// Programmatic representation of fish code. #include "config.h" // IWYU pragma: keep #include "parse_tree.h" #include #include #include #include #include #include #include #include #include "common.h" #include "fallback.h" #include "flog.h" #include "parse_constants.h" #include "parse_productions.h" #include "parse_tree.h" #include "proc.h" #include "tnode.h" #include "tokenizer.h" #include "wutil.h" // IWYU pragma: keep using namespace parse_productions; static bool production_is_empty(const production_element_t *production) { return *production == token_type_invalid; } static parse_error_code_t parse_error_from_tokenizer_error(tokenizer_error_t err) { switch (err) { case tokenizer_error_t::none: return parse_error_none; case tokenizer_error_t::unterminated_quote: return parse_error_tokenizer_unterminated_quote; case tokenizer_error_t::unterminated_subshell: return parse_error_tokenizer_unterminated_subshell; case tokenizer_error_t::unterminated_slice: return parse_error_tokenizer_unterminated_slice; case tokenizer_error_t::unterminated_escape: return parse_error_tokenizer_unterminated_escape; default: return parse_error_tokenizer_other; } } /// Returns a string description of this parse error. wcstring parse_error_t::describe_with_prefix(const wcstring &src, const wcstring &prefix, bool is_interactive, bool skip_caret) const { if (skip_caret && this->text.empty()) return L""; wcstring result = prefix; switch (code) { default: break; case parse_error_andor_in_pipeline: append_format(result, EXEC_ERR_MSG, src.substr(this->source_start, this->source_length).c_str()); return result; case parse_error_bare_variable_assignment: { wcstring assignment_src = src.substr(this->source_start, this->source_length); maybe_t equals_pos = variable_assignment_equals_pos(assignment_src); assert(equals_pos); wcstring variable = assignment_src.substr(0, *equals_pos); wcstring value = assignment_src.substr(*equals_pos + 1); append_format(result, ERROR_BAD_COMMAND_ASSIGN_ERR_MSG, variable.c_str(), value.c_str()); return result; } } result.append(this->text); if (skip_caret || source_start >= src.size() || source_start + source_length > src.size()) { return result; } // Locate the beginning of this line of source. size_t line_start = 0; // Look for a newline prior to source_start. If we don't find one, start at the beginning of // the string; otherwise start one past the newline. Note that source_start may itself point // at a newline; we want to find the newline before it. if (source_start > 0) { size_t newline = src.find_last_of(L'\n', source_start - 1); if (newline != wcstring::npos) { line_start = newline + 1; } } // Look for the newline after the source range. If the source range itself includes a // newline, that's the one we want, so start just before the end of the range. size_t last_char_in_range = (source_length == 0 ? source_start : source_start + source_length - 1); size_t line_end = src.find(L'\n', last_char_in_range); if (line_end == wcstring::npos) { line_end = src.size(); } assert(line_end >= line_start); assert(source_start >= line_start); // Don't include the caret and line if we're interactive and this is the first line, because // then it's obvious. bool interactive_skip_caret = is_interactive && source_start == 0; if (interactive_skip_caret) { return result; } // Append the line of text. if (!result.empty()) result.push_back(L'\n'); result.append(src, line_start, line_end - line_start); // Append the caret line. The input source may include tabs; for that reason we // construct a "caret line" that has tabs in corresponding positions. wcstring caret_space_line; caret_space_line.reserve(source_start - line_start); for (size_t i = line_start; i < source_start; i++) { wchar_t wc = src.at(i); if (wc == L'\t') { caret_space_line.push_back(L'\t'); } else if (wc == L'\n') { // It's possible that the source_start points at a newline itself. In that case, // pretend it's a space. We only expect this to be at the end of the string. caret_space_line.push_back(L' '); } else { int width = fish_wcwidth(wc); if (width > 0) { caret_space_line.append(static_cast(width), L' '); } } } result.push_back(L'\n'); result.append(caret_space_line); result.push_back(L'^'); return result; } wcstring parse_error_t::describe(const wcstring &src, bool is_interactive) const { return this->describe_with_prefix(src, wcstring(), is_interactive, false); } void parse_error_offset_source_start(parse_error_list_t *errors, size_t amt) { assert(errors != nullptr); if (amt > 0) { size_t i, max = errors->size(); for (i = 0; i < max; i++) { parse_error_t *error = &errors->at(i); // Preserve the special meaning of -1 as 'unknown'. if (error->source_start != SOURCE_LOCATION_UNKNOWN) { error->source_start += amt; } } } } /// Returns a string description for the given token type. const wchar_t *token_type_description(parse_token_type_t type) { const wchar_t *description = enum_to_str(type, token_enum_map); if (description) return description; return L"unknown_token_type"; } const wchar_t *keyword_description(parse_keyword_t type) { const wchar_t *keyword = enum_to_str(type, keyword_enum_map); if (keyword) return keyword; return L"unknown_keyword"; } static wcstring token_type_user_presentable_description( parse_token_type_t type, parse_keyword_t keyword = parse_keyword_none) { if (keyword != parse_keyword_none) { return format_string(L"keyword '%ls'", keyword_description(keyword)); } switch (type) { // Hackish. We only support the following types. case symbol_decorated_statement: case symbol_statement: return L"a command"; case symbol_argument: return L"an argument"; case symbol_job: case symbol_job_list: return L"a job"; case parse_token_type_string: return L"a string"; case parse_token_type_pipe: return L"a pipe"; case parse_token_type_redirection: return L"a redirection"; case parse_token_type_background: return L"a '&'"; case parse_token_type_andand: return L"'&&'"; case parse_token_type_oror: return L"'||'"; case parse_token_type_end: return L"end of the statement"; case parse_token_type_terminate: return L"end of the input"; default: { return format_string(L"a %ls", token_type_description(type)); } } } static wcstring block_type_user_presentable_description(parse_token_type_t type) { switch (type) { case symbol_for_header: { return L"for loop"; } case symbol_while_header: { return L"while loop"; } case symbol_function_header: { return L"function definition"; } case symbol_begin_header: { return L"begin"; } case symbol_if_statement: { return L"if statement"; } case symbol_switch_statement: { return L"switch statement"; } default: { return token_type_description(type); } } } /// Returns a string description of the given parse node. wcstring parse_node_t::describe() const { wcstring result = token_type_description(this->type); return result; } /// Returns a string description of the given parse token. wcstring parse_token_t::describe() const { wcstring result = token_type_description(type); if (keyword != parse_keyword_none) { append_format(result, L" <%ls>", keyword_description(keyword)); } return result; } /// A string description appropriate for presentation to the user. wcstring parse_token_t::user_presentable_description() const { return token_type_user_presentable_description(type, keyword); } /// Convert from tokenizer_t's token type to a parse_token_t type. static inline parse_token_type_t parse_token_type_from_tokenizer_token( enum token_type_t tokenizer_token_type) { switch (tokenizer_token_type) { case token_type_t::string: return parse_token_type_string; case token_type_t::pipe: return parse_token_type_pipe; case token_type_t::andand: return parse_token_type_andand; case token_type_t::oror: return parse_token_type_oror; case token_type_t::end: return parse_token_type_end; case token_type_t::background: return parse_token_type_background; case token_type_t::redirect: return parse_token_type_redirection; case token_type_t::error: return parse_special_type_tokenizer_error; case token_type_t::comment: return parse_special_type_comment; } FLOGF(error, L"Bad token type %d passed to %s", static_cast(tokenizer_token_type), __FUNCTION__); DIE("bad token type"); return token_type_invalid; } /// Helper function for parse_dump_tree(). static void dump_tree_recursive(const parse_node_tree_t &nodes, const wcstring &src, node_offset_t node_idx, size_t indent, wcstring *result, size_t *line, node_offset_t *inout_first_node_not_dumped) { assert(node_idx < nodes.size()); // Update first_node_not_dumped. This takes a bit of explanation. While it's true that a parse // tree may be a "forest", its individual trees are "compact," meaning they are not // interleaved. Thus we keep track of the largest node index as we descend a tree. One past the // largest is the start of the next tree. if (*inout_first_node_not_dumped <= node_idx) { *inout_first_node_not_dumped = node_idx + 1; } const parse_node_t &node = nodes.at(node_idx); const size_t spacesPerIndent = 2; // Unindent statement lists by 1 to flatten them. if (node.type == symbol_job_list || node.type == symbol_arguments_or_redirections_list) { if (indent > 0) indent -= 1; } append_format(*result, L"%2lu - %2lu ", *line, node_idx); result->append(indent * spacesPerIndent, L' '); result->append(node.describe()); if (node.child_count > 0) { append_format(*result, L" <%lu children>", node.child_count); } if (node.has_comments()) { append_format(*result, L" "); } if (node.has_preceding_escaped_newline()) { append_format(*result, L" "); } if (node.has_source() && node.type == parse_token_type_string) { result->append(L": \""); result->append(src, node.source_start, node.source_length); result->append(L"\""); } if (node.type != parse_token_type_string) { if (node.has_source()) { append_format(*result, L" [%ld, %ld]", static_cast(node.source_start), static_cast(node.source_length)); } else { append_format(*result, L" [%ld, no src]", static_cast(node.source_start)); } } result->push_back(L'\n'); ++*line; for (node_offset_t child_idx = node.child_start; child_idx < node.child_start + node.child_count; child_idx++) { dump_tree_recursive(nodes, src, child_idx, indent + 1, result, line, inout_first_node_not_dumped); } } /// Gives a debugging textual description of a parse tree. Note that this supports "parse forests" /// too. That is, our tree may not really be a tree, but instead a collection of trees. wcstring parse_dump_tree(const parse_node_tree_t &nodes, const wcstring &src) { if (nodes.empty()) return L"(empty!)"; node_offset_t first_node_not_dumped = 0; size_t line = 0; wcstring result; while (first_node_not_dumped < nodes.size()) { if (first_node_not_dumped > 0) { result.append(L"---New Tree---\n"); } dump_tree_recursive(nodes, src, first_node_not_dumped, 0, &result, &line, &first_node_not_dumped); } return result; } /// Struct representing elements of the symbol stack, used in the internal state of the LL parser. struct parse_stack_element_t { enum parse_token_type_t type; enum parse_keyword_t keyword; node_offset_t node_idx; explicit parse_stack_element_t(parse_token_type_t t, node_offset_t idx) : type(t), keyword(parse_keyword_none), node_idx(idx) {} explicit parse_stack_element_t(production_element_t e, node_offset_t idx) : type(production_element_type(e)), keyword(production_element_keyword(e)), node_idx(idx) {} wcstring describe() const { wcstring result = token_type_description(type); if (keyword != parse_keyword_none) { append_format(result, L" <%ls>", keyword_description(keyword)); } return result; } /// Returns a name that we can show to the user, e.g. "a command". wcstring user_presentable_description() const { return token_type_user_presentable_description(type, keyword); } }; /// The parser itself, private implementation of class parse_t. This is a hand-coded table-driven LL /// parser. Most hand-coded LL parsers are recursive descent, but recursive descent parsers are /// difficult to "pause", unlike table-driven parsers. class parse_ll_t { // Traditional symbol stack of the LL parser. std::vector symbol_stack; // Parser output. This is a parse tree, but stored in an array. parse_node_tree_t nodes; // Whether we ran into a fatal error, including parse errors or tokenizer errors. bool fatal_errored; // Whether we should collect error messages or not. bool should_generate_error_messages; // List of errors we have encountered. parse_error_list_t errors; // The symbol stack can contain terminal types or symbols. Symbols go on to do productions, but // terminal types are just matched against input tokens. bool top_node_handle_terminal_types(const parse_token_t &token); void parse_error_unexpected_token(const wchar_t *expected, parse_token_t token); void parse_error(parse_token_t token, parse_error_code_t code, const wchar_t *fmt, ...); void parse_error_at_location(size_t source_start, size_t source_length, size_t error_location, parse_error_code_t code, const wchar_t *fmt, ...); void parse_error_failed_production(const struct parse_stack_element_t &elem, parse_token_t token); void parse_error_unbalancing_token(parse_token_t token); // Reports an error for an unclosed block, e.g. 'begin;'. Returns true on success, false on // failure (e.g. it is not an unclosed block). bool report_error_for_unclosed_block(); // void dump_stack(void) const; /// Get the node corresponding to the top element of the stack. parse_node_t &node_for_top_symbol() { PARSE_ASSERT(!symbol_stack.empty()); //!OCLINT(multiple unary operator) const parse_stack_element_t &top_symbol = symbol_stack.back(); PARSE_ASSERT(top_symbol.node_idx != NODE_OFFSET_INVALID); PARSE_ASSERT(top_symbol.node_idx < nodes.size()); return nodes.at(top_symbol.node_idx); } /// Pop from the top of the symbol stack, then push the given production, updating node counts. /// Note that production_element_t has type "pointer to array" so some care is required. inline void symbol_stack_pop_push_production(const production_element_t *production) { bool logit = false; if (logit) { int count = 0; std::fwprintf(stderr, L"Applying production:\n"); for (int i = 0;; i++) { production_element_t elem = production[i]; if (!production_element_is_valid(elem)) break; // all done, bail out parse_token_type_t type = production_element_type(elem); parse_keyword_t keyword = production_element_keyword(elem); std::fwprintf(stderr, L"\t%ls <%ls>\n", token_type_description(type), keyword_description(keyword)); count++; } if (!count) std::fwprintf(stderr, L"\t\n"); } // Get the parent index. But we can't get the parent parse node yet, since it may be made // invalid by adding children. const node_offset_t parent_node_idx = symbol_stack.back().node_idx; // Add the children. Confusingly, we want our nodes to be in forwards order (last token // last, so dumps look nice), but the symbols should be reverse order (last token first, so // it's lowest on the stack) const size_t child_start_big = nodes.size(); assert(child_start_big < NODE_OFFSET_INVALID); auto child_start = static_cast(child_start_big); // To avoid constructing multiple nodes, we make a single one that we modify. parse_node_t representative_child(token_type_invalid); representative_child.parent = parent_node_idx; node_offset_t child_count = 0; for (int i = 0;; i++) { production_element_t elem = production[i]; if (!production_element_is_valid(elem)) break; // all done, bail out // Append the parse node. representative_child.type = production_element_type(elem); nodes.push_back(representative_child); child_count++; } // Update the parent. parse_node_t &parent_node = nodes.at(parent_node_idx); // Should have no children yet. PARSE_ASSERT(parent_node.child_count == 0); // Tell the node about its children. parent_node.child_start = child_start; parent_node.child_count = child_count; // Replace the top of the stack with new stack elements corresponding to our new nodes. Note // that these go in reverse order. symbol_stack.pop_back(); symbol_stack.reserve(symbol_stack.size() + child_count); node_offset_t idx = child_count; while (idx--) { production_element_t elem = production[idx]; PARSE_ASSERT(production_element_is_valid(elem)); symbol_stack.emplace_back(elem, child_start + idx); } } public: // Constructor explicit parse_ll_t(enum parse_token_type_t goal) : fatal_errored(false), should_generate_error_messages(true) { this->symbol_stack.reserve(16); this->nodes.reserve(64); this->reset_symbols_and_nodes(goal); } // Input void accept_tokens(parse_token_t token1, parse_token_t token2); /// Report tokenizer errors. void report_tokenizer_error(const tok_t &tok); /// Indicate if we hit a fatal error. bool has_fatal_error() const { return this->fatal_errored; } /// Indicate whether we want to generate error messages. void set_should_generate_error_messages(bool flag) { this->should_generate_error_messages = flag; } /// Clear the parse symbol stack (but not the node tree). Add a node of the given type as the /// goal node. This is called from the constructor. void reset_symbols(enum parse_token_type_t goal); /// Clear the parse symbol stack and the node tree. Add a node of the given type as the goal /// node. This is called from the constructor. void reset_symbols_and_nodes(enum parse_token_type_t goal); /// Once parsing is complete, determine the ranges of intermediate nodes. void determine_node_ranges(); /// Acquire output after parsing. This transfers directly from within self. void acquire_output(parse_node_tree_t *output, parse_error_list_t *errors); }; #if 0 void parse_ll_t::dump_stack(void) const { // Walk backwards from the top, looking for parents. wcstring_list_t stack_lines; if (symbol_stack.empty()) { stack_lines.push_back(L"(empty)"); } else { node_offset_t child = symbol_stack.back().node_idx; node_offset_t cursor = child; stack_lines.push_back(nodes.at(cursor).describe()); while (cursor--) { const parse_node_t &node = nodes.at(cursor); if (node.child_start <= child && node.child_start + node.child_count > child) { stack_lines.push_back(node.describe()); child = cursor; } } } std::fwprintf(stderr, L"Stack dump (%zu elements):\n", symbol_stack.size()); for (size_t idx = 0; idx < stack_lines.size(); idx++) { std::fwprintf(stderr, L" %ls\n", stack_lines.at(idx).c_str()); } } #endif // Give each node a source range equal to the union of the ranges of its children. Terminal nodes // already have source ranges (and no children). Since children always appear after their parents, // we can implement this very simply by walking backwards. We then do a second pass to give empty // nodes an empty source range (but with a valid offset). We do this by walking forward. If a child // of a node has an invalid source range, we set it equal to the end of the source range of its // previous child. void parse_ll_t::determine_node_ranges() { size_t idx = nodes.size(); while (idx--) { parse_node_t *parent = &nodes[idx]; // Skip nodes that already have a source range. These are terminal nodes. if (parent->source_start != SOURCE_OFFSET_INVALID) continue; // Ok, this node needs a source range. Get all of its children, and then set its range. source_offset_t min_start = SOURCE_OFFSET_INVALID, max_end = 0; // note SOURCE_OFFSET_INVALID is huge for (node_offset_t i = 0; i < parent->child_count; i++) { const parse_node_t &child = nodes.at(parent->child_offset(i)); if (child.has_source()) { min_start = std::min(min_start, child.source_start); max_end = std::max(max_end, child.source_start + child.source_length); } } if (min_start != SOURCE_OFFSET_INVALID) { assert(max_end >= min_start); parent->source_start = min_start; parent->source_length = max_end - min_start; } } // Forward pass. size_t size = nodes.size(); for (idx = 0; idx < size; idx++) { // Since we populate the source range based on the sibling node, it's simpler to walk over // the children of each node. We keep a running "child_source_cursor" which is meant to be // the end of the child's source range. It's initially set to the beginning of the parent' // source range. parse_node_t *parent = &nodes[idx]; // If the parent doesn't have a valid source range, then none of its children will either; // skip it entirely. if (parent->source_start == SOURCE_OFFSET_INVALID) { continue; } source_offset_t child_source_cursor = parent->source_start; for (size_t child_idx = 0; child_idx < parent->child_count; child_idx++) { parse_node_t *child = &nodes[parent->child_start + child_idx]; if (child->source_start == SOURCE_OFFSET_INVALID) { child->source_start = child_source_cursor; } child_source_cursor = child->source_start + child->source_length; } } } void parse_ll_t::acquire_output(parse_node_tree_t *output, parse_error_list_t *errors) { if (output != nullptr) { *output = std::move(this->nodes); } if (errors != nullptr) { *errors = std::move(this->errors); } } void parse_ll_t::parse_error(parse_token_t token, parse_error_code_t code, const wchar_t *fmt, ...) { this->fatal_errored = true; if (this->should_generate_error_messages) { // this->dump_stack(); parse_error_t err; va_list va; va_start(va, fmt); err.text = vformat_string(fmt, va); err.code = code; va_end(va); err.source_start = token.source_start; err.source_length = token.source_length; this->errors.push_back(err); } } void parse_ll_t::parse_error_at_location(size_t source_start, size_t source_length, size_t error_location, parse_error_code_t code, const wchar_t *fmt, ...) { (void)error_location; this->fatal_errored = true; if (this->should_generate_error_messages) { // this->dump_stack(); parse_error_t err; va_list va; va_start(va, fmt); err.text = vformat_string(fmt, va); err.code = code; va_end(va); err.source_start = source_start; err.source_length = source_length; this->errors.push_back(std::move(err)); } } // Unbalancing token. This includes 'else' or 'case' or 'end' outside of the appropriate block // This essentially duplicates some logic from resolving the production for symbol_statement_list - // yuck. void parse_ll_t::parse_error_unbalancing_token(parse_token_t token) { this->fatal_errored = true; if (this->should_generate_error_messages) { switch (token.keyword) { case parse_keyword_end: { this->parse_error(token, parse_error_unbalancing_end, L"'end' outside of a block"); break; } case parse_keyword_else: { this->parse_error(token, parse_error_unbalancing_else, L"'else' builtin not inside of if block"); break; } case parse_keyword_case: { this->parse_error(token, parse_error_unbalancing_case, L"'case' builtin not inside of switch block"); break; } default: { // At the moment, this case should only be hit if you parse a // freestanding_argument_list. For example, 'complete -c foo -a 'one & three'. // Hackish error message for that case. if (!symbol_stack.empty() && symbol_stack.back().type == symbol_freestanding_argument_list) { this->parse_error( token, parse_error_generic, L"Expected %ls, but found %ls", token_type_user_presentable_description(symbol_argument).c_str(), token.user_presentable_description().c_str()); } else { this->parse_error(token, parse_error_generic, L"Did not expect %ls", token.user_presentable_description().c_str()); } break; } } } } /// This is a 'generic' parse error when we can't match the top of the stack element. void parse_ll_t::parse_error_failed_production(const struct parse_stack_element_t &stack_elem, parse_token_t token) { fatal_errored = true; if (this->should_generate_error_messages) { const wcstring expected = stack_elem.user_presentable_description(); this->parse_error_unexpected_token(expected.c_str(), token); } } void parse_ll_t::report_tokenizer_error(const tok_t &tok) { parse_error_code_t parse_error_code = parse_error_from_tokenizer_error(tok.error); this->parse_error_at_location(tok.offset, tok.length, tok.offset + tok.error_offset_within_token, parse_error_code, L"%ls", tokenizer_get_error_message(tok.error)); } void parse_ll_t::parse_error_unexpected_token(const wchar_t *expected, parse_token_t token) { fatal_errored = true; if (this->should_generate_error_messages) { this->parse_error(token, parse_error_generic, L"Expected %ls, but instead found %ls", expected, token.user_presentable_description().c_str()); } } void parse_ll_t::reset_symbols(enum parse_token_type_t goal) { // Add a new goal node, and then reset our symbol list to point at it. auto where = static_cast(nodes.size()); nodes.push_back(parse_node_t(goal)); symbol_stack.clear(); symbol_stack.emplace_back(goal, where); // goal token this->fatal_errored = false; } /// Reset both symbols and nodes. void parse_ll_t::reset_symbols_and_nodes(enum parse_token_type_t goal) { nodes.clear(); this->reset_symbols(goal); } static bool type_is_terminal_type(parse_token_type_t type) { switch (type) { case parse_token_type_string: case parse_token_type_pipe: case parse_token_type_redirection: case parse_token_type_background: case parse_token_type_end: case parse_token_type_andand: case parse_token_type_oror: case parse_token_type_terminate: { return true; } default: { return false; } } } bool parse_ll_t::report_error_for_unclosed_block() { bool reported_error = false; // Unclosed block, for example, 'while true ; '. We want to show the block node that opened it. const parse_node_t &top_node = this->node_for_top_symbol(); // Hacktastic. We want to point at the source location of the block, but our block doesn't have // a source range yet - only the terminal tokens do. So get the block statement corresponding to // this end command. In general this block may be of a variety of types: if_statement, // switch_statement, etc., each with different node structures. But keep descending the first // child and eventually you hit a keyword: begin, if, etc. That's the keyword we care about. const parse_node_t *end_command = this->nodes.get_parent(top_node, symbol_end_command); const parse_node_t *block_node = end_command ? this->nodes.get_parent(*end_command) : nullptr; if (block_node && block_node->type == symbol_block_statement) { // Get the header. block_node = this->nodes.get_child(*block_node, 0, symbol_block_header); block_node = this->nodes.get_child(*block_node, 0); // specific statement } if (block_node == nullptr) { return reported_error; } // block_node is now an if_statement, switch_statement, for_header, while_header, // function_header, or begin_header. // // Hackish: descend down the first node until we reach the bottom. This will be a keyword // node like SWITCH, which will have the source range. Ordinarily the source range would be // known by the parent node too, but we haven't completed parsing yet, so we haven't yet // propagated source ranges. const parse_node_t *cursor = block_node; while (cursor->child_count > 0) { cursor = this->nodes.get_child(*cursor, 0); assert(cursor != nullptr); } if (cursor->source_start != NODE_OFFSET_INVALID) { const wcstring node_desc = block_type_user_presentable_description(block_node->type); this->parse_error_at_location(cursor->source_start, 0, cursor->source_start, parse_error_generic, L"Missing end to balance this %ls", node_desc.c_str()); reported_error = true; } return reported_error; } bool parse_ll_t::top_node_handle_terminal_types(const parse_token_t &token) { PARSE_ASSERT(!symbol_stack.empty()); //!OCLINT(multiple unary operator) PARSE_ASSERT(token.type >= FIRST_PARSE_TOKEN_TYPE); const auto &stack_top = symbol_stack.back(); if (!type_is_terminal_type(stack_top.type)) { return false; // was not handled } // The top of the stack is terminal. We are going to handle this (because we can't produce // from a terminal type). // Now see if we actually matched bool matched = false; if (stack_top.type == token.type) { if (stack_top.type == parse_token_type_string) { // We matched if the keywords match, or no keyword was required. matched = (stack_top.keyword == parse_keyword_none || stack_top.keyword == token.keyword); } else { // For other types, we only require that the types match. matched = true; } } if (matched) { // Success. Tell the node that it matched this token, and what its source range is in // the parse phase, we only set source ranges for terminal types. We propagate ranges to // parent nodes afterwards. parse_node_t &node = node_for_top_symbol(); node.keyword = token.keyword; node.source_start = token.source_start; node.source_length = token.source_length; if (token.preceding_escaped_nl) node.flags |= parse_node_flag_preceding_escaped_nl; } else { // Failure if (stack_top.type == parse_token_type_string && token.type == parse_token_type_string) { // Keyword failure. We should unify this with the 'matched' computation above. assert(stack_top.keyword != parse_keyword_none && stack_top.keyword != token.keyword); // Check to see which keyword we got which was considered wrong. switch (token.keyword) { // Some keywords are only valid in certain contexts. If this cascaded all the // way down through the outermost job_list, it was not in a valid context. case parse_keyword_case: case parse_keyword_end: case parse_keyword_else: { this->parse_error_unbalancing_token(token); break; } case parse_keyword_none: { // This is a random other string (not a keyword). const wcstring expected = keyword_description(stack_top.keyword); this->parse_error(token, parse_error_generic, L"Expected keyword '%ls'", expected.c_str()); break; } default: { // Got a real keyword we can report. const wcstring actual = (token.keyword == parse_keyword_none ? token.describe() : keyword_description(token.keyword)); const wcstring expected = keyword_description(stack_top.keyword); this->parse_error(token, parse_error_generic, L"Expected keyword '%ls', instead got keyword '%ls'", expected.c_str(), actual.c_str()); break; } } } else if (stack_top.keyword == parse_keyword_end && token.type == parse_token_type_terminate && this->report_error_for_unclosed_block()) { // handled by report_error_for_unclosed_block } else { const wcstring expected = stack_top.user_presentable_description(); this->parse_error_unexpected_token(expected.c_str(), token); } } // We handled the token, so pop the symbol stack. symbol_stack.pop_back(); return true; } void parse_ll_t::accept_tokens(parse_token_t token1, parse_token_t token2) { PARSE_ASSERT(token1.type >= FIRST_PARSE_TOKEN_TYPE); // Handle special types specially. Note that these are the only types that can be pushed if the // symbol stack is empty. if (token1.type == parse_special_type_parse_error || token1.type == parse_special_type_tokenizer_error || token1.type == parse_special_type_comment) { // We set the special node's parent to the top of the stack. This means that we have an // asymmetric relationship: the special node has a parent (which is the node we were trying // to generate when we encountered the special node), but the parent node does not have the // special node as a child. This means for example that parents don't have to worry about // tracking any comment nodes, but we can still recover the parent from the comment. parse_node_t special_node(token1.type); special_node.parent = symbol_stack.back().node_idx; special_node.source_start = token1.source_start; special_node.source_length = token1.source_length; if (token1.preceding_escaped_nl) special_node.flags |= parse_node_flag_preceding_escaped_nl; nodes.push_back(special_node); // Mark special flags. if (token1.type == parse_special_type_comment) { this->node_for_top_symbol().flags |= parse_node_flag_has_comments; } // Tokenizer errors are fatal. if (token1.type == parse_special_type_tokenizer_error) this->fatal_errored = true; return; } // It's not a special type. while (!this->fatal_errored) { PARSE_ASSERT(!symbol_stack.empty()); //!OCLINT(multiple unary operator) if (top_node_handle_terminal_types(token1)) { break; } // top_node_match_token may indicate an error if our stack is empty. if (this->fatal_errored) break; // Get the production for the top of the stack. parse_stack_element_t &stack_elem = symbol_stack.back(); parse_node_t &node = nodes.at(stack_elem.node_idx); parse_node_tag_t tag = 0; const production_element_t *production = production_for_token(stack_elem.type, token1, token2, &tag); node.tag = tag; if (production == nullptr) { tnode_t variable_assignments; if (const parse_node_t *parent = nodes.get_parent(node)) { if (parent->type == symbol_statement && (token1.keyword == parse_keyword_and || token1.keyword == parse_keyword_or)) { if (const parse_node_t *grandparent = nodes.get_parent(*parent)) { if (grandparent->type == symbol_job_continuation) { parse_error(token1, parse_error_andor_in_pipeline, L" " /* won't be printed but must be non-empty, see describe_with_prefix TODO clean that up */); continue; } } } switch (parent->type) { default: break; case symbol_job: variable_assignments = tnode_t(&nodes, parent) .try_get_child(); break; case symbol_job_continuation: variable_assignments = tnode_t(&nodes, parent) .try_get_child(); break; case symbol_not_statement: variable_assignments = tnode_t(&nodes, parent) .try_get_child(); break; } } tnode_t variable_assignment; tnode_t assignment_tok; if (variable_assignments && (variable_assignment = variable_assignments.try_get_child()) && (assignment_tok = variable_assignment.try_get_child())) { parse_token_t token(parse_token_type_string); token.source_start = assignment_tok.source_range()->start; token.source_length = assignment_tok.source_range()->length; parse_error(token, parse_error_bare_variable_assignment, L" " /* won't be printed but must be non-empty, see describe_with_prefix */ ); } else { parse_error_failed_production(stack_elem, token1); } // The above set fatal_errored, which ends the loop. } else { bool is_terminate = (token1.type == parse_token_type_terminate); // When a job_list encounters something like 'else', it returns an empty production to // return control to the outer block. But if it's unbalanced, then we'll end up with an // empty stack! So make sure that doesn't happen. This is the primary mechanism by which // we detect e.g. unbalanced end. However, if we get a true terminate token, then we // allow (expect) this to empty the stack. if (symbol_stack.size() == 1 && production_is_empty(production) && !is_terminate) { this->parse_error_unbalancing_token(token1); break; } // Manipulate the symbol stack. Note that stack_elem is invalidated by popping the // stack. symbol_stack_pop_push_production(production); // Expect to not have an empty stack, unless this was the terminate type. Note we may // not have an empty stack with the terminate type (i.e. incomplete input). assert(is_terminate || !symbol_stack.empty()); if (symbol_stack.empty()) { break; } } } } // Given an expanded string, returns any keyword it matches. static inline parse_keyword_t keyword_with_name(const wchar_t *name) { return str_to_enum(name, keyword_enum_map, keyword_enum_map_len); } static bool is_keyword_char(wchar_t c) { return (c >= L'a' && c <= L'z') || (c >= L'A' && c <= L'Z') || (c >= L'0' && c <= L'9') || c == L'\'' || c == L'"' || c == L'\\' || c == '\n' || c == L'!'; } /// Given a token, returns the keyword it matches, or parse_keyword_none. static parse_keyword_t keyword_for_token(token_type_t tok, const wcstring &token) { /* Only strings can be keywords */ if (tok != token_type_t::string) { return parse_keyword_none; } // If tok_txt is clean (which most are), we can compare it directly. Otherwise we have to expand // it. We only expand quotes, and we don't want to do expensive expansions like tilde // expansions. So we do our own "cleanliness" check; if we find a character not in our allowed // set we know it's not a keyword, and if we never find a quote we don't have to expand! Note // that this lowercase set could be shrunk to be just the characters that are in keywords. parse_keyword_t result = parse_keyword_none; bool needs_expand = false, all_chars_valid = true; const wchar_t *tok_txt = token.c_str(); for (size_t i = 0; tok_txt[i] != L'\0'; i++) { wchar_t c = tok_txt[i]; if (!is_keyword_char(c)) { all_chars_valid = false; break; } // If we encounter a quote, we need expansion. needs_expand = needs_expand || c == L'"' || c == L'\'' || c == L'\\'; } if (all_chars_valid) { // Expand if necessary. if (!needs_expand) { result = keyword_with_name(tok_txt); } else { wcstring storage; if (unescape_string(tok_txt, &storage, 0)) { result = keyword_with_name(storage.c_str()); } } } return result; } /// Placeholder invalid token. static constexpr parse_token_t kInvalidToken{token_type_invalid}; /// Terminal token. static constexpr parse_token_t kTerminalToken = {parse_token_type_terminate}; static inline bool is_help_argument(const wcstring &txt) { return txt == L"-h" || txt == L"--help"; } /// Return a new parse token, advancing the tokenizer. static inline parse_token_t next_parse_token(tokenizer_t *tok, maybe_t *out_token, wcstring *storage) { *out_token = tok->next(); if (!out_token->has_value()) { return kTerminalToken; } const tok_t &token = **out_token; // Set the type, keyword, and whether there's a dash prefix. Note that this is quite sketchy, // because it ignores quotes. This is the historical behavior. For example, `builtin --names` // lists builtins, but `builtin "--names"` attempts to run --names as a command. Amazingly as of // this writing (10/12/13) nobody seems to have noticed this. Squint at it really hard and it // even starts to look like a feature. parse_token_t result{parse_token_type_from_tokenizer_token(token.type)}; const wcstring &text = tok->copy_text_of(token, storage); result.keyword = keyword_for_token(token.type, text); result.has_dash_prefix = !text.empty() && text.at(0) == L'-'; result.is_help_argument = result.has_dash_prefix && is_help_argument(text); result.is_newline = (result.type == parse_token_type_end && text == L"\n"); result.preceding_escaped_nl = token.preceding_escaped_nl; result.may_be_variable_assignment = bool(variable_assignment_equals_pos(text)); // These assertions are totally bogus. Basically our tokenizer works in size_t but we work in // uint32_t to save some space. If we have a source file larger than 4 GB, we'll probably just // crash. assert(token.offset < SOURCE_OFFSET_INVALID); result.source_start = static_cast(token.offset); assert(token.length <= SOURCE_OFFSET_INVALID); result.source_length = static_cast(token.length); return result; } bool parse_tree_from_string(const wcstring &str, parse_tree_flags_t parse_flags, parse_node_tree_t *output, parse_error_list_t *errors, parse_token_type_t goal) { parse_ll_t parser(goal); parser.set_should_generate_error_messages(errors != nullptr); // A string whose storage we reuse. wcstring storage; // Construct the tokenizer. tok_flags_t tok_options = 0; if (parse_flags & parse_flag_include_comments) tok_options |= TOK_SHOW_COMMENTS; if (parse_flags & parse_flag_accept_incomplete_tokens) tok_options |= TOK_ACCEPT_UNFINISHED; if (parse_flags & parse_flag_show_blank_lines) tok_options |= TOK_SHOW_BLANK_LINES; if (parse_flags & parse_flag_continue_after_error) tok_options |= TOK_CONTINUE_AFTER_ERROR; tokenizer_t tok(str.c_str(), tok_options); // We are an LL(2) parser. We pass two tokens at a time. New tokens come in at index 1. Seed our // queue with an initial token at index 1. parse_token_t queue[2] = {kInvalidToken, kInvalidToken}; // Loop until we have a terminal token. maybe_t tokenizer_token{}; for (size_t token_count = 0; queue[0].type != parse_token_type_terminate; token_count++) { // Push a new token onto the queue. queue[0] = queue[1]; queue[1] = next_parse_token(&tok, &tokenizer_token, &storage); // If we are leaving things unterminated, then don't pass parse_token_type_terminate. if (queue[0].type == parse_token_type_terminate && (parse_flags & parse_flag_leave_unterminated)) { break; } // Pass these two tokens, unless we're still loading the queue. We know that queue[0] is // valid; queue[1] may be invalid. if (token_count > 0) { parser.accept_tokens(queue[0], queue[1]); } // Handle tokenizer errors. This is a hack because really the parser should report this for // itself; but it has no way of getting the tokenizer message. if (queue[1].type == parse_special_type_tokenizer_error) { parser.report_tokenizer_error(*tokenizer_token); } if (!parser.has_fatal_error()) { continue; } // Handle errors. if (!(parse_flags & parse_flag_continue_after_error)) { break; // bail out } // Hack. Typically the parse error is due to the first token. However, if it's a // tokenizer error, then has_fatal_error was set due to the check above; in that // case the second token is what matters. size_t error_token_idx = 0; if (queue[1].type == parse_special_type_tokenizer_error) { error_token_idx = (queue[1].type == parse_special_type_tokenizer_error ? 1 : 0); token_count = -1; // so that it will be 0 after incrementing, and our tokenizer // error will be ignored } // Mark a special error token, and then keep going. parse_token_t token = {parse_special_type_parse_error}; token.source_start = queue[error_token_idx].source_start; token.source_length = queue[error_token_idx].source_length; parser.accept_tokens(token, kInvalidToken); parser.reset_symbols(goal); } // Teach each node where its source range is. parser.determine_node_ranges(); // Acquire the output from the parser. parser.acquire_output(output, errors); // Indicate if we had a fatal error. return !parser.has_fatal_error(); } const parse_node_t *parse_node_tree_t::get_child(const parse_node_t &parent, node_offset_t which, parse_token_type_t expected_type) const { const parse_node_t *result = nullptr; // We may get nodes with no children if we had an incomplete parse. Don't consider than an // error. if (parent.child_count > 0) { PARSE_ASSERT(which < parent.child_count); node_offset_t child_offset = parent.child_offset(which); if (child_offset < this->size()) { result = &this->at(child_offset); // If we are given an expected type, then the node must be null or that type. assert(expected_type == token_type_invalid || expected_type == result->type); } } return result; } parsed_source_ref_t parse_source(wcstring src, parse_tree_flags_t flags, parse_error_list_t *errors, parse_token_type_t goal) { parse_node_tree_t tree; if (!parse_tree_from_string(src, flags, &tree, errors, goal)) return {}; return std::make_shared(std::move(src), std::move(tree)); } const parse_node_t &parse_node_tree_t::find_child(const parse_node_t &parent, parse_token_type_t type) const { for (node_offset_t i = 0; i < parent.child_count; i++) { const parse_node_t *child = this->get_child(parent, i); if (child->type == type) { return *child; } } DIE("failed to find child node"); } const parse_node_t *parse_node_tree_t::get_parent(const parse_node_t &node, parse_token_type_t expected_type) const { const parse_node_t *result = nullptr; if (node.parent != NODE_OFFSET_INVALID) { PARSE_ASSERT(node.parent < this->size()); const parse_node_t &parent = this->at(node.parent); if (expected_type == token_type_invalid || expected_type == parent.type) { // The type matches (or no type was requested). result = &parent; } } return result; } /// Return true if the given node has the proposed ancestor as an ancestor (or is itself that /// ancestor). static bool node_has_ancestor(const parse_node_tree_t &tree, const parse_node_t &node, const parse_node_t &proposed_ancestor) { if (&node == &proposed_ancestor) { return true; // found it } else if (node.parent == NODE_OFFSET_INVALID) { return false; // no more parents } // Recurse to the parent. return node_has_ancestor(tree, tree.at(node.parent), proposed_ancestor); } const parse_node_t *parse_node_tree_t::find_node_matching_source_location( parse_token_type_t type, size_t source_loc, const parse_node_t *parent) const { const parse_node_t *result = nullptr; // Find nodes of the given type in the tree, working backwards. const size_t len = this->size(); for (size_t idx = 0; idx < len && result == nullptr; idx++) { const parse_node_t &node = this->at(idx); // Types must match. if (node.type != type) continue; // Must contain source location. if (!node.location_in_or_at_end_of_source_range(source_loc)) continue; // If a parent is given, it must be an ancestor. if (parent != nullptr && !node_has_ancestor(*this, node, *parent)) continue; // Found it. result = &node; } return result; }