos = const_cast(in); *pos; pos++) { if (prev != '\\') { if (wcschr(L"\'\"", *pos)) { wchar_t *q_end = quote_end(pos); if (q_end && *q_end) { pos=q_end; } else { break; } } else { if (*pos == '(') { if ((paran_count == 0)&&(paran_begin==0)) { paran_begin = pos; } paran_count++; } else if (*pos == ')') { paran_count--; if ((paran_count == 0) && (paran_end == 0)) { paran_end = pos; break; } if (paran_count < 0) { syntax_error = 1; break; } } } } prev = *pos; } syntax_error |= (paran_count < 0); syntax_error |= ((paran_count>0)&&(!allow_incomplete)); if (syntax_error) { return -1; } if (paran_begin == 0) { return 0; } if (begin) { *begin = paran_begin; } if (end) { *end = paran_count?(wchar_t *)in+wcslen(in):paran_end; } return 1; } int parse_util_locate_cmdsubst_range(const wcstring &str, size_t *inout_cursor_offset, wcstring *out_contents, size_t *out_start, size_t *out_end, bool accept_incomplete) { /* Clear the return values */ out_contents->clear(); *out_start = 0; *out_end = str.size(); /* Nothing to do if the offset is at or past the end of the string. */ if (*inout_cursor_offset >= str.size()) return 0; /* Defer to the wonky version */ const wchar_t * const buff = str.c_str(); const wchar_t * const valid_range_start = buff + *inout_cursor_offset, *valid_range_end = buff + str.size(); wchar_t *cmdsub_begin = NULL, *cmdsub_end = NULL; int ret = parse_util_locate_cmdsubst(valid_range_start, &cmdsub_begin, &cmdsub_end, accept_incomplete); if (ret > 0) { /* The command substitutions must not be NULL and must be in the valid pointer range, and the end must be bigger than the beginning */ assert(cmdsub_begin != NULL && cmdsub_begin >= valid_range_start && cmdsub_begin <= valid_range_end); assert(cmdsub_end != NULL && cmdsub_end > cmdsub_begin && cmdsub_end >= valid_range_start && cmdsub_end <= valid_range_end); /* Assign the substring to the out_contents */ const wchar_t *interior_begin = cmdsub_begin + 1; out_contents->assign(interior_begin, cmdsub_end - interior_begin); /* Return the start and end */ *out_start = cmdsub_begin - buff; *out_end = cmdsub_end - buff; /* Update the inout_cursor_offset. Note this may cause it to exceed str.size(), though overflow is not likely */ *inout_cursor_offset = 1 + *out_end; } return ret; } void parse_util_cmdsubst_extent(const wchar_t *buff, size_t cursor_pos, const wchar_t **a, const wchar_t **b) { const wchar_t * const cursor = buff + cursor_pos; CHECK(buff,); const size_t bufflen = wcslen(buff); assert(cursor_pos <= bufflen); /* ap and bp are the beginning and end of the tightest command substitition found so far */ const wchar_t *ap = buff, *bp = buff + bufflen; const wchar_t *pos = buff; for (;;) { wchar_t *begin = NULL, *end = NULL; if (parse_util_locate_cmdsubst(pos, &begin, &end, true) <= 0) { /* No subshell found, all done */ break; } /* Interpret NULL to mean the end */ if (end == NULL) { end = const_cast(buff) + bufflen; } if (begin < cursor && end >= cursor) { /* This command substitution surrounds the cursor, so it's a tighter fit */ begin++; ap = begin; bp = end; /* pos is where to begin looking for the next one. But if we reached the end there's no next one. */ if (begin >= end) break; pos = begin + 1; } else if (begin >= cursor) { /* This command substitution starts at or after the cursor. Since it was the first command substitution in the string, we're done. */ break; } else { /* This command substitution ends before the cursor. Skip it. */ assert(end < cursor); pos = end + 1; assert(pos <= buff + bufflen); } } if (a != NULL) *a = ap; if (b != NULL) *b = bp; } /** Get the beginning and end of the job or process definition under the cursor */ static void job_or_process_extent(const wchar_t *buff, size_t cursor_pos, const wchar_t **a, const wchar_t **b, int process) { const wchar_t *begin, *end; long pos; wchar_t *buffcpy; int finished=0; CHECK(buff,); if (a) { *a=0; } if (b) { *b = 0; } parse_util_cmdsubst_extent(buff, cursor_pos, &begin, &end); if (!end || !begin) { return; } pos = cursor_pos - (begin - buff); if (a) { *a = begin; } if (b) { *b = end; } buffcpy = wcsndup(begin, end-begin); if (!buffcpy) { DIE_MEM(); } tokenizer_t tok(buffcpy, TOK_ACCEPT_UNFINISHED); for (; tok_has_next(&tok) && !finished; tok_next(&tok)) { int tok_begin = tok_get_pos(&tok); switch (tok_last_type(&tok)) { case TOK_PIPE: { if (!process) { break; } } case TOK_END: case TOK_BACKGROUND: { if (tok_begin >= pos) { finished=1; if (b) { *b = (wchar_t *)buff + tok_begin; } } else { if (a) { *a = (wchar_t *)buff + tok_begin+1; } } break; } default: { break; } } } free(buffcpy); } void parse_util_process_extent(const wchar_t *buff, size_t pos, const wchar_t **a, const wchar_t **b) { job_or_process_extent(buff, pos, a, b, 1); } void parse_util_job_extent(const wchar_t *buff, size_t pos, const wchar_t **a, const wchar_t **b) { job_or_process_extent(buff,pos,a, b, 0); } void parse_util_token_extent(const wchar_t *buff, size_t cursor_pos, const wchar_t **tok_begin, const wchar_t **tok_end, const wchar_t **prev_begin, const wchar_t **prev_end) { const wchar_t *a = NULL, *b = NULL, *pa = NULL, *pb = NULL; CHECK(buff,); assert(cursor_pos >= 0); const wchar_t *cmdsubst_begin, *cmdsubst_end; parse_util_cmdsubst_extent(buff, cursor_pos, &cmdsubst_begin, &cmdsubst_end); if (!cmdsubst_end || !cmdsubst_begin) { return; } /* pos is equivalent to cursor_pos within the range of the command substitution {begin, end} */ long offset_within_cmdsubst = cursor_pos - (cmdsubst_begin - buff); a = cmdsubst_begin + offset_within_cmdsubst; b = a; pa = cmdsubst_begin + offset_within_cmdsubst; pb = pa; assert(cmdsubst_begin >= buff); assert(cmdsubst_begin <= (buff+wcslen(buff))); assert(cmdsubst_end >= cmdsubst_begin); assert(cmdsubst_end <= (buff+wcslen(buff))); const wcstring buffcpy = wcstring(cmdsubst_begin, cmdsubst_end-cmdsubst_begin); tokenizer_t tok(buffcpy.c_str(), TOK_ACCEPT_UNFINISHED | TOK_SQUASH_ERRORS); for (; tok_has_next(&tok); tok_next(&tok)) { size_t tok_begin = tok_get_pos(&tok); size_t tok_end = tok_begin; /* Calculate end of token */ if (tok_last_type(&tok) == TOK_STRING) { tok_end += wcslen(tok_last(&tok)); } /* Cursor was before beginning of this token, means that the cursor is between two tokens, so we set it to a zero element string and break */ if (tok_begin > offset_within_cmdsubst) { a = b = cmdsubst_begin + offset_within_cmdsubst; break; } /* If cursor is inside the token, this is the token we are looking for. If so, set a and b and break */ if ((tok_last_type(&tok) == TOK_STRING) && (tok_end >= offset_within_cmdsubst)) { a = cmdsubst_begin + tok_get_pos(&tok); b = a + wcslen(tok_last(&tok)); break; } /* Remember previous string token */ if (tok_last_type(&tok) == TOK_STRING) { pa = cmdsubst_begin + tok_get_pos(&tok); pb = pa + wcslen(tok_last(&tok)); } } if (tok_begin) { *tok_begin = a; } if (tok_end) { *tok_end = b; } if (prev_begin) { *prev_begin = pa; } if (prev_end) { *prev_end = pb; } assert(pa >= buff); assert(pa <= (buff+wcslen(buff))); assert(pb >= pa); assert(pb <= (buff+wcslen(buff))); } void parse_util_set_argv(const wchar_t * const *argv, const wcstring_list_t &named_arguments) { if (*argv) { const wchar_t * const *arg; wcstring sb; for (arg=argv; *arg; arg++) { if (arg != argv) { sb.append(ARRAY_SEP_STR); } sb.append(*arg); } env_set(L"argv", sb.c_str(), ENV_LOCAL); } else { env_set(L"argv", 0, ENV_LOCAL); } if (! named_arguments.empty()) { const wchar_t * const *arg; size_t i; for (i=0, arg=argv; i < named_arguments.size(); i++) { env_set(named_arguments.at(i).c_str(), *arg, ENV_LOCAL); if (*arg) arg++; } } } wchar_t *parse_util_unescape_wildcards(const wchar_t *str) { wchar_t *in, *out; wchar_t *unescaped; CHECK(str, 0); unescaped = wcsdup(str); if (!unescaped) { DIE_MEM(); } for (in=out=unescaped; *in; in++) { switch (*in) { case L'\\': { switch (*(in + 1)) { case L'*': case L'?': { in++; *(out++)=*in; break; } case L'\\': { in++; *(out++)=L'\\'; *(out++)=L'\\'; break; } default: { *(out++)=*in; break; } } break; } case L'*': { *(out++)=ANY_STRING; break; } case L'?': { *(out++)=ANY_CHAR; break; } default: { *(out++)=*in; break; } } } *out = *in; return unescaped; } /** Find the outermost quoting style of current token. Returns 0 if token is not quoted. */ static wchar_t get_quote(const wchar_t *cmd, size_t len) { size_t i=0; wchar_t res=0; while (1) { if (!cmd[i]) break; if (cmd[i] == L'\\') { i++; if (!cmd[i]) break; i++; } else { if (cmd[i] == L'\'' || cmd[i] == L'\"') { const wchar_t *end = quote_end(&cmd[i]); //fwprintf( stderr, L"Jump %d\n", end-cmd ); if ((end == 0) || (!*end) || (end > cmd + len)) { res = cmd[i]; break; } i = end-cmd+1; } else i++; } } return res; } void parse_util_get_parameter_info(const wcstring &cmd, const size_t pos, wchar_t *quote, size_t *offset, int *type) { size_t prev_pos=0; wchar_t last_quote = '\0'; int unfinished; tokenizer_t tok(cmd.c_str(), TOK_ACCEPT_UNFINISHED | TOK_SQUASH_ERRORS); for (; tok_has_next(&tok); tok_next(&tok)) { if (tok_get_pos(&tok) > pos) break; if (tok_last_type(&tok) == TOK_STRING) last_quote = get_quote(tok_last(&tok), pos - tok_get_pos(&tok)); if (type != NULL) *type = tok_last_type(&tok); prev_pos = tok_get_pos(&tok); } wchar_t *cmd_tmp = wcsdup(cmd.c_str()); cmd_tmp[pos]=0; size_t cmdlen = wcslen(cmd_tmp); unfinished = (cmdlen==0); if (!unfinished) { unfinished = (quote != 0); if (!unfinished) { if (wcschr(L" \t\n\r", cmd_tmp[cmdlen-1]) != 0) { if ((cmdlen == 1) || (cmd_tmp[cmdlen-2] != L'\\')) { unfinished=1; } } } } if (quote) *quote = last_quote; if (offset != 0) { if (!unfinished) { while ((cmd_tmp[prev_pos] != 0) && (wcschr(L";|",cmd_tmp[prev_pos])!= 0)) prev_pos++; *offset = prev_pos; } else { *offset = pos; } } free(cmd_tmp); } wcstring parse_util_escape_string_with_quote(const wcstring &cmd, wchar_t quote) { wcstring result; if (quote == L'\0') { result = escape_string(cmd, ESCAPE_ALL | ESCAPE_NO_QUOTED | ESCAPE_NO_TILDE); } else { bool unescapable = false; for (size_t i = 0; i < cmd.size(); i++) { wchar_t c = cmd.at(i); switch (c) { case L'\n': case L'\t': case L'\b': case L'\r': unescapable = true; break; default: if (c == quote) result.push_back(L'\\'); result.push_back(c); break; } } if (unescapable) { result = escape_string(cmd, ESCAPE_ALL | ESCAPE_NO_QUOTED); result.insert(0, "e, 1); } } return result; } /* We are given a parse tree, the index of a node within the tree, its indent, and a vector of indents the same size as the original source string. Set the indent correspdonding to the node's source range, if appropriate. trailing_indent is the indent for nodes with unrealized source, i.e. if I type 'if false ' then we have an if node with an empty job list (without source) but we want the last line to be indented anyways. switch statements also indent. max_visited_node_idx is the largest index we visited. */ static void compute_indents_recursive(const parse_node_tree_t &tree, node_offset_t node_idx, int node_indent, parse_token_type_t parent_type, std::vector *indents, int *trailing_indent, node_offset_t *max_visited_node_idx) { /* Guard against incomplete trees */ if (node_idx > tree.size()) return; /* Update max_visited_node_idx */ if (node_idx > *max_visited_node_idx) *max_visited_node_idx = node_idx; /* We could implement this by utilizing the fish grammar. But there's an easy trick instead: almost everything that wraps a job list should be indented by 1. So just find all of the job lists. One exception is switch; the other exception is job_list itself: a job_list is a job and a job_list, and we want that child list to be indented the same as the parent. So just find all job_lists whose parent is not a job_list, and increment their indent by 1. */ const parse_node_t &node = tree.at(node_idx); const parse_token_type_t node_type = node.type; /* Increment the indent if we are either a root job_list, or root case_item_list */ const bool is_root_job_list = (node_type == symbol_job_list && parent_type != symbol_job_list); const bool is_root_case_item_list = (node_type == symbol_case_item_list && parent_type != symbol_case_item_list); if (is_root_job_list || is_root_case_item_list) { node_indent += 1; } /* If we have source, store the trailing indent unconditionally. If we do not have source, store the trailing indent only if ours is bigger; this prevents the trailing "run" of terminal job lists from affecting the trailing indent. For example, code like this: if foo will be parsed as this: job_list job if_statement job [if] job_list [empty] job_list [empty] There's two "terminal" job lists, and we want the innermost one. Note we are relying on the fact that nodes are in the same order as the source, i.e. an in-order traversal of the node tree also traverses the source from beginning to end. */ if (node.has_source() || node_indent > *trailing_indent) { *trailing_indent = node_indent; } /* Store the indent into the indent array */ if (node.has_source()) { assert(node.source_start < indents->size()); indents->at(node.source_start) = node_indent; } /* Recursive to all our children */ for (node_offset_t idx = 0; idx < node.child_count; idx++) { /* Note we pass our type to our child, which becomes its parent node type */ compute_indents_recursive(tree, node.child_start + idx, node_indent, node_type, indents, trailing_indent, max_visited_node_idx); } } std::vector parse_util_compute_indents(const wcstring &src) { /* Make a vector the same size as the input string, which contains the indents. Initialize them to -1. */ const size_t src_size = src.size(); std::vector indents(src_size, -1); /* Parse the string. We pass continue_after_error to produce a forest; the trailing indent of the last node we visited becomes the input indent of the next. I.e. in the case of 'switch foo ; cas', we get an invalid parse tree (since 'cas' is not valid) but we indent it as if it were a case item list */ parse_node_tree_t tree; parse_t::parse(src, parse_flag_continue_after_error | parse_flag_accept_incomplete_tokens, &tree, NULL /* errors */); /* Start indenting at the first node. If we have a parse error, we'll have to start indenting from the top again */ node_offset_t start_node_idx = 0; int last_trailing_indent = 0; while (start_node_idx < tree.size()) { /* The indent that we'll get for the last line */ int trailing_indent = 0; /* Biggest offset we visited */ node_offset_t max_visited_node_idx = 0; /* Invoke the recursive version. As a hack, pass job_list for the 'parent' token type, which will prevent the really-root job list from indenting */ compute_indents_recursive(tree, start_node_idx, last_trailing_indent, symbol_job_list, &indents, &trailing_indent, &max_visited_node_idx); /* We may have more to indent. The trailing indent becomes our current indent. Start at the node after the last we visited. */ last_trailing_indent = trailing_indent; start_node_idx = max_visited_node_idx + 1; } int last_indent = 0; for (size_t i=0; ipush_back(error); return true; } /** Returns 1 if the specified command is a builtin that may not be used in a pipeline */ static int parser_is_pipe_forbidden(const wcstring &word) { return contains(word, L"exec", L"case", L"break", L"return", L"continue"); } // Check if the first argument under the given node is --help static bool first_argument_is_help(const parse_node_tree_t &node_tree, const parse_node_t &node, const wcstring &src) { bool is_help = false; const parse_node_tree_t::parse_node_list_t arg_nodes = node_tree.find_nodes(node, symbol_argument, 1); if (! arg_nodes.empty()) { // Check the first argument only const parse_node_t &arg = *arg_nodes.at(0); const wcstring first_arg_src = arg.get_source(src); is_help = parser_t::is_help(first_arg_src.c_str(), 3); } return is_help; } parser_test_error_bits_t parse_util_detect_errors(const wcstring &buff_src, parse_error_list_t *out_errors) { parse_node_tree_t node_tree; parse_error_list_t parse_errors; // Whether we encountered a parse error bool errored = false; // Whether we encountered an unclosed block // We detect this via an 'end_command' block without source bool has_unclosed_block = false; // Parse the input string into a parse tree // Some errors are detected here bool parsed = parse_t::parse(buff_src, 0, &node_tree, &parse_errors); if (! parsed) { errored = true; } // Expand all commands // Verify 'or' and 'and' not used inside pipelines // Verify pipes via parser_is_pipe_forbidden // Verify return only within a function if (! errored) { const size_t node_tree_size = node_tree.size(); for (size_t i=0; i < node_tree_size; i++) { const parse_node_t &node = node_tree.at(i); if (node.type == symbol_end_command && ! node.has_source()) { // an 'end' without source is an unclosed block has_unclosed_block = true; } else if (node.type == symbol_plain_statement) { wcstring command; if (node_tree.command_for_plain_statement(node, buff_src, &command)) { // Check that we can expand the command if (! expand_one(command, EXPAND_SKIP_CMDSUBST | EXPAND_SKIP_VARIABLES | EXPAND_SKIP_JOBS)) { errored = append_syntax_error(&parse_errors, node, ILLEGAL_CMD_ERR_MSG, command.c_str()); } // Check that pipes are sound bool is_boolean_command = contains(command, L"or", L"and"); bool is_pipe_forbidden = parser_is_pipe_forbidden(command); if (! errored && (is_boolean_command || is_pipe_forbidden)) { // 'or' and 'and' can be first in the pipeline. forbidden commands cannot be in a pipeline at all if (node_tree.plain_statement_is_in_pipeline(node, is_pipe_forbidden)) { errored = append_syntax_error(&parse_errors, node, EXEC_ERR_MSG); } } // Check that we don't return from outside a function // But we allow it if it's 'return --help' if (! errored && command == L"return") { const parse_node_t *ancestor = &node; bool found_function = false; while (ancestor != NULL) { const parse_node_t *possible_function_header = node_tree.header_node_for_block_statement(*ancestor); if (possible_function_header != NULL && possible_function_header->type == symbol_function_header) { found_function = true; break; } ancestor = node_tree.get_parent(*ancestor); } if (! found_function && ! first_argument_is_help(node_tree, node, buff_src)) { errored = append_syntax_error(&parse_errors, node, INVALID_RETURN_ERR_MSG); } } // Check that we don't return from outside a function if (! errored && (command == L"break" || command == L"continue")) { // Walk up until we hit a 'for' or 'while' loop. If we hit a function first, stop the search; we can't break an outer loop from inside a function. // This is a little funny because we can't tell if it's a 'for' or 'while' loop from the ancestor alone; we need the header. That is, we hit a block_statement, and have to check its header. bool found_loop = false, end_search = false; const parse_node_t *ancestor = &node; while (ancestor != NULL && ! end_search) { const parse_node_t *loop_or_function_header = node_tree.header_node_for_block_statement(*ancestor); if (loop_or_function_header != NULL) { switch (loop_or_function_header->type) { case symbol_while_header: case symbol_for_header: // this is a loop header, so we can break or continue found_loop = true; end_search = true; break; case symbol_function_header: // this is a function header, so we cannot break or continue. We stop our search here. found_loop = false; end_search = true; break; default: // most likely begin / end style block, which makes no difference break; } } ancestor = node_tree.get_parent(*ancestor); } if (! found_loop && ! first_argument_is_help(node_tree, node, buff_src)) { errored = append_syntax_error(&parse_errors, node, (command == L"break" ? INVALID_BREAK_ERR_MSG : INVALID_CONTINUE_ERR_MSG)); } } } } } } parser_test_error_bits_t res = 0; if (errored) res |= PARSER_TEST_ERROR; if (has_unclosed_block) res |= PARSER_TEST_INCOMPLETE; if (out_errors) { out_errors->swap(parse_errors); } return res; }