#include "config.h" // IWYU pragma: keep #include "iothread.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "common.h" #include "fds.h" #include "flog.h" #include "global_safety.h" #include "wutil.h" /// We just define a thread limit of 1024. #define IO_MAX_THREADS 1024 // iothread has a thread pool. Sometimes there's no work to do, but extant threads wait around for a // while (on a condition variable) in case new work comes soon. However condition variables are not // properly instrumented with Thread Sanitizer, so it fails to recognize when our mutex is locked. // See https://github.com/google/sanitizers/issues/1259 // When using TSan, disable the wait-around feature. #ifdef FISH_TSAN_WORKAROUNDS #define IO_WAIT_FOR_WORK_DURATION_MS 0 #else #define IO_WAIT_FOR_WORK_DURATION_MS 500 #endif using void_function_t = std::function; namespace { struct work_request_t : noncopyable_t { void_function_t handler; explicit work_request_t(void_function_t &&f) : handler(std::move(f)) {} }; struct thread_pool_t : noncopyable_t, nonmovable_t { struct data_t { /// The queue of outstanding, unclaimed requests. std::queue request_queue{}; /// The number of threads that exist in the pool. size_t total_threads{0}; /// The number of threads which are waiting for more work. size_t waiting_threads{0}; /// A flag indicating we should not process new requests. bool drain{false}; }; /// Data which needs to be atomically accessed. owning_lock req_data{}; /// The condition variable used to wake up waiting threads. /// Note this is tied to data's lock. std::condition_variable queue_cond{}; /// The minimum and maximum number of threads. /// Here "minimum" means threads that are kept waiting in the pool. /// Note that the pool is initially empty and threads may decide to exit based on a time wait. const size_t soft_min_threads; const size_t max_threads; /// Construct with a soft minimum and maximum thread count. thread_pool_t(size_t soft_min_threads, size_t max_threads) : soft_min_threads(soft_min_threads), max_threads(max_threads) {} /// Enqueue a new work item onto the thread pool. /// The function \p func will execute in one of the pool's threads. /// If \p cant_wait is set, disrespect the thread limit, because extant threads may /// want to wait for new threads. int perform(void_function_t &&func, bool cant_wait); private: /// The worker loop for this thread. void *run(); /// Dequeue a work item (perhaps waiting on the condition variable), or commit to exiting by /// reducing the active thread count. /// This runs in the background thread. maybe_t dequeue_work_or_commit_to_exit(); /// Trampoline function for pthread_spawn compatibility. static void *run_trampoline(void *vpool); /// Attempt to spawn a new pthread. bool spawn() const; }; /// The thread pool for "iothreads" which are used to lift I/O off of the main thread. /// These are used for completions, etc. /// Leaked to avoid shutdown dtor registration (including tsan). static thread_pool_t &s_io_thread_pool = *(new thread_pool_t(1, IO_MAX_THREADS)); /// A queue of "things to do on the main thread." struct main_thread_queue_t : noncopyable_t { // Functions to invoke as the completion callback from debounce. std::vector completions; // iothread_perform_on_main requests. // Note this contains pointers to structs that are stack-allocated on the requesting thread. std::vector requests; /// Transfer ownership of ourselves to a new queue and return it. /// 'this' is left empty. main_thread_queue_t take() { main_thread_queue_t result; std::swap(result.completions, this->completions); std::swap(result.requests, this->requests); return result; } // Moving is allowed, but not copying. main_thread_queue_t() = default; main_thread_queue_t(main_thread_queue_t &&) = default; main_thread_queue_t &operator=(main_thread_queue_t &&) = default; }; static owning_lock s_main_thread_queue; /// \return the signaller for completions and main thread requests. static fd_event_signaller_t &get_notify_signaller() { // Leaked to avoid shutdown dtors. static auto s_signaller = new fd_event_signaller_t(); return *s_signaller; } /// Dequeue a work item (perhaps waiting on the condition variable), or commit to exiting by /// reducing the active thread count. maybe_t thread_pool_t::dequeue_work_or_commit_to_exit() { auto data = this->req_data.acquire(); // If the queue is empty, check to see if we should wait. // We should wait if our exiting would drop us below the soft min. if (data->request_queue.empty() && data->total_threads == this->soft_min_threads && IO_WAIT_FOR_WORK_DURATION_MS > 0) { data->waiting_threads += 1; this->queue_cond.wait_for(data.get_lock(), std::chrono::milliseconds(IO_WAIT_FOR_WORK_DURATION_MS)); data->waiting_threads -= 1; } // Now that we've perhaps waited, see if there's something on the queue. maybe_t result{}; if (!data->request_queue.empty()) { result = std::move(data->request_queue.front()); data->request_queue.pop(); } // If we are returning none, then ensure we balance the thread count increment from when we were // created. This has to be done here in this awkward place because we've already committed to // exiting - we will never pick up more work. So we need to ensure we decrement the thread count // while holding the lock as we are effectively exited. if (!result) { data->total_threads -= 1; } return result; } static intptr_t this_thread() { return (intptr_t)pthread_self(); } void *thread_pool_t::run() { while (auto req = dequeue_work_or_commit_to_exit()) { FLOGF(iothread, L"pthread %p got work", this_thread()); // Perform the work req->handler(); } FLOGF(iothread, L"pthread %p exiting", this_thread()); return nullptr; } void *thread_pool_t::run_trampoline(void *pool) { assert(pool && "No thread pool given"); return static_cast(pool)->run(); } /// Spawn another thread. No lock is held when this is called. bool thread_pool_t::spawn() const { return make_detached_pthread(&run_trampoline, const_cast(this)); } int thread_pool_t::perform(void_function_t &&func, bool cant_wait) { assert(func && "Missing function"); // Note we permit an empty completion. struct work_request_t req(std::move(func)); int local_thread_count = -1; auto &pool = s_io_thread_pool; bool spawn_new_thread = false; bool wakeup_thread = false; { // Lock around a local region. auto data = pool.req_data.acquire(); data->request_queue.push(std::move(req)); FLOGF(iothread, L"enqueuing work item (count is %lu)", data->request_queue.size()); if (data->drain) { // Do nothing here. } else if (data->waiting_threads >= data->request_queue.size()) { // There's enough waiting threads, wake one up. wakeup_thread = true; } else if (cant_wait || data->total_threads < pool.max_threads) { // No threads are waiting but we can or must spawn a new thread. data->total_threads += 1; spawn_new_thread = true; } local_thread_count = data->total_threads; } // Kick off the thread if we decided to do so. if (wakeup_thread) { FLOGF(iothread, L"notifying thread: %p", this_thread()); pool.queue_cond.notify_one(); } if (spawn_new_thread) { // Spawn a thread. If this fails, it means there's already a bunch of threads; it is very // unlikely that they are all on the verge of exiting, so one is likely to be ready to // handle extant requests. So we can ignore failure with some confidence. if (this->spawn()) { FLOGF(iothread, L"pthread spawned"); } else { // We failed to spawn a thread; decrement the thread count. pool.req_data.acquire()->total_threads -= 1; } } return local_thread_count; } } // namespace void iothread_perform_impl(void_function_t &&func, bool cant_wait) { ASSERT_IS_NOT_FORKED_CHILD(); s_io_thread_pool.perform(std::move(func), cant_wait); } int iothread_port() { return get_notify_signaller().read_fd(); } void iothread_service_main_with_timeout(uint64_t timeout_usec) { if (fd_readable_set_t::is_fd_readable(iothread_port(), timeout_usec)) { iothread_service_main(); } } /// At the moment, this function is only used in the test suite and in a /// drain-all-threads-before-fork compatibility mode that no architecture requires, so it's OK that /// it's terrible. int iothread_drain_all() { ASSERT_IS_MAIN_THREAD(); ASSERT_IS_NOT_FORKED_CHILD(); int thread_count; auto &pool = s_io_thread_pool; // Set the drain flag. { auto data = pool.req_data.acquire(); assert(!data->drain && "Should not be draining already"); data->drain = true; thread_count = data->total_threads; } // Wake everyone up. pool.queue_cond.notify_all(); double now = timef(); // Nasty polling via select(). while (pool.req_data.acquire()->total_threads > 0) { iothread_service_main_with_timeout(1000); } // Clear the drain flag. // Even though we released the lock, nobody should have added a new thread while the drain flag // is set. { auto data = pool.req_data.acquire(); assert(data->total_threads == 0 && "Should be no threads"); assert(data->drain && "Should be draining"); data->drain = false; } double after = timef(); FLOGF(iothread, "Drained %d thread(s) in %.02f msec", thread_count, 1000 * (after - now)); return thread_count; } // Service the main thread queue, by invoking any functions enqueued for the main thread. void iothread_service_main() { ASSERT_IS_MAIN_THREAD(); // Note the order here is important: we must consume events before handling requests, as posting // uses the opposite order. (void)get_notify_signaller().try_consume(); // Move the queue to a local variable. // Note the s_main_thread_queue lock is not held after this. main_thread_queue_t queue = s_main_thread_queue.acquire()->take(); // Perform each completion in order. for (const void_function_t &func : queue.completions) { // ensure we don't invoke empty functions, that raises an exception if (func) func(); } // Perform each main thread request. for (const void_function_t &func : queue.requests) { if (func) func(); } } void iothread_perform_on_main(const void_function_t &func) { if (is_main_thread()) { func(); return; } // Make a new request. Note we are synchronous, so our closure can use references instead of // copying. std::promise wait_until_done; auto handler = [&] { func(); wait_until_done.set_value(); }; // Append it. Ensure we don't hold the lock after. s_main_thread_queue.acquire()->requests.emplace_back(std::move(handler)); // Tell the signaller and then wait until our future is set. get_notify_signaller().post(); wait_until_done.get_future().wait(); } bool make_detached_pthread(void *(*func)(void *), void *param) { // The spawned thread inherits our signal mask. Temporarily block signals, spawn the thread, and // then restore it. But we must not block SIGBUS, SIGFPE, SIGILL, or SIGSEGV; that's undefined // (#7837). Conservatively don't try to mask SIGKILL or SIGSTOP either; that's ignored on Linux // but maybe has an effect elsewhere. sigset_t new_set, saved_set; sigfillset(&new_set); sigdelset(&new_set, SIGILL); // bad jump sigdelset(&new_set, SIGFPE); // divide by zero sigdelset(&new_set, SIGBUS); // unaligned memory access sigdelset(&new_set, SIGSEGV); // bad memory access sigdelset(&new_set, SIGSTOP); // unblockable sigdelset(&new_set, SIGKILL); // unblockable DIE_ON_FAILURE(pthread_sigmask(SIG_BLOCK, &new_set, &saved_set)); // Spawn a thread. If this fails, it means there's already a bunch of threads; it is very // unlikely that they are all on the verge of exiting, so one is likely to be ready to handle // extant requests. So we can ignore failure with some confidence. pthread_t thread; pthread_attr_t thread_attr; DIE_ON_FAILURE(pthread_attr_init(&thread_attr)); int err = pthread_attr_setdetachstate(&thread_attr, PTHREAD_CREATE_DETACHED); if (err == 0) { err = pthread_create(&thread, &thread_attr, func, param); if (err == 0) { FLOGF(iothread, "pthread %d spawned", thread); } else { perror("pthread_create"); } int err2 = pthread_attr_destroy(&thread_attr); if (err2 != 0) { perror("pthread_attr_destroy"); err = err2; } } else { perror("pthread_attr_setdetachstate"); } // Restore our sigmask. DIE_ON_FAILURE(pthread_sigmask(SIG_SETMASK, &saved_set, nullptr)); return err == 0; } using void_func_t = std::function; static void *func_invoker(void *param) { // Acquire a thread id for this thread. (void)thread_id(); auto vf = static_cast(param); (*vf)(); delete vf; return nullptr; } bool make_detached_pthread(void_func_t &&func) { // Copy the function into a heap allocation. auto vf = new void_func_t(std::move(func)); if (make_detached_pthread(func_invoker, vf)) { return true; } // Thread spawning failed, clean up our heap allocation. delete vf; return false; } static uint64_t next_thread_id() { // Note 0 is an invalid thread id. // Note fetch_add is a CAS which returns the value *before* the modification. static std::atomic s_last_thread_id{}; uint64_t res = 1 + s_last_thread_id.fetch_add(1, std::memory_order_relaxed); return res; } uint64_t thread_id() { static FISH_THREAD_LOCAL uint64_t tl_tid = next_thread_id(); return tl_tid; } // Debounce implementation note: we would like to enqueue at most one request, except if a thread // hangs (e.g. on fs access) then we do not want to block indefinitely; such threads are called // "abandoned". This is implemented via a monotone uint64 counter, called a token. // Every time we spawn a thread, increment the token. When the thread is completed, it compares its // token to the active token; if they differ then this thread was abandoned. struct debounce_t::impl_t { // Synchronized data from debounce_t. struct data_t { // The (at most 1) next enqueued request, or none if none. maybe_t next_req{}; // The token of the current non-abandoned thread, or 0 if no thread is running. uint64_t active_token{0}; // The next token to use when spawning a thread. uint64_t next_token{1}; // The start time of the most recently run thread spawn, or request (if any). std::chrono::time_point start_time{}; }; owning_lock data{}; /// Run an iteration in the background, with the given thread token. /// \return true if we handled a request, false if there were none. bool run_next(uint64_t token); }; bool debounce_t::impl_t::run_next(uint64_t token) { assert(token > 0 && "Invalid token"); // Note we are on a background thread. maybe_t req; { auto d = data.acquire(); if (d->next_req) { // The value was dequeued, we are going to execute it. req = d->next_req.acquire(); d->start_time = std::chrono::steady_clock::now(); } else { // There is no request. If we are active, mark ourselves as no longer running. if (token == d->active_token) { d->active_token = 0; } return false; } } assert(req && req->handler && "Request should have value"); req->handler(); return true; } uint64_t debounce_t::perform(std::function handler) { uint64_t active_token{0}; bool spawn{false}; // Local lock. { auto d = impl_->data.acquire(); d->next_req = work_request_t{std::move(handler)}; // If we have a timeout, and our running thread has exceeded it, abandon that thread. if (d->active_token && timeout_msec_ > 0 && std::chrono::steady_clock::now() - d->start_time > std::chrono::milliseconds(timeout_msec_)) { // Abandon this thread by marking nothing as active. d->active_token = 0; } if (!d->active_token) { // We need to spawn a new thread. // Mark the current time so that a new request won't immediately abandon us. spawn = true; d->active_token = d->next_token++; d->start_time = std::chrono::steady_clock::now(); } active_token = d->active_token; assert(active_token && "Something should be active"); } if (spawn) { // Equip our background thread with a reference to impl, to keep it alive. auto impl = impl_; iothread_perform([=] { while (impl->run_next(active_token)) ; // pass }); } return active_token; } // static void debounce_t::enqueue_main_thread_result(std::function func) { s_main_thread_queue.acquire()->completions.push_back(std::move(func)); get_notify_signaller().post(); } debounce_t::debounce_t(long timeout_msec) : timeout_msec_(timeout_msec), impl_(std::make_shared()) {} debounce_t::~debounce_t() = default;