// Handles IO that may hang. #ifndef FISH_IOTHREAD_H #define FISH_IOTHREAD_H #include #include #include /// Runs a command on a thread. /// /// \param handler The function to execute on a background thread. Accepts an arbitrary context /// pointer, and returns an int, which is passed to the completionCallback. /// \param completionCallback The function to execute on the main thread once the background thread /// is complete. Accepts an int (the return value of handler) and the context. /// \param context A arbitary context pointer to pass to the handler and completion callback. /// \return A sequence number, currently not very useful. int iothread_perform_base(int (*handler)(void *), void (*completionCallback)(void *, int), void *context); /// Gets the fd on which to listen for completion callbacks. /// /// \return A file descriptor on which to listen for completion callbacks. int iothread_port(void); /// Services one iothread competion callback. void iothread_service_completion(void); /// Waits for all iothreads to terminate. void iothread_drain_all(void); // Internal implementation int iothread_perform_impl(std::function &&func, std::function &&completion); // Template helpers // This is the glue part of the handler-completion handoff // In general we can just allocate an object, move the result of the handler into it, // and then call the completion with that object. However if our type is void, // this won't work (new void() fails!). So we have to use this template. // The type T is the return type of HANDLER and the argument to COMPLETION template struct _iothread_trampoline { template static int perform(const HANDLER &handler, const COMPLETION &completion) { T *result = new T(); // TODO: placement new? return iothread_perform_impl([=]() { *result = handler(); }, [=]() { completion(std::move(*result)); delete result; }); } }; // Void specialization template <> struct _iothread_trampoline { template static int perform(const HANDLER &handler, const COMPLETION &completion) { return iothread_perform_impl(handler, completion); } }; // iothread_perform invokes a handler on a background thread, and then a completion function // on the main thread. The value returned from the handler is passed to the completion. // In other words, this is like COMPLETION(HANDLER()) except the handler part is invoked // on a background thread. template int iothread_perform(const HANDLER &handler, const COMPLETION &completion) { return _iothread_trampoline::perform(handler, completion); } // variant of iothread_perform without a completion handler inline int iothread_perform(std::function &&func) { return iothread_perform_impl(std::move(func), {}); } /// Performs a function on the main thread, blocking until it completes. void iothread_perform_on_main(std::function &&func); /// Creates a pthread, manipulating the signal mask so that the thread receives no signals. /// The pthread runs \p func. /// \returns true on success, false on failure. bool make_pthread(pthread_t *result, void *(*func)(void *), void *param); bool make_pthread(pthread_t *result, std::function &&func); /// \returns a thread ID for this thread. /// Thread IDs are never repeated. uint64_t thread_id(); #endif