// Utilities for keeping track of jobs, processes and subshells, as well as signal handling // functions for tracking children. These functions do not themselves launch new processes, the exec // library will call proc to create representations of the running jobs as needed. // // Some of the code in this file is based on code from the Glibc manual. // IWYU pragma: no_include <__bit_reference> #include "config.h" #include #include #include #include #include #include #include #if HAVE_TERM_H #include #include #elif HAVE_NCURSES_TERM_H #include #endif #include #ifdef HAVE_SIGINFO_H #include #endif #ifdef HAVE_SYS_SELECT_H #include #endif #include // IWYU pragma: keep #include #include // IWYU pragma: keep #include #include #include #include "common.h" #include "event.h" #include "fallback.h" // IWYU pragma: keep #include "io.h" #include "output.h" #include "parse_tree.h" #include "parser.h" #include "proc.h" #include "reader.h" #include "sanity.h" #include "signal.h" #include "util.h" #include "wutil.h" // IWYU pragma: keep /// Size of buffer for reading buffered output. #define BUFFER_SIZE 4096 /// Status of last process to exit. static int last_status = 0; /// The signals that signify crashes to us. static const int crashsignals[] = {SIGABRT, SIGBUS, SIGFPE, SIGILL, SIGSEGV, SIGSYS}; bool job_list_is_empty() { ASSERT_IS_MAIN_THREAD(); return parser_t::principal_parser().job_list().empty(); } void job_iterator_t::reset() { this->current = job_list->begin(); this->end = job_list->end(); } job_iterator_t::job_iterator_t(job_list_t &jobs) : job_list(&jobs) { this->reset(); } job_iterator_t::job_iterator_t() : job_list(&parser_t::principal_parser().job_list()) { ASSERT_IS_MAIN_THREAD(); this->reset(); } size_t job_iterator_t::count() const { return this->job_list->size(); } #if 0 // This isn't used so the lint tools were complaining about its presence. I'm keeping it in the // source because it could be useful for debugging. However, it would probably be better to add a // verbose or debug option to the builtin `jobs` command. void print_jobs(void) { job_iterator_t jobs; job_t *j; while (j = jobs.next()) { fwprintf(stdout, L"%p -> %ls -> (foreground %d, complete %d, stopped %d, constructed %d)\n", j, j->command_wcstr(), j->get_flag(JOB_FOREGROUND), job_is_completed(j), job_is_stopped(j), j->get_flag(JOB_CONSTRUCTED)); } } #endif bool is_interactive_session = false; bool is_subshell = false; bool is_block = false; bool is_breakpoint = false; bool is_login = false; int is_event = false; pid_t proc_last_bg_pid = 0; int job_control_mode = JOB_CONTROL_INTERACTIVE; int no_exec = 0; static int is_interactive = -1; static bool proc_had_barrier = false; bool shell_is_interactive() { ASSERT_IS_MAIN_THREAD(); // is_interactive is statically initialized to -1. Ensure it has been dynamically set // before we're called. assert(is_interactive != -1); return is_interactive > 0; } bool get_proc_had_barrier() { ASSERT_IS_MAIN_THREAD(); return proc_had_barrier; } void set_proc_had_barrier(bool flag) { ASSERT_IS_MAIN_THREAD(); proc_had_barrier = flag; } /// The event variable used to send all process event. static event_t event(0); /// A stack containing the values of is_interactive. Used by proc_push_interactive and /// proc_pop_interactive. static std::vector interactive_stack; void proc_init() { proc_push_interactive(0); } /// Remove job from list of jobs. static int job_remove(job_t *j) { ASSERT_IS_MAIN_THREAD(); return parser_t::principal_parser().job_remove(j); } void job_promote(job_t *job) { ASSERT_IS_MAIN_THREAD(); parser_t::principal_parser().job_promote(job); } void proc_destroy() { job_list_t &jobs = parser_t::principal_parser().job_list(); while (!jobs.empty()) { job_t *job = jobs.front().get(); debug(2, L"freeing leaked job %ls", job->command_wcstr()); job_remove(job); } } void proc_set_last_status(int s) { ASSERT_IS_MAIN_THREAD(); last_status = s; } int proc_get_last_status() { return last_status; } // Basic thread safe job IDs. The vector consumed_job_ids has a true value wherever the job ID // corresponding to that slot is in use. The job ID corresponding to slot 0 is 1. static owning_lock> locked_consumed_job_ids; job_id_t acquire_job_id() { auto consumed_job_ids = locked_consumed_job_ids.acquire(); // Find the index of the first 0 slot. auto slot = std::find(consumed_job_ids->begin(), consumed_job_ids->end(), false); if (slot != consumed_job_ids->end()) { // We found a slot. Note that slot 0 corresponds to job ID 1. *slot = true; return (job_id_t)(slot - consumed_job_ids->begin() + 1); } // We did not find a slot; create a new slot. The size of the vector is now the job ID // (since it is one larger than the slot). consumed_job_ids->push_back(true); return (job_id_t)consumed_job_ids->size(); } void release_job_id(job_id_t jid) { assert(jid > 0); auto consumed_job_ids = locked_consumed_job_ids.acquire(); size_t slot = (size_t)(jid - 1), count = consumed_job_ids->size(); // Make sure this slot is within our vector and is currently set to consumed. assert(slot < count); assert(consumed_job_ids->at(slot) == true); // Clear it and then resize the vector to eliminate unused trailing job IDs. consumed_job_ids->at(slot) = false; while (count--) { if (consumed_job_ids->at(count)) break; } consumed_job_ids->resize(count + 1); } job_t *job_get(job_id_t id) { ASSERT_IS_MAIN_THREAD(); return parser_t::principal_parser().job_get(id); } job_t *job_get_from_pid(int pid) { ASSERT_IS_MAIN_THREAD(); return parser_t::principal_parser().job_get_from_pid(pid); } /// Return true if all processes in the job have stopped or completed. /// /// \param j the job to test int job_is_stopped(const job_t *j) { for (const process_ptr_t &p : j->processes) { if (!p->completed && !p->stopped) { return 0; } } return 1; } /// Return true if the last processes in the job has completed. /// /// \param j the job to test bool job_is_completed(const job_t *j) { assert(!j->processes.empty()); bool result = true; for (const process_ptr_t &p : j->processes) { if (!p->completed) { result = false; break; } } return result; } void job_t::set_flag(job_flag_t flag, bool set) { if (set) { this->flags |= flag; } else { this->flags &= ~flag; } } bool job_t::get_flag(job_flag_t flag) const { return (this->flags & flag) == flag; } int job_signal(job_t *j, int signal) { pid_t my_pgid = getpgrp(); int res = 0; if (j->pgid != my_pgid) { res = killpg(j->pgid, signal); } else { for (const process_ptr_t &p : j->processes) { if (!p->completed && p->pid && kill(p->pid, signal)) { res = -1; break; } } } return res; } static void mark_job_complete(const job_t *j) { for (auto &p : j->processes) { p->completed = 1; } } /// Store the status of the process pid that was returned by waitpid. static void mark_process_status(process_t *p, int status) { // debug( 0, L"Process %ls %ls", p->argv[0], WIFSTOPPED (status)?L"stopped":(WIFEXITED( status // )?L"exited":(WIFSIGNALED( status )?L"signaled to exit":L"BLARGH")) ); p->status = status; if (WIFSTOPPED(status)) { p->stopped = 1; } else if (WIFSIGNALED(status) || WIFEXITED(status)) { p->completed = 1; } else { // This should never be reached. p->completed = 1; debug(1, "Process %ld exited abnormally", (long)p->pid); } } void job_mark_process_as_failed(job_t *job, const process_t *failed_proc) { // The given process failed to even lift off (e.g. posix_spawn failed) and so doesn't have a // valid pid. Mark it and everything after it as dead. bool found = false; for (process_ptr_t &p : job->processes) { found = found || (p.get() == failed_proc); if (found) { p->completed = true; } } } /// Handle status update for child \c pid. /// /// \param pid the pid of the process whose status changes /// \param status the status as returned by wait static void handle_child_status(pid_t pid, int status) { job_t *j = NULL; const process_t *found_proc = NULL; job_iterator_t jobs; while (!found_proc && (j = jobs.next())) { process_t *prev = NULL; for (process_ptr_t &p : j->processes) { if (pid == p->pid) { mark_process_status(p.get(), status); found_proc = p.get(); break; } prev = p.get(); } } // If the child process was not killed by a signal or other than SIGINT or SIGQUIT we're done. if (!WIFSIGNALED(status) || (WTERMSIG(status) != SIGINT && WTERMSIG(status) != SIGQUIT)) { return; } if (is_interactive_session) { // In an interactive session, tell the principal parser to skip all blocks we're executing // so control-C returns control to the user. if (found_proc) parser_t::skip_all_blocks(); } else { // Deliver the SIGINT or SIGQUIT signal to ourself since we're not interactive. struct sigaction act; sigemptyset(&act.sa_mask); act.sa_flags = 0; act.sa_handler = SIG_DFL; sigaction(SIGINT, &act, 0); sigaction(SIGQUIT, &act, 0); kill(getpid(), WTERMSIG(status)); } } process_t::process_t() {} job_t::job_t(job_id_t jobid, io_chain_t bio) : block_io(std::move(bio)), pgid(INVALID_PID), tmodes(), job_id(jobid), flags(0) {} job_t::~job_t() { release_job_id(job_id); } /// Return all the IO redirections. Start with the block IO, then walk over the processes. io_chain_t job_t::all_io_redirections() const { io_chain_t result = this->block_io; for (const process_ptr_t &p : this->processes) { result.append(p->io_chain()); } return result; } typedef unsigned int process_generation_count_t; /// A static value tracking how many SIGCHLDs we have seen. This is only ever modified from within /// the SIGCHLD signal handler, and therefore does not need atomics or locks. static volatile process_generation_count_t s_sigchld_generation_cnt = 0; /// If we have received a SIGCHLD signal, reap exited children of fully-constructed jobs. We cannot /// reap **all** children (as in, `waitpid(-1, ...)`) since that may reap a pgrp leader that has /// exited but has another process in its job that has yet to launch and join its pgrp (#5219). /// If await is false, this returns immediately if no SIGCHLD has been received. If await is true, /// this waits for one. Returns true if something was processed. /// This returns the number of children processed, or -1 on error. static int process_mark_finished_children(bool wants_await) { ASSERT_IS_MAIN_THREAD(); // A static value tracking the SIGCHLD gen count at the time we last processed it. When this is // different from s_sigchld_generation_cnt, it indicates there may be unreaped processes. // There may not be if we reaped them via the other waitpid path. This is only ever modified // from the main thread, and not from a signal handler. static process_generation_count_t s_last_sigchld_generation_cnt = 0; int processed_count = 0; bool got_error = false; // The critical read. This fetches a value which is only written in the signal handler. This // needs to be an atomic read (we'd use sig_atomic_t, if we knew that were unsigned - // fortunately aligned unsigned int is atomic on pretty much any modern chip.) It also needs to // occur before we start reaping, since the signal handler can be invoked at any point. const process_generation_count_t local_count = s_sigchld_generation_cnt; // Determine whether we have children to process. Note that we can't reliably use the difference // because a single SIGCHLD may be delivered for multiple children - see #1768. Also if we are // awaiting, we always process. bool wants_waitpid = wants_await || local_count != s_last_sigchld_generation_cnt; if (wants_waitpid) { for (;;) { // Call waitpid until we get 0/ECHILD. If we wait, it's only on the first iteration. So // we want to set NOHANG (don't wait) unless wants_await is true and this is the first // iteration. int options = WUNTRACED; if (!(wants_await && processed_count == 0)) { options |= WNOHANG; } int status = -1; pid_t pid = 0; bool any_jobs = false; // Reap only processes belonging to fully-constructed jobs to prevent reaping of processes // before other processes in the same process group have a chance to join their pgrp. job_t *j; job_iterator_t jobs; while ((j = jobs.next())) { any_jobs = true; if (j->pgid == INVALID_PID || !j->get_flag(JOB_CONSTRUCTED)) { // Job has not been fully constructed yet debug(4, "Skipping iteration of not fully constructed job %d", j->pgid); continue; } assert(j->pgid != 0); debug(4, "Waiting on processes from job %d", j->pgid); pid = waitpid(-1 * j->pgid, &status, options); if (pid != 0) { // We'll handle this below break; } } if (!any_jobs) { debug(4, "No jobs found to wait for!"); } if (pid > 0) { handle_child_status(pid, status); processed_count += 1; continue; } else if (pid == 0) { // No ready-and-waiting children, we're done. break; } else { // This indicates an error. One likely failure is ECHILD (no children), which we // break on, and is not considered an error. The other likely failure is EINTR, // which means we got a signal, which is considered an error. got_error = (errno != ECHILD); break; } } } if (got_error) { return -1; } s_last_sigchld_generation_cnt = local_count; return processed_count; } /// This is called from a signal handler. The signal is always SIGCHLD. void job_handle_signal(int signal, siginfo_t *info, void *context) { UNUSED(signal); UNUSED(info); UNUSED(context); // This is the only place that this generation count is modified. It's OK if it overflows. s_sigchld_generation_cnt += 1; } /// Given a command like "cat file", truncate it to a reasonable length. static wcstring truncate_command(const wcstring &cmd) { const size_t max_len = 32; if (cmd.size() <= max_len) { // No truncation necessary. return cmd; } // Truncation required. const size_t ellipsis_length = wcslen(ellipsis_str); //no need for wcwidth size_t trunc_length = max_len - ellipsis_length; // Eat trailing whitespace. while (trunc_length > 0 && iswspace(cmd.at(trunc_length - 1))) { trunc_length -= 1; } wcstring result = wcstring(cmd, 0, trunc_length); // Append ellipsis. result.append(ellipsis_str); return result; } /// Format information about job status for the user to look at. typedef enum { JOB_STOPPED, JOB_ENDED } job_status_t; static void format_job_info(const job_t *j, job_status_t status) { const wchar_t *msg = L"Job %d, '%ls' has ended"; // this is the most common status msg if (status == JOB_STOPPED) msg = L"Job %d, '%ls' has stopped"; fwprintf(stdout, L"\r"); fwprintf(stdout, _(msg), j->job_id, truncate_command(j->command()).c_str()); fflush(stdout); if (cur_term) { tputs(clr_eol, 1, &writeb); } else { fwprintf(stdout, L"\x1B[K"); } fwprintf(stdout, L"\n"); } void proc_fire_event(const wchar_t *msg, int type, pid_t pid, int status) { event.type = type; event.param1.pid = pid; event.arguments.push_back(msg); event.arguments.push_back(to_string(pid)); event.arguments.push_back(to_string(status)); event_fire(&event); event.arguments.resize(0); } static int process_clean_after_marking(bool allow_interactive) { ASSERT_IS_MAIN_THREAD(); job_t *jnext; int found = 0; // this function may fire an event handler, we do not want to call ourselves recursively (to avoid // infinite recursion). static bool locked = false; if (locked) { return 0; } locked = true; // this may be invoked in an exit handler, after the TERM has been torn down // don't try to print in that case (#3222) const bool interactive = allow_interactive && cur_term != NULL; job_iterator_t jobs; const size_t job_count = jobs.count(); jnext = jobs.next(); while (jnext) { job_t *j = jnext; jnext = jobs.next(); // If we are reaping only jobs who do not need status messages sent to the console, do not // consider reaping jobs that need status messages. if ((!j->get_flag(JOB_SKIP_NOTIFICATION)) && (!interactive) && (!j->get_flag(JOB_FOREGROUND))) { continue; } for (const process_ptr_t &p : j->processes) { int s; if (!p->completed) continue; if (!p->pid) continue; s = p->status; // TODO: The generic process-exit event is useless and unused. // Remove this in future. proc_fire_event(L"PROCESS_EXIT", EVENT_EXIT, p->pid, (WIFSIGNALED(s) ? -1 : WEXITSTATUS(s))); // Ignore signal SIGPIPE.We issue it ourselves to the pipe writer when the pipe reader // dies. if (!WIFSIGNALED(s) || WTERMSIG(s) == SIGPIPE) { continue; } // Handle signals other than SIGPIPE. int proc_is_job = (p->is_first_in_job && p->is_last_in_job); if (proc_is_job) j->set_flag(JOB_NOTIFIED, true); // Always report crashes. if (j->get_flag(JOB_SKIP_NOTIFICATION) && !contains(crashsignals,WTERMSIG(p->status))) { continue; } // Print nothing if we get SIGINT in the foreground process group, to avoid spamming // obvious stuff on the console (#1119). If we get SIGINT for the foreground // process, assume the user typed ^C and can see it working. It's possible they // didn't, and the signal was delivered via pkill, etc., but the SIGINT/SIGTERM // distinction is precisely to allow INT to be from a UI // and TERM to be programmatic, so this assumption is keeping with the design of // signals. If echoctl is on, then the terminal will have written ^C to the console. // If off, it won't have. We don't echo ^C either way, so as to respect the user's // preference. if (WTERMSIG(p->status) != SIGINT || !j->get_flag(JOB_FOREGROUND)) { if (proc_is_job) { // We want to report the job number, unless it's the only job, in which case // we don't need to. const wcstring job_number_desc = (job_count == 1) ? wcstring() : format_string(_(L"Job %d, "), j->job_id); fwprintf(stdout, _(L"%ls: %ls\'%ls\' terminated by signal %ls (%ls)"), program_name, job_number_desc.c_str(), truncate_command(j->command()).c_str(), sig2wcs(WTERMSIG(p->status)), signal_get_desc(WTERMSIG(p->status))); } else { const wcstring job_number_desc = (job_count == 1) ? wcstring() : format_string(L"from job %d, ", j->job_id); const wchar_t *fmt = _(L"%ls: Process %d, \'%ls\' %ls\'%ls\' terminated by signal %ls (%ls)"); fwprintf(stdout, fmt, program_name, p->pid, p->argv0(), job_number_desc.c_str(), truncate_command(j->command()).c_str(), sig2wcs(WTERMSIG(p->status)), signal_get_desc(WTERMSIG(p->status))); } if (cur_term != NULL) { tputs(clr_eol, 1, &writeb); } else { fwprintf(stdout, L"\x1B[K"); // no term set up - do clr_eol manually } fwprintf(stdout, L"\n"); } found = 1; p->status = 0; // clear status so it is not reported more than once } // If all processes have completed, tell the user the job has completed and delete it from // the active job list. if (job_is_completed(j)) { if (!j->get_flag(JOB_FOREGROUND) && !j->get_flag(JOB_NOTIFIED) && !j->get_flag(JOB_SKIP_NOTIFICATION)) { format_job_info(j, JOB_ENDED); found = 1; } // TODO: The generic process-exit event is useless and unused. // Remove this in future. // Don't fire the exit-event for jobs with pgid INVALID_PID. // That's our "sentinel" pgid, for jobs that don't (yet) have a pgid, // or jobs that consist entirely of builtins (and hence don't have a process). // This causes issues if fish is PID 2, which is quite common on WSL. See #4582. if (j->pgid != INVALID_PID) { proc_fire_event(L"JOB_EXIT", EVENT_EXIT, -j->pgid, 0); } proc_fire_event(L"JOB_EXIT", EVENT_JOB_ID, j->job_id, 0); job_remove(j); } else if (job_is_stopped(j) && !j->get_flag(JOB_NOTIFIED)) { // Notify the user about newly stopped jobs. if (!j->get_flag(JOB_SKIP_NOTIFICATION)) { format_job_info(j, JOB_STOPPED); found = 1; } j->set_flag(JOB_NOTIFIED, true); } } if (found) fflush(stdout); locked = false; return found; } int job_reap(bool allow_interactive) { ASSERT_IS_MAIN_THREAD(); int found = 0; process_mark_finished_children(false); // Preserve the exit status. const int saved_status = proc_get_last_status(); found = process_clean_after_marking(allow_interactive); // Restore the exit status. proc_set_last_status(saved_status); return found; } #ifdef HAVE__PROC_SELF_STAT /// Maximum length of a /proc/[PID]/stat filename. #define FN_SIZE 256 /// Get the CPU time for the specified process. unsigned long proc_get_jiffies(process_t *p) { if (p->pid <= 0) return 0; wchar_t fn[FN_SIZE]; char state; int pid, ppid, pgrp, session, tty_nr, tpgid, exit_signal, processor; long int cutime, cstime, priority, nice, placeholder, itrealvalue, rss; unsigned long int flags, minflt, cminflt, majflt, cmajflt, utime, stime, starttime, vsize, rlim, startcode, endcode, startstack, kstkesp, kstkeip, signal, blocked, sigignore, sigcatch, wchan, nswap, cnswap; char comm[1024]; swprintf(fn, FN_SIZE, L"/proc/%d/stat", p->pid); FILE *f = wfopen(fn, "r"); if (!f) return 0; // TODO: replace the use of fscanf() as it is brittle and should never be used. int count = fscanf(f, "%9d %1023s %c %9d %9d %9d %9d %9d %9lu " "%9lu %9lu %9lu %9lu %9lu %9lu %9ld %9ld %9ld " "%9ld %9ld %9ld %9lu %9lu %9ld %9lu %9lu %9lu " "%9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu %9lu " "%9lu %9d %9d ", &pid, comm, &state, &ppid, &pgrp, &session, &tty_nr, &tpgid, &flags, &minflt, &cminflt, &majflt, &cmajflt, &utime, &stime, &cutime, &cstime, &priority, &nice, &placeholder, &itrealvalue, &starttime, &vsize, &rss, &rlim, &startcode, &endcode, &startstack, &kstkesp, &kstkeip, &signal, &blocked, &sigignore, &sigcatch, &wchan, &nswap, &cnswap, &exit_signal, &processor); fclose(f); if (count < 17) return 0; return utime + stime + cutime + cstime; } /// Update the CPU time for all jobs. void proc_update_jiffies() { job_t *job; job_iterator_t j; for (job = j.next(); job; job = j.next()) { for (process_ptr_t &p : job->processes) { gettimeofday(&p->last_time, 0); p->last_jiffies = proc_get_jiffies(p.get()); } } } #endif /// Check if there are buffers associated with the job, and select on them for a while if available. /// /// \param j the job to test /// /// \return 1 if buffers were available, zero otherwise static int select_try(job_t *j) { fd_set fds; int maxfd = -1; FD_ZERO(&fds); const io_chain_t chain = j->all_io_redirections(); for (size_t idx = 0; idx < chain.size(); idx++) { const io_data_t *io = chain.at(idx).get(); if (io->io_mode == IO_BUFFER) { const io_pipe_t *io_pipe = static_cast(io); int fd = io_pipe->pipe_fd[0]; // fwprintf( stderr, L"fd %d on job %ls\n", fd, j->command ); FD_SET(fd, &fds); maxfd = maxi(maxfd, fd); debug(3, L"select_try on %d", fd); } } if (maxfd >= 0) { int retval; struct timeval tv; tv.tv_sec = 0; tv.tv_usec = 10000; retval = select(maxfd + 1, &fds, 0, 0, &tv); if (retval == 0) { debug(3, L"select_try hit timeout"); } return retval > 0; } return -1; } /// Read from descriptors until they are empty. /// /// \param j the job to test static void read_try(job_t *j) { io_buffer_t *buff = NULL; // Find the last buffer, which is the one we want to read from. const io_chain_t chain = j->all_io_redirections(); for (size_t idx = 0; idx < chain.size(); idx++) { io_data_t *d = chain.at(idx).get(); if (d->io_mode == IO_BUFFER) { buff = static_cast(d); } } if (buff) { debug(3, L"proc::read_try('%ls')", j->command_wcstr()); while (1) { char b[BUFFER_SIZE]; long len = read_blocked(buff->pipe_fd[0], b, BUFFER_SIZE); if (len == 0) { break; } else if (len < 0) { if (errno != EAGAIN) { debug(1, _(L"An error occured while reading output from code block")); wperror(L"read_try"); } break; } else { buff->append(b, len); } } } } /// Give ownership of the terminal to the specified job. /// /// \param j The job to give the terminal to. /// \param cont If this variable is set, we are giving back control to a job that has previously /// been stopped. In that case, we need to set the terminal attributes to those saved in the job. bool terminal_give_to_job(const job_t *j, bool cont) { errno = 0; if (j->pgid == 0) { debug(2, "terminal_give_to_job() returning early due to no process group"); return true; } signal_block(); // It may not be safe to call tcsetpgrp if we've already done so, as at that point we are no // longer the controlling process group for the terminal and no longer have permission to set // the process group that is in control, causing tcsetpgrp to return EPERM, even though that's // not the documented behavior in tcsetpgrp(3), which instead says other bad things will happen // (it says SIGTTOU will be sent to all members of the background *calling* process group, but // it's more complicated than that, SIGTTOU may or may not be sent depending on the TTY // configuration and whether or not signal handlers for SIGTTOU are installed. Read: // http://curiousthing.org/sigttin-sigttou-deep-dive-linux In all cases, our goal here was just // to hand over control of the terminal to this process group, which is a no-op if it's already // been done. if (j->pgid == INVALID_PID || tcgetpgrp(STDIN_FILENO) == j->pgid) { debug(4, L"Process group %d already has control of terminal\n", j->pgid); } else { debug(4, L"Attempting to bring process group to foreground via tcsetpgrp for job->pgid %d\n", j->pgid); // The tcsetpgrp(2) man page says that EPERM is thrown if "pgrp has a supported value, but // is not the process group ID of a process in the same session as the calling process." // Since we _guarantee_ that this isn't the case (the child calls setpgid before it calls // SIGSTOP, and the child was created in the same session as us), it seems that EPERM is // being thrown because of an caching issue - the call to tcsetpgrp isn't seeing the // newly-created process group just yet. On this developer's test machine (WSL running Linux // 4.4.0), EPERM does indeed disappear on retry. The important thing is that we can // guarantee the process isn't going to exit while we wait (which would cause us to possibly // block indefinitely). while (tcsetpgrp(STDIN_FILENO, j->pgid) != 0) { debug(3, "tcsetpgrp failed"); bool pgroup_terminated = false; if (errno == EINTR) { ; // Always retry on EINTR, see comments in tcsetattr EINTR code below. } else if (errno == EINVAL) { // OS X returns EINVAL if the process group no longer lives. Probably other OSes, // too. Unlike EPERM below, EINVAL can only happen if the process group has // terminated. pgroup_terminated = true; } else if (errno == EPERM) { // Retry so long as this isn't because the process group is dead. int wait_result = waitpid(-1 * j->pgid, &wait_result, WNOHANG); if (wait_result == -1) { // Note that -1 is technically an "error" for waitpid in the sense that an // invalid argument was specified because no such process group exists any // longer. This is the observed behavior on Linux 4.4.0. a "success" result // would mean processes from the group still exist but is still running in some // state or the other. pgroup_terminated = true; } else { // Debug the original tcsetpgrp error (not the waitpid errno) to the log, and // then retry until not EPERM or the process group has exited. debug(2, L"terminal_give_to_job(): EPERM.\n", j->pgid); } } else { if (errno == ENOTTY) redirect_tty_output(); debug(1, _(L"Could not send job %d ('%ls') with pgid %d to foreground"), j->job_id, j->command_wcstr(), j->pgid); wperror(L"tcsetpgrp"); signal_unblock(); return false; } if (pgroup_terminated) { // All processes in the process group has exited. Since we force all child procs to // SIGSTOP on startup, the only way that can happen is if the very last process in // the group terminated, and didn't need to access the terminal, otherwise it would // have hung waiting for terminal IO (SIGTTIN). We can ignore this. debug(3, L"tcsetpgrp called but process group %d has terminated.\n", j->pgid); mark_job_complete(j); signal_unblock(); return true; } } } if (cont) { int result = -1; // TODO: Remove this EINTR loop since we have blocked all signals and thus cannot be // interrupted. I'm leaving it in place because all of the logic involving controlling // terminal management is more than a little opaque and smacks of voodoo programming. errno = EINTR; while (result == -1 && errno == EINTR) { result = tcsetattr(STDIN_FILENO, TCSADRAIN, &j->tmodes); } if (result == -1) { if (errno == ENOTTY) redirect_tty_output(); debug(1, _(L"Could not send job %d ('%ls') to foreground"), j->job_id, j->command_wcstr()); wperror(L"tcsetattr"); signal_unblock(); return false; } } signal_unblock(); return true; } pid_t terminal_acquire_before_builtin(int job_pgid) { pid_t selfpid = getpid(); pid_t current_owner = tcgetpgrp(STDIN_FILENO); if (current_owner >= 0 && current_owner != selfpid && current_owner == job_pgid) { if (tcsetpgrp(STDIN_FILENO, selfpid) == 0) { return current_owner; } } return -1; } /// Returns control of the terminal to the shell, and saves the terminal attribute state to the job, /// so that we can restore the terminal ownership to the job at a later time. static bool terminal_return_from_job(job_t *j) { errno = 0; if (j->pgid == 0) { debug(2, "terminal_return_from_job() returning early due to no process group"); return true; } signal_block(); if (tcsetpgrp(STDIN_FILENO, getpgrp()) == -1) { if (errno == ENOTTY) redirect_tty_output(); debug(1, _(L"Could not return shell to foreground")); wperror(L"tcsetpgrp"); signal_unblock(); return false; } // Save jobs terminal modes. if (tcgetattr(STDIN_FILENO, &j->tmodes)) { if (errno == EIO) redirect_tty_output(); debug(1, _(L"Could not return shell to foreground")); wperror(L"tcgetattr"); signal_unblock(); return false; } // Disabling this per // https://github.com/adityagodbole/fish-shell/commit/9d229cd18c3e5c25a8bd37e9ddd3b67ddc2d1b72 On // Linux, 'cd . ; ftp' prevents you from typing into the ftp prompt. See // https://github.com/fish-shell/fish-shell/issues/121 #if 0 // Restore the shell's terminal modes. if (tcsetattr(STDIN_FILENO, TCSADRAIN, &shell_modes) == -1) { if (errno == EIO) redirect_tty_output(); debug(1, _(L"Could not return shell to foreground")); wperror(L"tcsetattr"); return false; } #endif signal_unblock(); return true; } void job_continue(job_t *j, bool cont) { // Put job first in the job list. job_promote(j); j->set_flag(JOB_NOTIFIED, false); CHECK_BLOCK(); debug(4, L"%ls job %d, gid %d (%ls), %ls, %ls", cont ? L"Continue" : L"Start", j->job_id, j->pgid, j->command_wcstr(), job_is_completed(j) ? L"COMPLETED" : L"UNCOMPLETED", is_interactive ? L"INTERACTIVE" : L"NON-INTERACTIVE"); if (!job_is_completed(j)) { if (j->get_flag(JOB_TERMINAL) && j->get_flag(JOB_FOREGROUND)) { // Put the job into the foreground. Hack: ensure that stdin is marked as blocking first // (issue #176). make_fd_blocking(STDIN_FILENO); if (!terminal_give_to_job(j, cont)) return; } // Send the job a continue signal, if necessary. if (cont) { for (process_ptr_t &p : j->processes) p->stopped = false; if (j->get_flag(JOB_CONTROL)) { if (killpg(j->pgid, SIGCONT)) { wperror(L"killpg (SIGCONT)"); return; } } else { for (const process_ptr_t &p : j->processes) { if (kill(p->pid, SIGCONT) < 0) { wperror(L"kill (SIGCONT)"); return; } } } } if (j->get_flag(JOB_FOREGROUND)) { // Look for finished processes first, to avoid select() if it's already done. process_mark_finished_children(false); // Wait for job to report. while (!reader_exit_forced() && !job_is_stopped(j) && !job_is_completed(j)) { switch (select_try(j)) { case 1: { // debug(1, L"select_try() 1" ); read_try(j); process_mark_finished_children(false); break; } case 0: { // debug(1, L"select_try() 0" ); // No FDs are ready. Look for finished processes. process_mark_finished_children(true); break; } case -1: { // debug(1, L"select_try() -1" ); // If there is no funky IO magic, we can use waitpid instead of handling // child deaths through signals. This gives a rather large speed boost (A // factor 3 startup time improvement on my 300 MHz machine) on short-lived // jobs. // // This will return early if we get a signal, like SIGHUP. process_mark_finished_children(true); break; } default: { DIE("unexpected return value from select_try()"); break; } } } } } if (j->get_flag(JOB_FOREGROUND)) { if (job_is_completed(j)) { // It's possible that the job will produce output and exit before we've even read from // it. // // We'll eventually read the output, but it may be after we've executed subsequent calls // This is why my prompt colors kept getting screwed up - the builtin echo calls // were sometimes having their output combined with the set_color calls in the wrong // order! read_try(j); const std::unique_ptr &p = j->processes.back(); // Mark process status only if we are in the foreground and the last process in a pipe, // and it is not a short circuited builtin. if ((WIFEXITED(p->status) || WIFSIGNALED(p->status)) && p->pid) { int status = proc_format_status(p->status); // fwprintf(stdout, L"setting status %d for %ls\n", job_get_flag( j, JOB_NEGATE // )?!status:status, j->command); proc_set_last_status(j->get_flag(JOB_NEGATE) ? !status : status); } } // Put the shell back in the foreground. if (j->get_flag(JOB_TERMINAL) && j->get_flag(JOB_FOREGROUND)) { terminal_return_from_job(j); } } } int proc_format_status(int status) { if (WIFSIGNALED(status)) { return 128 + WTERMSIG(status); } else if (WIFEXITED(status)) { return WEXITSTATUS(status); } return status; } void proc_sanity_check() { const job_t *fg_job = NULL; job_iterator_t jobs; while (const job_t *j = jobs.next()) { if (!j->get_flag(JOB_CONSTRUCTED)) continue; // More than one foreground job? if (j->get_flag(JOB_FOREGROUND) && !(job_is_stopped(j) || job_is_completed(j))) { if (fg_job) { debug(0, _(L"More than one job in foreground: job 1: '%ls' job 2: '%ls'"), fg_job->command_wcstr(), j->command_wcstr()); sanity_lose(); } fg_job = j; } for (const process_ptr_t &p : j->processes) { // Internal block nodes do not have argv - see issue #1545. bool null_ok = (p->type == INTERNAL_BLOCK_NODE); validate_pointer(p->get_argv(), _(L"Process argument list"), null_ok); validate_pointer(p->argv0(), _(L"Process name"), null_ok); if ((p->stopped & (~0x00000001)) != 0) { debug(0, _(L"Job '%ls', process '%ls' has inconsistent state \'stopped\'=%d"), j->command_wcstr(), p->argv0(), p->stopped); sanity_lose(); } if ((p->completed & (~0x00000001)) != 0) { debug(0, _(L"Job '%ls', process '%ls' has inconsistent state \'completed\'=%d"), j->command_wcstr(), p->argv0(), p->completed); sanity_lose(); } } } } void proc_push_interactive(int value) { ASSERT_IS_MAIN_THREAD(); int old = is_interactive; interactive_stack.push_back(is_interactive); is_interactive = value; if (old != value) signal_set_handlers(); } void proc_pop_interactive() { ASSERT_IS_MAIN_THREAD(); int old = is_interactive; is_interactive = interactive_stack.back(); interactive_stack.pop_back(); if (is_interactive != old) signal_set_handlers(); } pid_t proc_wait_any() { int pid_status; pid_t pid = waitpid(-1, &pid_status, WUNTRACED); if (pid == -1) return -1; handle_child_status(pid, pid_status); process_clean_after_marking(is_interactive); return pid; }