#ifndef FISH_IO_H #define FISH_IO_H #include #include #include #include #include #include #include #include #include #include "common.h" #include "env.h" #include "flog.h" #include "global_safety.h" #include "maybe.h" #include "redirection.h" using std::shared_ptr; /// A simple set of FDs. struct fd_set_t { std::vector fds; void add(int fd) { assert(fd >= 0 && "Invalid fd"); if (static_cast(fd) >= fds.size()) { fds.resize(fd + 1); } fds[fd] = true; } bool contains(int fd) const { assert(fd >= 0 && "Invalid fd"); return static_cast(fd) < fds.size() && fds[fd]; } }; /// separated_buffer_t is composed of a sequence of elements, some of which may be explicitly /// separated (e.g. through string spit0) and some of which the separation is inferred. This enum /// tracks the type. enum class separation_type_t { /// This element's separation should be inferred, e.g. through IFS. inferred, /// This element was explicitly separated and should not be separated further. explicitly }; /// A separated_buffer_t contains a list of elements, some of which may be separated explicitly and /// others which must be separated further by the user (e.g. via IFS). template class separated_buffer_t { public: struct element_t { StringType contents; separation_type_t separation; element_t(StringType contents, separation_type_t sep) : contents(std::move(contents)), separation(sep) {} bool is_explicitly_separated() const { return separation == separation_type_t::explicitly; } }; private: /// Limit on how much data we'll buffer. Zero means no limit. size_t buffer_limit_; /// Current size of all contents. size_t contents_size_{0}; /// List of buffer elements. std::vector elements_; /// True if we're discarding input because our buffer_limit has been exceeded. bool discard = false; /// Mark that we are about to add the given size \p delta to the buffer. \return true if we /// succeed, false if we exceed buffer_limit. bool try_add_size(size_t delta) { if (discard) return false; contents_size_ += delta; if (contents_size_ < delta) { // Overflow! set_discard(); return false; } if (buffer_limit_ > 0 && contents_size_ > buffer_limit_) { set_discard(); return false; } return true; } /// separated_buffer_t may not be copied. separated_buffer_t(const separated_buffer_t &) = delete; void operator=(const separated_buffer_t &) = delete; public: /// Construct a separated_buffer_t with the given buffer limit \p limit, or 0 for no limit. separated_buffer_t(size_t limit) : buffer_limit_(limit) {} /// \return the buffer limit size, or 0 for no limit. size_t limit() const { return buffer_limit_; } /// \return the contents size. size_t size() const { return contents_size_; } /// \return whether the output has been discarded. bool discarded() const { return discard; } /// Mark the contents as discarded. void set_discard() { elements_.clear(); contents_size_ = 0; discard = true; } /// Serialize the contents to a single string, where explicitly separated elements have a /// newline appended. StringType newline_serialized() const { StringType result; result.reserve(size()); for (const auto &elem : elements_) { result.append(elem.contents); if (elem.is_explicitly_separated()) { result.push_back('\n'); } } return result; } /// \return the list of elements. const std::vector &elements() const { return elements_; } /// Append an element with range [begin, end) and the given separation type \p sep. template void append(Iterator begin, Iterator end, separation_type_t sep = separation_type_t::inferred) { if (!try_add_size(std::distance(begin, end))) return; // Try merging with the last element. if (sep == separation_type_t::inferred && !elements_.empty() && !elements_.back().is_explicitly_separated()) { elements_.back().contents.append(begin, end); } else { elements_.emplace_back(StringType(begin, end), sep); } } /// Append a string \p str with the given separation type \p sep. void append(const StringType &str, separation_type_t sep = separation_type_t::inferred) { append(str.begin(), str.end(), sep); } // Given that this is a narrow stream, convert a wide stream \p rhs to narrow and then append // it. template void append_wide_buffer(const separated_buffer_t &rhs) { for (const auto &rhs_elem : rhs.elements()) { append(wcs2string(rhs_elem.contents), rhs_elem.separation); } } }; /// Describes what type of IO operation an io_data_t represents. enum class io_mode_t { file, pipe, fd, close, bufferfill }; /// Represents an FD redirection. class io_data_t { // No assignment or copying allowed. io_data_t(const io_data_t &rhs) = delete; void operator=(const io_data_t &rhs) = delete; protected: io_data_t(io_mode_t m, int fd, int source_fd) : io_mode(m), fd(fd), source_fd(source_fd) {} public: /// Type of redirect. const io_mode_t io_mode; /// FD to redirect. const int fd; /// Source fd. This is dup2'd to fd, or if it is -1, then fd is closed. /// That is, we call dup2(source_fd, fd). const int source_fd; virtual void print() const = 0; virtual ~io_data_t() = 0; }; class io_close_t : public io_data_t { public: explicit io_close_t(int f) : io_data_t(io_mode_t::close, f, -1) {} void print() const override; ~io_close_t() override; }; class io_fd_t : public io_data_t { public: void print() const override; ~io_fd_t() override; /// fd to redirect specified fd to. For example, in 2>&1, source_fd is 1, and io_data_t::fd /// is 2. io_fd_t(int f, int source_fd) : io_data_t(io_mode_t::fd, f, source_fd) {} }; /// Represents a redirection to or from an opened file. class io_file_t : public io_data_t { public: void print() const override; io_file_t(int fd, autoclose_fd_t file) : io_data_t(io_mode_t::file, fd, file.fd()), file_fd_(std::move(file)) { assert(file_fd_.valid() && "File is not valid"); } ~io_file_t() override; private: // The fd for the file which we are writing to or reading from. autoclose_fd_t file_fd_; }; /// Represents (one end) of a pipe. class io_pipe_t : public io_data_t { // The pipe's fd. Conceptually this is dup2'd to io_data_t::fd. autoclose_fd_t pipe_fd_; /// Whether this is an input pipe. This is used only for informational purposes. const bool is_input_; public: void print() const override; io_pipe_t(int fd, bool is_input, autoclose_fd_t pipe_fd) : io_data_t(io_mode_t::pipe, fd, pipe_fd.fd()), pipe_fd_(std::move(pipe_fd)), is_input_(is_input) { assert(pipe_fd_.valid() && "Pipe is not valid"); } ~io_pipe_t() override; }; class io_buffer_t; class io_chain_t; /// Represents filling an io_buffer_t. Very similar to io_pipe_t. class io_bufferfill_t : public io_data_t { /// Write end. The other end is connected to an io_buffer_t. const autoclose_fd_t write_fd_; /// The receiving buffer. const std::shared_ptr buffer_; public: void print() const override; // The ctor is public to support make_shared() in the static create function below. // Do not invoke this directly. io_bufferfill_t(int target, autoclose_fd_t write_fd, std::shared_ptr buffer) : io_data_t(io_mode_t::bufferfill, target, write_fd.fd()), write_fd_(std::move(write_fd)), buffer_(std::move(buffer)) { assert(write_fd_.valid() && "fd is not valid"); } ~io_bufferfill_t() override; std::shared_ptr buffer() const { return buffer_; } /// Create an io_bufferfill_t which, when written from, fills a buffer with the contents. /// \returns nullptr on failure, e.g. too many open fds. /// /// \param target the fd which this will be dup2'd to - typically stdout. /// \param conflicts A set of fds. The function ensures that any pipe it makes does /// not conflict with an fd redirection in this list. static shared_ptr create(const fd_set_t &conflicts, size_t buffer_limit = 0, int target = STDOUT_FILENO); /// Reset the receiver (possibly closing the write end of the pipe), and complete the fillthread /// of the buffer. \return the buffer. static std::shared_ptr finish(std::shared_ptr &&filler); }; class output_stream_t; /// An io_buffer_t is a buffer which can populate itself by reading from an fd. /// It is not an io_data_t. class io_buffer_t { private: friend io_bufferfill_t; /// Buffer storing what we have read. separated_buffer_t buffer_; /// Atomic flag indicating our fillthread should shut down. relaxed_atomic_bool_t shutdown_fillthread_{false}; /// The future allowing synchronization with the background fillthread, if the fillthread is /// running. The fillthread fulfills the corresponding promise when it exits. std::future fillthread_waiter_{}; /// Lock for appending. std::mutex append_lock_{}; /// Read a bit, filling the buffer. The append lock must be held. /// \return positive on success, 0 if closed, -1 on error (in which case errno will be set). ssize_t read_once(int fd); /// Begin the fill operation, reading from the given fd in the background. void begin_filling(autoclose_fd_t readfd); /// End the background fillthread operation. void complete_background_fillthread(); /// Helper to return whether the fillthread is running. bool fillthread_running() const { return fillthread_waiter_.valid(); } public: explicit io_buffer_t(size_t limit) : buffer_(limit) {} ~io_buffer_t(); /// Access the underlying buffer. /// This requires that the background fillthread be none. const separated_buffer_t &buffer() const { assert(!fillthread_running() && "Cannot access buffer during background fill"); return buffer_; } /// Function to append to the buffer. void append(const char *ptr, size_t count) { scoped_lock locker(append_lock_); buffer_.append(ptr, ptr + count); } /// Appends data from a given output_stream_t. /// Marks the receiver as discarded if the stream was discarded. void append_from_stream(const output_stream_t &stream); }; using io_data_ref_t = std::shared_ptr; class io_chain_t : public std::vector { public: using std::vector::vector; // user-declared ctor to allow const init. Do not default this, it will break the build. io_chain_t() {} void remove(const io_data_ref_t &element); void push_back(io_data_ref_t element); void append(const io_chain_t &chain); /// \return the last io redirection in the chain for the specified file descriptor, or nullptr /// if none. io_data_ref_t io_for_fd(int fd) const; /// Attempt to resolve a list of redirection specs to IOs, appending to 'this'. /// \return true on success, false on error, in which case an error will have been printed. bool append_from_specs(const redirection_spec_list_t &specs, const wcstring &pwd); /// Output debugging information to stderr. void print() const; /// \return the set of redirected FDs. fd_set_t fd_set() const; }; /// Helper type returned from making autoclose pipes. struct autoclose_pipes_t { /// Read end of the pipe. autoclose_fd_t read; /// Write end of the pipe. autoclose_fd_t write; autoclose_pipes_t() = default; autoclose_pipes_t(autoclose_fd_t r, autoclose_fd_t w) : read(std::move(r)), write(std::move(w)) {} }; /// Call pipe(), populating autoclose fds, avoiding conflicts. /// The pipes are marked CLO_EXEC. /// \return pipes on success, none() on error. maybe_t make_autoclose_pipes(const fd_set_t &fdset); /// If the given fd is present in \p fdset, duplicates it repeatedly until an fd not used in the set /// is found or we run out. If we return a new fd or an error, closes the old one. Marks the fd as /// cloexec. \returns invalid fd on failure (in which case the given fd is still closed). autoclose_fd_t move_fd_to_unused(autoclose_fd_t fd, const fd_set_t &fdset); /// Class representing the output that a builtin can generate. class output_stream_t { private: /// Storage for our data. separated_buffer_t buffer_; // No copying. output_stream_t(const output_stream_t &s) = delete; void operator=(const output_stream_t &s) = delete; public: output_stream_t(size_t buffer_limit) : buffer_(buffer_limit) {} void append(const wcstring &s) { buffer_.append(s.begin(), s.end()); } separated_buffer_t &buffer() { return buffer_; } const separated_buffer_t &buffer() const { return buffer_; } void append(const wchar_t *s) { append(s, std::wcslen(s)); } void append(wchar_t s) { append(&s, 1); } void append(const wchar_t *s, size_t amt) { buffer_.append(s, s + amt); } // Append data from a narrow buffer, widening it. void append_narrow_buffer(const separated_buffer_t &buffer); void push_back(wchar_t c) { append(c); } void append_format(const wchar_t *format, ...) { va_list va; va_start(va, format); append_formatv(format, va); va_end(va); } void append_formatv(const wchar_t *format, va_list va) { append(vformat_string(format, va)); } wcstring contents() const { return buffer_.newline_serialized(); } }; struct io_streams_t { output_stream_t out; output_stream_t err; // fd representing stdin. This is not closed by the destructor. int stdin_fd{-1}; // Whether stdin is "directly redirected," meaning it is the recipient of a pipe (foo | cmd) or // direct redirection (cmd < foo.txt). An "indirect redirection" would be e.g. begin ; cmd ; end // < foo.txt bool stdin_is_directly_redirected{false}; // Indicates whether stdout and stderr are specifically piped. // If this is set, then the is_redirected flags must also be set. bool out_is_piped{false}; bool err_is_piped{false}; // Indicates whether stdout and stderr are at all redirected (e.g. to a file or piped). bool out_is_redirected{false}; bool err_is_redirected{false}; // Actual IO redirections. This is only used by the source builtin. Unowned. const io_chain_t *io_chain{nullptr}; // The pgid of the job, if any. This enables builtins which run more code like eval() to share // pgid. // TODO: this is awkwardly placed, consider just embedding a lineage here. maybe_t parent_pgid{}; // io_streams_t cannot be copied. io_streams_t(const io_streams_t &) = delete; void operator=(const io_streams_t &) = delete; explicit io_streams_t(size_t read_limit) : out(read_limit), err(read_limit), stdin_fd(-1) {} }; #endif