/** \file event.c Functions for handling event triggers */ #include "config.h" #include #include #include #include #include #include #include #include "fallback.h" #include "util.h" #include "wutil.h" #include "function.h" #include "proc.h" #include "parser.h" #include "common.h" #include "event.h" #include "signal.h" #include "halloc_util.h" /** Number of signals that can be queued before an overflow occurs */ #define SIG_UNHANDLED_MAX 64 /** This struct contains a list of generated signals waiting to be dispatched */ typedef struct { /** Number of delivered signals */ int count; /** Whether signals have been skipped */ int overflow; /** Array of signal events */ int signal[SIG_UNHANDLED_MAX]; } signal_list_t; /** The signal event list. Actually two separate lists. One which is active, which is the one that new events is written to. The inactive one contains the events that are currently beeing performed. */ static signal_list_t sig_list[]={{0,0},{0,0}}; /** The index of sig_list that is the list of signals currently written to */ static int active_list=0; /** List of event handlers */ static array_list_t *events; /** List of event handlers that should be removed */ static array_list_t *killme; /** List of events that have been sent but have not yet been delivered because they are blocked. */ static array_list_t *blocked; /** Tests if one event instance matches the definition of a event class. If both the class and the instance name a function, they must name the same function. */ static int event_match( event_t *classv, event_t *instance ) { if( classv->function_name && instance->function_name ) { if( wcscmp( classv->function_name, instance->function_name ) != 0 ) return 0; } if( classv->type == EVENT_ANY ) return 1; if( classv->type != instance->type ) return 0; switch( classv->type ) { case EVENT_SIGNAL: if( classv->param1.signal == EVENT_ANY_SIGNAL ) return 1; return classv->param1.signal == instance->param1.signal; case EVENT_VARIABLE: return wcscmp( instance->param1.variable, classv->param1.variable )==0; case EVENT_EXIT: if( classv->param1.pid == EVENT_ANY_PID ) return 1; return classv->param1.pid == instance->param1.pid; case EVENT_JOB_ID: return classv->param1.job_id == instance->param1.job_id; case EVENT_GENERIC: return wcscmp( instance->param1.param, classv->param1.param )==0; } /** This should never be reached */ return 0; } /** Create an identical copy of an event. Use deep copying, i.e. make duplicates of any strings used as well. */ static event_t *event_copy( event_t *event, int copy_arguments ) { event_t *e = (event_t *)malloc( sizeof( event_t ) ); if( !e ) DIE_MEM(); memcpy( e, event, sizeof(event_t)); if( e->function_name ) e->function_name = wcsdup( e->function_name ); if( e->type == EVENT_VARIABLE ) e->param1.variable = wcsdup( e->param1.variable ); else if( e->type == EVENT_GENERIC ) e->param1.param = wcsdup( e->param1.param ); al_init( &e->arguments ); if( copy_arguments ) { int i; for( i=0; iarguments ); i++ ) { al_push( &e->arguments, wcsdup( (wchar_t *)al_get( &event->arguments, i ) ) ); } } return e; } /** Test if specified event is blocked */ static int event_is_blocked( event_t *e ) { block_t *block; event_block_t *eb; for( block = current_block; block; block = block->outer ) { for( eb = block->first_event_block; eb; eb=eb->next ) { if( eb->type & (1<type & (1<type) ) return 1; } } for( eb = global_event_block; eb; eb=eb->next ) { if( eb->type & (1<type & (1<type) ) return 1; return 1; } return 0; } const wchar_t *event_get_desc( event_t *e ) { /* String buffer used for formating event descriptions in event_get_desc() */ static string_buffer_t *get_desc_buff=0; CHECK( e, 0 ); if( !get_desc_buff ) { get_desc_buff=sb_halloc( global_context ); } else { sb_clear( get_desc_buff ); } switch( e->type ) { case EVENT_SIGNAL: sb_printf( get_desc_buff, _(L"signal handler for %ls (%ls)"), sig2wcs(e->param1.signal ), signal_get_desc( e->param1.signal ) ); break; case EVENT_VARIABLE: sb_printf( get_desc_buff, _(L"handler for variable '%ls'"), e->param1.variable ); break; case EVENT_EXIT: if( e->param1.pid > 0 ) { sb_printf( get_desc_buff, _(L"exit handler for process %d"), e->param1.pid ); } else { job_t *j = job_get_from_pid( -e->param1.pid ); if( j ) sb_printf( get_desc_buff, _(L"exit handler for job %d, '%ls'"), j->job_id, j->command ); else sb_printf( get_desc_buff, _(L"exit handler for job with process group %d"), -e->param1.pid ); } break; case EVENT_JOB_ID: { job_t *j = job_get( e->param1.job_id ); if( j ) sb_printf( get_desc_buff, _(L"exit handler for job %d, '%ls'"), j->job_id, j->command ); else sb_printf( get_desc_buff, _(L"exit handler for job with job id %d"), j->job_id ); break; } case EVENT_GENERIC: sb_printf( get_desc_buff, _(L"handler for generic event '%ls'"), e->param1.param ); break; default: sb_printf( get_desc_buff, _(L"Unknown event type") ); break; } return (const wchar_t *)get_desc_buff->buff; } void event_add_handler( event_t *event ) { event_t *e; CHECK( event, ); e = event_copy( event, 0 ); if( !events ) events = al_new(); if( e->type == EVENT_SIGNAL ) { signal_handle( e->param1.signal, 1 ); } al_push( events, e ); } void event_remove( event_t *criterion ) { int i; array_list_t *new_list=0; event_t e; CHECK( criterion, ); /* Because of concurrency issues (env_remove could remove an event that is currently being executed), env_remove does not actually free any events - instead it simply moves all events that should be removed from the event list to the killme list, and the ones that shouldn't be killed to new_list, and then drops the empty events-list. */ if( !events ) return; for( i=0; itype == EVENT_SIGNAL ) { e.type = EVENT_SIGNAL; e.param1.signal = n->param1.signal; e.function_name = 0; if( event_get( &e, 0 ) == 1 ) { signal_handle( e.param1.signal, 0 ); } } } else { if( !new_list ) new_list = al_new(); al_push( new_list, n ); } } al_destroy( events ); free( events ); events = new_list; } int event_get( event_t *criterion, array_list_t *out ) { int i; int found = 0; if( !events ) return 0; CHECK( criterion, 0 ); for( i=0; ifunction_name ); for( j=0; jarguments); j++ ) { wchar_t *arg_esc = escape( (wchar_t *)al_get( &event->arguments, j), 1 ); sb_append( b, L" " ); sb_append( b, arg_esc ); free( arg_esc ); } // debug( 1, L"Event handler fires command '%ls'", (wchar_t *)b->buff ); /* Event handlers are not part of the main flow of code, so they are marked as non-interactive */ proc_push_interactive(0); prev_status = proc_get_last_status(); parser_push_block( EVENT ); current_block->param1.event = event; eval( (wchar_t *)b->buff, 0, TOP ); parser_pop_block(); proc_pop_interactive(); proc_set_last_status( prev_status ); } if( b ) { sb_destroy( b ); free( b ); } if( fire ) { al_destroy( fire ); free( fire ); } /* Free killed events */ event_free_kills(); } /** Handle all pending signal events */ static void event_fire_delayed() { int i; /* If is_event is one, we are running the event-handler non-recursively. When the event handler has called a piece of code that triggers another event, we do not want to fire delayed events because of concurrency problems. */ if( blocked && is_event==1) { array_list_t *new_blocked = 0; for( i=0; i 0 ) { signal_list_t *lst; event_t e; al_init( &e.arguments ); /* Switch signal lists */ sig_list[1-active_list].count=0; sig_list[1-active_list].overflow=0; active_list=1-active_list; /* Set up */ e.type=EVENT_SIGNAL; e.function_name=0; lst = &sig_list[1-active_list]; if( lst->overflow ) { debug( 0, _( L"Signal list overflow. Signals have been ignored." ) ); } /* Send all signals in our private list */ for( i=0; icount; i++ ) { e.param1.signal = lst->signal[i]; al_set( &e.arguments, 0, sig2wcs( e.param1.signal ) ); if( event_is_blocked( &e ) ) { if( !blocked ) blocked = al_new(); al_push( blocked, event_copy(&e, 1) ); } else { event_fire_internal( &e ); } } al_destroy( &e.arguments ); } } void event_fire( event_t *event ) { is_event++; if( event && (event->type == EVENT_SIGNAL) ) { /* This means we are in a signal handler. We must be very careful not do do anything that could cause a memory allocation or something else that might be bad when in a signal handler. */ if( sig_list[active_list].count < SIG_UNHANDLED_MAX ) sig_list[active_list].signal[sig_list[active_list].count++]=event->param1.signal; else sig_list[active_list].overflow=1; } else { /* Fire events triggered by signals */ event_fire_delayed(); if( event ) { if( event_is_blocked( event ) ) { if( !blocked ) blocked = al_new(); al_push( blocked, event_copy(event, 1) ); } else { event_fire_internal( event ); } } } is_event--; } void event_init() { } void event_destroy() { if( events ) { al_foreach( events, (void (*)(void *))&event_free ); al_destroy( events ); free( events ); events=0; } if( killme ) { al_foreach( killme, (void (*)(void *))&event_free ); al_destroy( killme ); free( killme ); killme=0; } } void event_free( event_t *e ) { CHECK( e, ); /* When apropriate, we clear the argument vector */ al_foreach( &e->arguments, &free ); al_destroy( &e->arguments ); free( (void *)e->function_name ); if( e->type == EVENT_VARIABLE ) { free( (void *)e->param1.variable ); } else if( e->type == EVENT_GENERIC ) { free( (void *)e->param1.param ); } free( e ); } void event_fire_generic_internal(const wchar_t *name, ...) { event_t ev; va_list va; wchar_t *arg; CHECK( name, ); ev.type = EVENT_GENERIC; ev.param1.param = name; ev.function_name=0; al_init( &ev.arguments ); va_start( va, name ); while( (arg=va_arg(va, wchar_t *) )!= 0 ) { al_push( &ev.arguments, arg ); } va_end( va ); event_fire( &ev ); }