// The fish parser. Contains functions for parsing and evaluating code. #include "config.h" // IWYU pragma: keep #include "parser.h" #include #include #include #include #include #include #include "ast.h" #include "common.h" #include "env.h" #include "event.h" #include "expand.h" #include "fallback.h" // IWYU pragma: keep #include "flog.h" #include "function.h" #include "intern.h" #include "parse_constants.h" #include "parse_execution.h" #include "parse_util.h" #include "proc.h" #include "reader.h" #include "sanity.h" #include "signal.h" #include "wutil.h" // IWYU pragma: keep class io_chain_t; /// Error for evaluating in illegal scope. #define INVALID_SCOPE_ERR_MSG _(L"Tried to evaluate commands using invalid block type '%ls'") /// While block description. #define WHILE_BLOCK N_(L"'while' block") /// For block description. #define FOR_BLOCK N_(L"'for' block") /// Breakpoint block. #define BREAKPOINT_BLOCK N_(L"block created by breakpoint") /// Variable assignment block. #define VARIABLE_ASSIGNMENT_BLOCK N_(L"block created by variable assignment prefixing a command") /// If block description. #define IF_BLOCK N_(L"'if' conditional block") /// Function invocation block description. #define FUNCTION_CALL_BLOCK N_(L"function invocation block") /// Function invocation block description. #define FUNCTION_CALL_NO_SHADOW_BLOCK N_(L"function invocation block with no variable shadowing") /// Switch block description. #define SWITCH_BLOCK N_(L"'switch' block") /// Top block description. #define TOP_BLOCK N_(L"global root block") /// Command substitution block description. #define SUBST_BLOCK N_(L"command substitution block") /// Begin block description. #define BEGIN_BLOCK N_(L"'begin' unconditional block") /// Source block description. #define SOURCE_BLOCK N_(L"block created by the . builtin") /// Source block description. #define EVENT_BLOCK N_(L"event handler block") /// Unknown block description. #define UNKNOWN_BLOCK N_(L"unknown/invalid block") // Given a file path, return something nicer. Currently we just "unexpand" tildes. static wcstring user_presentable_path(const wcstring &path, const environment_t &vars) { return replace_home_directory_with_tilde(path, vars); } parser_t::parser_t(std::shared_ptr vars) : variables(std::move(vars)) { assert(variables.get() && "Null variables in parser initializer"); int cwd = open_cloexec(".", O_RDONLY); if (cwd < 0) { perror("Unable to open the current working directory"); return; } libdata().cwd_fd = std::make_shared(cwd); } parser_t::parser_t() : parser_t(env_stack_t::principal_ref()) {} // Out of line destructor to enable forward declaration of parse_execution_context_t parser_t::~parser_t() = default; std::shared_ptr parser_t::principal{new parser_t()}; parser_t &parser_t::principal_parser() { ASSERT_IS_MAIN_THREAD(); return *principal; } int parser_t::set_var_and_fire(const wcstring &key, env_mode_flags_t mode, wcstring_list_t vals) { std::vector events; int res = vars().set(key, mode, std::move(vals), &events); for (const auto &evt : events) { event_fire(*this, evt); } return res; } int parser_t::set_var_and_fire(const wcstring &key, env_mode_flags_t mode, wcstring val) { wcstring_list_t vals; vals.push_back(std::move(val)); return set_var_and_fire(key, mode, std::move(vals)); } int parser_t::set_empty_var_and_fire(const wcstring &key, env_mode_flags_t mode) { return set_var_and_fire(key, mode, wcstring_list_t{}); } // Given a new-allocated block, push it onto our block list, acquiring ownership. block_t *parser_t::push_block(block_t &&block) { block_t new_current{block}; const enum block_type_t type = new_current.type(); new_current.src_lineno = parser_t::get_lineno(); wcstring func = new_current.function_name; const wchar_t *filename = parser_t::current_filename(); if (filename != nullptr) { new_current.src_filename = intern(filename); } // Types top and subst are not considered blocks for the purposes of `status is-block`. if (type != block_type_t::top && type != block_type_t::subst) { libdata().is_block = true; } if (type == block_type_t::breakpoint) { libdata().is_breakpoint = true; } if (new_current.type() != block_type_t::top) { bool shadow = (type == block_type_t::function_call); vars().push(shadow); new_current.wants_pop_env = true; } // Push it onto our list and return a pointer to it. // Note that deques do not move their contents so this is safe. this->block_list.push_front(std::move(new_current)); return &this->block_list.front(); } void parser_t::pop_block(const block_t *expected) { assert(expected == this->current_block()); assert(!block_list.empty() && "empty block list"); // Acquire ownership out of the block list. block_t old = block_list.front(); block_list.pop_front(); if (old.wants_pop_env) vars().pop(); // Figure out if `status is-block` should consider us to be in a block now. bool new_is_block = false; for (const auto &b : block_list) { if (b.type() != block_type_t::top && b.type() != block_type_t::subst) { new_is_block = true; break; } } libdata().is_block = new_is_block; // Are we still in a breakpoint? bool new_is_breakpoint = false; for (const auto &b : block_list) { if (b.type() == block_type_t::breakpoint) { new_is_breakpoint = true; break; } } libdata().is_breakpoint = new_is_breakpoint; } const wchar_t *parser_t::get_block_desc(block_type_t block) { switch (block) { case block_type_t::while_block: return WHILE_BLOCK; case block_type_t::for_block: return FOR_BLOCK; case block_type_t::if_block: return IF_BLOCK; case block_type_t::function_call: return FUNCTION_CALL_BLOCK; case block_type_t::function_call_no_shadow: return FUNCTION_CALL_NO_SHADOW_BLOCK; case block_type_t::switch_block: return SWITCH_BLOCK; case block_type_t::subst: return SUBST_BLOCK; case block_type_t::top: return TOP_BLOCK; case block_type_t::begin: return BEGIN_BLOCK; case block_type_t::source: return SOURCE_BLOCK; case block_type_t::event: return EVENT_BLOCK; case block_type_t::breakpoint: return BREAKPOINT_BLOCK; case block_type_t::variable_assignment: return VARIABLE_ASSIGNMENT_BLOCK; } return _(UNKNOWN_BLOCK); } #if 0 // TODO: Lint says this isn't used (which is true). Should this be removed? wcstring parser_t::block_stack_description() const { wcstring result; size_t idx = this->block_count(); size_t spaces = 0; while (idx--) { if (spaces > 0) { result.push_back(L'\n'); } for (size_t j = 0; j < spaces; j++) { result.push_back(L' '); } result.append(this->block_at_index(idx)->description()); spaces++; } return result; } #endif const block_t *parser_t::block_at_index(size_t idx) const { return idx < block_list.size() ? &block_list[idx] : nullptr; } block_t *parser_t::block_at_index(size_t idx) { return idx < block_list.size() ? &block_list[idx] : nullptr; } block_t *parser_t::current_block() { return block_at_index(0); } /// Print profiling information to the specified stream. static void print_profile(const std::vector> &items, FILE *out) { for (size_t pos = 0; pos < items.size(); pos++) { const profile_item_t *me, *prev; size_t i; int my_time; me = items.at(pos).get(); if (me->skipped) { continue; } my_time = me->parse + me->exec; for (i = pos + 1; i < items.size(); i++) { prev = items.at(i).get(); if (prev->skipped) { continue; } if (prev->level <= me->level) { break; } if (prev->level > me->level + 1) { continue; } my_time -= prev->parse + prev->exec; } if (me->cmd.empty()) { continue; } if (std::fwprintf(out, L"%d\t%d\t", my_time, me->parse + me->exec) < 0) { wperror(L"fwprintf"); return; } for (i = 0; i < me->level; i++) { if (std::fwprintf(out, L"-") < 0) { wperror(L"fwprintf"); return; } } if (std::fwprintf(out, L"> %ls\n", me->cmd.c_str()) < 0) { wperror(L"fwprintf"); return; } } } void parser_t::emit_profiling(const char *path) const { // Save profiling information. OK to not use CLO_EXEC here because this is called while fish is // dying (and hence will not fork). FILE *f = fopen(path, "w"); if (!f) { FLOGF(warning, _(L"Could not write profiling information to file '%s'"), path); } else { if (std::fwprintf(f, _(L"Time\tSum\tCommand\n"), profile_items.size()) < 0) { wperror(L"fwprintf"); } else { print_profile(profile_items, f); } if (fclose(f)) { wperror(L"fclose"); } } } completion_list_t parser_t::expand_argument_list(const wcstring &arg_list_src, expand_flags_t eflags, const operation_context_t &ctx) { // Parse the string as an argument list. auto ast = ast::ast_t::parse_argument_list(arg_list_src); if (ast.errored()) { // Failed to parse. Here we expect to have reported any errors in test_args. return {}; } // Get the root argument list and extract arguments from it. completion_list_t result; const ast::freestanding_argument_list_t *list = ast.top()->as(); for (const ast::argument_t &arg : list->arguments) { wcstring arg_src = arg.source(arg_list_src); if (expand_string(arg_src, &result, eflags, ctx) == expand_result_t::error) { break; // failed to expand a string } } return result; } std::shared_ptr parser_t::shared() { return shared_from_this(); } cancel_checker_t parser_t::cancel_checker() const { return [] { return signal_check_cancel() != 0; }; } operation_context_t parser_t::context() { return operation_context_t{this->shared(), this->vars(), this->cancel_checker()}; } /// Append stack trace info for the block \p b to \p trace. static void append_block_description_to_stack_trace(const parser_t &parser, const block_t &b, wcstring &trace) { bool print_call_site = false; switch (b.type()) { case block_type_t::function_call: case block_type_t::function_call_no_shadow: { append_format(trace, _(L"in function '%ls'"), b.function_name.c_str()); // Print arguments on the same line. wcstring args_str; for (const wcstring &arg : b.function_args) { if (!args_str.empty()) args_str.push_back(L' '); // We can't quote the arguments because we print this in quotes. // As a special-case, add the empty argument as "". if (!arg.empty()) { args_str.append(escape_string(arg, ESCAPE_ALL | ESCAPE_NO_QUOTED)); } else { args_str.append(L"\"\""); } } if (!args_str.empty()) { // TODO: Escape these. append_format(trace, _(L" with arguments '%ls'"), args_str.c_str()); } trace.push_back('\n'); print_call_site = true; break; } case block_type_t::subst: { append_format(trace, _(L"in command substitution\n")); print_call_site = true; break; } case block_type_t::source: { const wchar_t *source_dest = b.sourced_file; append_format(trace, _(L"from sourcing file %ls\n"), user_presentable_path(source_dest, parser.vars()).c_str()); print_call_site = true; break; } case block_type_t::event: { assert(b.event && "Should have an event"); wcstring description = event_get_desc(parser, *b.event); append_format(trace, _(L"in event handler: %ls\n"), description.c_str()); print_call_site = true; break; } case block_type_t::top: case block_type_t::begin: case block_type_t::switch_block: case block_type_t::while_block: case block_type_t::for_block: case block_type_t::if_block: case block_type_t::breakpoint: case block_type_t::variable_assignment: break; } if (print_call_site) { // Print where the function is called. const wchar_t *file = b.src_filename; if (file) { append_format(trace, _(L"\tcalled on line %d of file %ls\n"), b.src_lineno, user_presentable_path(file, parser.vars()).c_str()); } else if (is_within_fish_initialization()) { append_format(trace, _(L"\tcalled during startup\n")); } } } wcstring parser_t::stack_trace() const { wcstring trace; for (const auto &b : blocks()) { append_block_description_to_stack_trace(*this, b, trace); // Stop at event handler. No reason to believe that any other code is relevant. // // It might make sense in the future to continue printing the stack trace of the code // that invoked the event, if this is a programmatic event, but we can't currently // detect that. if (b.type() == block_type_t::event) break; } return trace; } /// Returns the name of the currently evaluated function if we are currently evaluating a function, /// NULL otherwise. This is tested by moving down the block-scope-stack, checking every block if it /// is of type FUNCTION_CALL. If the caller doesn't specify a starting position in the stack we /// begin with the current block. const wchar_t *parser_t::is_function(size_t idx) const { // PCA: Have to make this a string somehow. ASSERT_IS_MAIN_THREAD(); for (size_t block_idx = idx; block_idx < block_list.size(); block_idx++) { const block_t &b = block_list[block_idx]; if (b.is_function_call()) { return b.function_name.c_str(); } else if (b.type() == block_type_t::source) { // If a function sources a file, obviously that function's offset doesn't // contribute. break; } } return nullptr; } /// Return the function name for the specified stack frame. Default is zero (current frame). /// The special value zero means the function frame immediately above the closest breakpoint frame. const wchar_t *parser_t::get_function_name(int level) { if (level == 0) { // Return the function name for the level preceding the most recent breakpoint. If there // isn't one return the function name for the current level. // Walk until we find a breakpoint, then take the next function. bool found_breakpoint = false; for (const auto &b : block_list) { if (b.type() == block_type_t::breakpoint) { found_breakpoint = true; } else if (found_breakpoint && b.is_function_call()) { return b.function_name.c_str(); } } return nullptr; // couldn't find a breakpoint frame } else if (level == 1) { // Return the function name for the current level. return this->is_function(); } // Level 1 is the topmost function call. Level 2 is its caller. Etc. int funcs_seen = 0; for (const auto &b : block_list) { if (b.is_function_call()) { funcs_seen++; if (funcs_seen == level) { return b.function_name.c_str(); } } } return nullptr; // couldn't find that function level } int parser_t::get_lineno() const { int lineno = -1; if (execution_context) { lineno = execution_context->get_current_line_number(); } return lineno; } const wchar_t *parser_t::current_filename() const { ASSERT_IS_MAIN_THREAD(); for (const auto &b : block_list) { if (b.is_function_call()) { return function_get_definition_file(b.function_name); } else if (b.type() == block_type_t::source) { return b.sourced_file; } } // Fall back to the file being sourced. return libdata().current_filename; } bool parser_t::function_stack_is_overflowing() const { // We are interested in whether the count of functions on the stack exceeds // FISH_MAX_STACK_DEPTH. We don't separately track the number of functions, but we can have a // fast path through the eval_level. If the eval_level is in bounds, so must be the stack depth. if (eval_level <= FISH_MAX_STACK_DEPTH) { return false; } // Count the functions. int depth = 0; for (const auto &b : block_list) { depth += b.is_function_call(); } return depth > FISH_MAX_STACK_DEPTH; } wcstring parser_t::current_line() { if (!execution_context) { return wcstring(); } int source_offset = execution_context->get_current_source_offset(); if (source_offset < 0) { return wcstring(); } const int lineno = this->get_lineno(); const wchar_t *file = this->current_filename(); wcstring prefix; // If we are not going to print a stack trace, at least print the line number and filename. if (!is_interactive() || is_function()) { if (file) { append_format(prefix, _(L"%ls (line %d): "), user_presentable_path(file, vars()).c_str(), lineno); } else if (is_within_fish_initialization()) { append_format(prefix, L"%ls (line %d): ", _(L"Startup"), lineno); } else { append_format(prefix, L"%ls (line %d): ", _(L"Standard input"), lineno); } } bool skip_caret = is_interactive() && !is_function(); // Use an error with empty text. assert(source_offset >= 0); parse_error_t empty_error = {}; empty_error.source_start = source_offset; wcstring line_info = empty_error.describe_with_prefix(execution_context->get_source(), prefix, is_interactive(), skip_caret); if (!line_info.empty()) { line_info.push_back(L'\n'); } line_info.append(this->stack_trace()); return line_info; } void parser_t::job_add(shared_ptr job) { assert(job != nullptr); assert(!job->processes.empty()); job_list.push_front(std::move(job)); } void parser_t::job_promote(job_t *job) { job_list_t::iterator loc; for (loc = job_list.begin(); loc != job_list.end(); ++loc) { if (loc->get() == job) { break; } } assert(loc != job_list.end()); // Move the job to the beginning. std::rotate(job_list.begin(), loc, std::next(loc)); } job_t *parser_t::job_get(job_id_t id) { for (const auto &job : job_list) { if (id <= 0 || job->job_id() == id) return job.get(); } return nullptr; } const job_t *parser_t::job_get(job_id_t id) const { for (const auto &job : job_list) { if (id <= 0 || job->job_id() == id) return job.get(); } return nullptr; } job_t *parser_t::job_get_from_pid(pid_t pid) const { for (const auto &job : jobs()) { for (const process_ptr_t &p : job->processes) { if (p->pid == pid) { return job.get(); } } } return nullptr; } profile_item_t *parser_t::create_profile_item() { profile_item_t *result = nullptr; if (g_profiling_active) { profile_items.push_back(make_unique()); result = profile_items.back().get(); } return result; } eval_res_t parser_t::eval(const wcstring &cmd, const io_chain_t &io, const job_group_ref_t &job_group, enum block_type_t block_type) { // Parse the source into a tree, if we can. parse_error_list_t error_list; if (parsed_source_ref_t ps = parse_source(wcstring{cmd}, parse_flag_none, &error_list)) { return this->eval(ps, io, job_group, block_type); } else { // Get a backtrace. This includes the message. wcstring backtrace_and_desc; this->get_backtrace(cmd, error_list, backtrace_and_desc); // Print it. std::fwprintf(stderr, L"%ls\n", backtrace_and_desc.c_str()); // Set a valid status. this->set_last_statuses(statuses_t::just(STATUS_ILLEGAL_CMD)); bool break_expand = true; return eval_res_t{proc_status_t::from_exit_code(STATUS_ILLEGAL_CMD), break_expand}; } } eval_res_t parser_t::eval(const parsed_source_ref_t &ps, const io_chain_t &io, const job_group_ref_t &job_group, enum block_type_t block_type) { assert(block_type == block_type_t::top || block_type == block_type_t::subst); const auto *job_list = ps->ast.top()->as(); if (!job_list->empty()) { // Execute the top job list. return this->eval_node(ps, *job_list, io, job_group, block_type); } else { auto status = proc_status_t::from_exit_code(get_last_status()); bool break_expand = false; bool was_empty = true; return eval_res_t{status, break_expand, was_empty}; } } template eval_res_t parser_t::eval_node(const parsed_source_ref_t &ps, const T &node, const io_chain_t &block_io, const job_group_ref_t &job_group, block_type_t block_type) { static_assert( std::is_same::value || std::is_same::value, "Unexpected node type"); // Only certain blocks are allowed. assert((block_type == block_type_t::top || block_type == block_type_t::subst) && "Invalid block type"); // If fish itself got a cancel signal, then we want to unwind back to the principal parser. // If we are the principal parser and our block stack is empty, then we want to clear the // signal. // Note this only happens in interactive sessions. In non-interactive sessions, SIGINT will // cause fish to exit. if (int sig = signal_check_cancel()) { if (this == principal.get() && block_list.empty()) { signal_clear_cancel(); } else { return proc_status_t::from_signal(sig); } } // A helper to detect if we got a signal. // This includes both signals sent to fish (user hit control-C while fish is foreground) and // signals from the job group (e.g. some external job terminated with SIGQUIT). auto check_cancel_signal = [=] { // Did fish itself get a signal? int sig = signal_check_cancel(); // Has this job group been cancelled? if (!sig && job_group) sig = job_group->get_cancel_signal(); return sig; }; // If we have a job group which is cancelled, then do nothing. if (int sig = check_cancel_signal()) { return proc_status_t::from_signal(sig); } job_reap(*this, false); // not sure why we reap jobs here // Start it up operation_context_t op_ctx = this->context(); block_t *scope_block = this->push_block(block_t::scope_block(block_type)); // Propogate our job group. op_ctx.job_group = job_group; // Replace the context's cancel checker with one that checks the job group's signal. op_ctx.cancel_checker = [=] { return check_cancel_signal() != 0; }; // Create and set a new execution context. using exc_ctx_ref_t = std::unique_ptr; scoped_push exc(&execution_context, make_unique(ps, op_ctx, block_io)); // Check the exec count so we know if anything got executed. const size_t prev_exec_count = libdata().exec_count; end_execution_reason_t reason = execution_context->eval_node(node, scope_block); const size_t new_exec_count = libdata().exec_count; exc.restore(); this->pop_block(scope_block); job_reap(*this, false); // reap again if (int sig = check_cancel_signal()) { // We were signalled. return proc_status_t::from_signal(sig); } else { auto status = proc_status_t::from_exit_code(this->get_last_status()); bool break_expand = (reason == end_execution_reason_t::error); bool was_empty = !break_expand && prev_exec_count == new_exec_count; return eval_res_t{status, break_expand, was_empty}; } } // Explicit instantiations. TODO: use overloads instead? template eval_res_t parser_t::eval_node(const parsed_source_ref_t &, const ast::statement_t &, const io_chain_t &, const job_group_ref_t &, block_type_t); template eval_res_t parser_t::eval_node(const parsed_source_ref_t &, const ast::job_list_t &, const io_chain_t &, const job_group_ref_t &, block_type_t); void parser_t::get_backtrace(const wcstring &src, const parse_error_list_t &errors, wcstring &output) const { if (!errors.empty()) { const parse_error_t &err = errors.at(0); // Determine if we want to try to print a caret to point at the source error. The // err.source_start <= src.size() check is due to the nasty way that slices work, which is // by rewriting the source. size_t which_line = 0; bool skip_caret = true; if (err.source_start != SOURCE_LOCATION_UNKNOWN && err.source_start <= src.size()) { // Determine which line we're on. which_line = 1 + std::count(src.begin(), src.begin() + err.source_start, L'\n'); // Don't include the caret if we're interactive, this is the first line of text, and our // source is at its beginning, because then it's obvious. skip_caret = (is_interactive() && which_line == 1 && err.source_start == 0); } wcstring prefix; const wchar_t *filename = this->current_filename(); if (filename) { if (which_line > 0) { prefix = format_string(_(L"%ls (line %lu): "), user_presentable_path(filename, vars()).c_str(), which_line); } else { prefix = format_string(_(L"%ls: "), user_presentable_path(filename, vars()).c_str()); } } else { prefix = L"fish: "; } const wcstring description = err.describe_with_prefix(src, prefix, is_interactive(), skip_caret); if (!description.empty()) { output.append(description); output.push_back(L'\n'); } output.append(this->stack_trace()); } } block_t::block_t(block_type_t t) : block_type(t) {} block_t::~block_t() = default; wcstring block_t::description() const { wcstring result; switch (this->type()) { case block_type_t::while_block: { result.append(L"while"); break; } case block_type_t::for_block: { result.append(L"for"); break; } case block_type_t::if_block: { result.append(L"if"); break; } case block_type_t::function_call: { result.append(L"function_call"); break; } case block_type_t::function_call_no_shadow: { result.append(L"function_call_no_shadow"); break; } case block_type_t::switch_block: { result.append(L"switch"); break; } case block_type_t::subst: { result.append(L"substitution"); break; } case block_type_t::top: { result.append(L"top"); break; } case block_type_t::begin: { result.append(L"begin"); break; } case block_type_t::source: { result.append(L"source"); break; } case block_type_t::event: { result.append(L"event"); break; } case block_type_t::breakpoint: { result.append(L"breakpoint"); break; } case block_type_t::variable_assignment: { result.append(L"variable_assignment"); break; } } if (this->src_lineno >= 0) { append_format(result, L" (line %d)", this->src_lineno); } if (this->src_filename != nullptr) { append_format(result, L" (file %ls)", this->src_filename); } return result; } // Various block constructors. block_t block_t::if_block() { return block_t(block_type_t::if_block); } block_t block_t::event_block(event_t evt) { block_t b{block_type_t::event}; b.event = std::move(evt); return b; } block_t block_t::function_block(wcstring name, wcstring_list_t args, bool shadows) { block_t b{shadows ? block_type_t::function_call : block_type_t::function_call_no_shadow}; b.function_name = std::move(name); b.function_args = std::move(args); return b; } block_t block_t::source_block(const wchar_t *src) { block_t b{block_type_t::source}; b.sourced_file = src; return b; } block_t block_t::for_block() { return block_t{block_type_t::for_block}; } block_t block_t::while_block() { return block_t{block_type_t::while_block}; } block_t block_t::switch_block() { return block_t{block_type_t::switch_block}; } block_t block_t::scope_block(block_type_t type) { assert( (type == block_type_t::begin || type == block_type_t::top || type == block_type_t::subst) && "Invalid scope type"); return block_t(type); } block_t block_t::breakpoint_block() { return block_t(block_type_t::breakpoint); } block_t block_t::variable_assignment_block() { return block_t(block_type_t::variable_assignment); }